Key Performance Indicators for Evaluation of Commercial Building Retrofits: Shortlisting via an Industry Survey
Abstract
:1. Introduction
2. Building Retrofit
2.1. Definitions, Scope, and Challenges
2.2. Performance Measurement
2.3. The Role of FM Practitioners
3. Data Collection
4. Statistical Analysis
- G1: Gender: male (G1a; n = 104) and female (G1b; n = 20);
- G2: FM/operation and maintenance (O&M) work experience: 5 years (G2a; n = 22), 5 years to <20 years (G2b; n = 21), 20 to <30 years (G2c; n = 39), and 30 years (G2d; n = 42);
- G3: Nature of organisation that the respondents worked for: government (G3a; n = 11), public (G3b; n = 23) and private (G3c; n = 90);
- G4: Type of employer: owners/developers (G4a; n = 43), management companies (G4b; n = 44), contractors (G4c; n = 18) and others (G4d; n = 19);
- G5: Job level: strategic (G5a; n = 38) and tactical (G5b; n = 86);
- G6: Academic qualification: subdegree (associate degrees/diplomas/certificates), bachelor (G6a; n = 41), and postgraduate (master degrees or doctorate degrees) (G6b; n = 83).
5. Results
5.1. Perceived Importance Levels of KPIs
5.2. Correlation between Rankings of KPIs
5.3. Importance Levels and Ranks of KPIs
5.4. Finalised KPIs
6. Discussion
6.1. High Evaluation Cost and Difficulty of Obtaining Precise Cost Estimation
6.2. Different Natures of Retrofit Projects
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
Appendix A
Appendix B
KPI | G1: Gender | G2: Work Experience | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
a. Male | b. Female | a. ≦5 Years | b. >5 to <20 Years | c. 20 to <30 Years | d. 30 Years | ||||||||
Mean | Rank | Mean | Rank | Mean | Rank | Mean | Rank | Mean | Rank | Mean | Rank | ||
1 | Energy savings (%) | 3.70 | 2 | 3.95 | 1 | 3.95 | 2 | 3.90 | =1 | 3.69 | 2 | 3.64 | =2 |
2 | Normalised energy savings (kWh/m2 year) | 3.40 | =12 | 3.65 | 10 | 4.00 | 1 | 3.48 | =12 | 3.33 | 11 | 3.29 | 16 |
3 | Electricity consumption saving per year (kWh/year) | 3.50 | 4 | 3.80 | =4 | 3.86 | 3 | 3.76 | =4 | 3.54 | 3 | 3.33 | 15 |
4 | Energy payback period (year) | 3.38 | 14 | 3.60 | =11 | 3.59 | =8 | 3.48 | =12 | 3.36 | =9 | 3.40 | =10 |
5 | Target green building label | 3.07 | 19 | 3.40 | =17 | 3.59 | =8 | 3.33 | 18 | 2.97 | 18 | 2.95 | 19 |
6 | Payback period (year) | 3.40 | =12 | 3.70 | =7 | 3.68 | =6 | 3.48 | =12 | 3.31 | =12 | 3.50 | 5 |
7 | Return on investment (%) | 3.30 | 16 | 3.55 | =13 | 3.59 | =8 | 3.38 | =16 | 3.18 | 17 | 3.40 | =10 |
8 | Internal rate of return (%) | 3.09 | 18 | 3.40 | =17 | 3.45 | 17 | 3.19 | 19 | 2.87 | 19 | 3.24 | 17 |
9 | Investment cost (USD) | 3.72 | 1 | 3.85 | 3 | 3.73 | 5 | 3.90 | =1 | 3.74 | 1 | 3.69 | 1 |
10 | Normalised investment cost (USD/m2) | 3.46 | =6 | 3.60 | =11 | 3.68 | =6 | 3.52 | 11 | 3.49 | 4 | 3.36 | =12 |
11 | Life cycle cost (USD) | 3.41 | 11 | 3.90 | 2 | 3.55 | =13 | 3.62 | =8 | 3.38 | =6 | 3.48 | =7 |
12 | Increase of building value (%) | 3.42 | =9 | 3.50 | 15 | 3.36 | 19 | 3.62 | =8 | 3.36 | =9 | 3.48 | =7 |
13 | Ratio of actual to target no. of statutory orders removed (%) | 3.46 | =6 | 3.45 | 16 | 3.49 | 16 | 3.47 | 15 | 3.44 | 5 | 3.49 | 6 |
14 | Ratio of actual to target no. of accidents per year reduced (%) | 3.38 | 14 | 3.80 | =4 | 3.55 | =13 | 3.81 | 3 | 3.31 | =12 | 3.36 | =12 |
15 | Target indoor air temperature (°C) | 3.44 | 8 | 3.70 | 9 | 3.59 | =8 | 3.57 | 10 | 3.28 | =14 | 3.62 | 4 |
16 | Δ Indoor carbon dioxide levels or harmful substances (ppm) | 3.52 | 3 | 3.75 | 6 | 3.55 | =13 | 3.71 | 6 | 3.38 | =6 | 3.64 | =2 |
17 | Target IAQ class | 3.48 | 5 | 3.55 | =13 | 3.82 | 4 | 3.76 | =4 | 3.28 | =14 | 3.43 | 9 |
18 | Target workplane illuminance (lux) | 3.42 | =9 | 3.70 | =7 | 3.59 | =8 | 3.67 | 7 | 3.38 | =6 | 3.36 | =12 |
19 | Target equivalent continuous weighted sound pressure level (dBA) | 3.27 | 17 | 3.35 | 19 | 3.41 | 18 | 3.38 | =16 | 3.21 | 16 | 3.21 | 18 |
KPI | G3: Nature of Organisation | G4: Type of Employer | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
a. Government | b. NGO | c. Private | a. Owner/ Developer | b. Management Company | c. Contractor | d. Others | |||||||||
Mean | Rank | Mean | Rank | Mean | Rank | Mean | Rank | Mean | Rank | Mean | Rank | Mean | Rank | ||
1 | Energy savings (%) | 3.55 | =9 | 3.78 | 1 | 3.78 | 2 | 3.70 | 2 | 3.70 | 2 | 3.83 | 1 | 3.95 | 1 |
2 | Normalised energy savings (kWh/m2 year) | 3.64 | =6 | 3.57 | =4 | 3.41 | =12 | 3.51 | =8 | 3.39 | =13 | 3.33 | 14 | 3.63 | =3 |
3 | Electricity consumption saving per year (kWh/year) | 3.36 | =16 | 3.48 | 11 | 3.61 | 3 | 3.58 | =4 | 3.52 | =6 | 3.61 | =3 | 3.58 | 6 |
4 | Energy payback period (year) | 3.36 | =16 | 3.57 | =4 | 3.41 | =12 | 3.4 | 16 | 3.27 | =16 | 3.61 | =3 | 3.74 | 2 |
5 | Target green building label | 3.45 | =12 | 3.09 | 18 | 3.11 | 19 | 3.23 | =18 | 3.02 | 19 | 3.50 | 8 | 2.84 | 19 |
6 | Payback period (year) | 3.64 | =6 | 3.35 | =16 | 3.48 | =5 | 3.53 | =6 | 3.39 | =13 | 3.44 | 11 | 3.53 | 7 |
7 | Return on investment (%) | 3.45 | =12 | 3.39 | 15 | 3.34 | 16 | 3.44 | =13 | 3.34 | 15 | 3.22 | 16 | 3.37 | 13 |
8 | Internal rate of return (%) | 3.36 | =16 | 3 | 19 | 3.17 | 18 | 3.23 | =18 | 3.16 | 18 | 3.11 | =18 | 3.00 | 18 |
9 | Investment cost (USD) | 3.64 | =6 | 3.48 | 11 | 3.83 | 1 | 3.72 | 1 | 3.82 | 1 | 3.78 | 2 | 3.63 | =3 |
10 | Normalised investment cost (USD/m2) | 3.55 | =9 | 3.48 | 11 | 3.48 | =5 | 3.47 | =10 | 3.55 | 5 | 3.61 | =3 | 3.26 | 14 |
11 | Life cycle cost (USD) | 3.73 | =4 | 3.48 | 11 | 3.46 | 10 | 3.44 | 15 | 3.5 | =8 | 3.56 | =6 | 3.47 | =8 |
12 | Increase of building value (%) | 3.27 | 19 | 3.52 | =7 | 3.44 | 11 | 3.53 | =6 | 3.5 | =8 | 3.39 | =12 | 3.16 | 17 |
13 | Ratio of actual to target no. of statutory orders removed (%) | 3.47 | =9 | 3.48 | 11 | 3.48 | =5 | 3.46 | 12 | 3.48 | =10 | 3.49 | 9 | 3.46 | 12 |
14 | Ratio of actual to target no. of accidents per year reduced (%) | 3.73 | =4 | 3.52 | =7 | 3.40 | 15 | 3.44 | =13 | 3.48 | =10 | 3.39 | =12 | 3.47 | =8 |
15 | Target indoor air temperature (°C) | 3.45 | =12 | 3.61 | 3 | 3.48 | =5 | 3.51 | =8 | 3.52 | =6 | 3.28 | 15 | 3.63 | =3 |
16 | Δ Indoor carbon dioxide levels or harmful substances (ppm) | 3.91 | 1 | 3.57 | =4 | 3.51 | 4 | 3.58 | =4 | 3.57 | 4 | 3.56 | =6 | 3.47 | =8 |
17 | Target IAQ class | 3.82 | =2 | 3.74 | 2 | 3.41 | =12 | 3.65 | 3 | 3.64 | 3 | 3.17 | 17 | 3.21 | =15 |
18 | Target workplane illuminance (lux) | 3.46 | =12 | 3.47 | 14 | 3.47 | 9 | 3.47 | =10 | 3.48 | =10 | 3.47 | 10 | 3.47 | =8 |
19 | Target equivalent continuous weighted sound pressure level (dBA) | 3.82 | =2 | 3.35 | =16 | 3.19 | 17 | 3.37 | 17 | 3.27 | =16 | 3.11 | =18 | 3.21 | =15 |
KPI | G5: Job Level | G6: Academic Qualification | |||||||
---|---|---|---|---|---|---|---|---|---|
a. Strategic Level | b. Tactical Level | a. Subdegree or Bachelor | b. Postgraduate Degree | ||||||
Mean | Rank | Mean | Rank | Mean | Rank | Mean | Rank | ||
1 | Energy savings (%) | 3.82 | =2 | 3.73 | 1 | 3.68 | =1 | 3.8 | 1 |
2 | Normalised energy savings (kWh/m2 year) | 3.55 | 11 | 3.42 | =8 | 3.35 | =14 | 3.51 | 6 |
3 | Electricity consumption saving per year (kWh/year) | 3.82 | =2 | 3.45 | 7 | 3.53 | 5 | 3.58 | =3 |
4 | Energy payback period (year) | 3.61 | 8 | 3.36 | 13 | 3.38 | =14 | 3.46 | =12 |
5 | Target green building label | 3.29 | 18 | 3.07 | 19 | 3.00 | 19 | 3.2 | 18 |
6 | Payback period (year) | 3.74 | 6 | 3.35 | =14 | 3.53 | 5 | 3.44 | 15 |
7 | Return on investment (%) | 3.47 | 15 | 3.31 | 16 | 3.3 | 16 | 3.39 | 16 |
8 | Internal rate of return (%) | 3.26 | 19 | 3.1 | 18 | 3.08 | 18 | 3.19 | 19 |
9 | Investment cost (USD) | 4.11 | 1 | 3.59 | 2 | 3.68 | =1 | 3.79 | 2 |
10 | Normalised investment cost (USD/m2) | 3.79 | 4 | 3.35 | =14 | 3.35 | =14 | 3.55 | 5 |
11 | Life cycle cost (USD) | 3.53 | =12 | 3.47 | =5 | 3.45 | =10 | 3.5 | =7 |
12 | Increase of building value (%) | 3.53 | =12 | 3.41 | 10 | 3.38 | =12 | 3.48 | =9 |
13 | Ratio of actual to target no. of statutory orders removed (%) | 3.49 | 14 | 3.46 | 4 | 3.47 | =8 | 3.46 | =12 |
14 | Ratio of actual to target no. of accidents per year reduced (%) | 3.58 | =9 | 3.40 | =11 | 3.45 | =10 | 3.45 | 14 |
15 | Target indoor air temperature (°C) | 3.68 | 7 | 3.42 | =8 | 3.55 | 3 | 3.48 | =9 |
16 | Δ Indoor carbon dioxide levels or harmful substances (ppm) | 3.58 | =9 | 3.55 | 3 | 3.5 | 7 | 3.58 | =3 |
17 | Target IAQ class | 3.76 | 5 | 3.40 | =11 | 3.53 | 5 | 3.5 | =7 |
18 | Target workplane illuminance (lux) | 3.46 | 16 | 3.47 | =5 | 3.47 | =8 | 3.47 | 11 |
19 | Target equivalent continuous weighted sound pressure level (dBA) | 3.37 | 17 | 3.23 | 17 | 3.25 | 17 | 3.29 | 17 |
References
- IEA. World Energy Statistics and Balances (Database). Available online: www.iea.org/statistics (accessed on 31 July 2021).
- Tan, Y.; Liu, G.; Zhang, Y.; Shuai, C.; Shen, G.Q. Green retrofit of aged residential buildings in Hong Kong: A preliminary study. Build. Environ. 2018, 143, 89–98. [Google Scholar] [CrossRef]
- Zheng, L.; Lai, J. Environmental and Economic Evaluations of Building Energy Retrofits: Case Study of a Commercial Building. Build. Environ. 2018, 145, 14–23. [Google Scholar] [CrossRef]
- Sing, M.C.P.; Chan, V.W.C.; Lai, J.H.K.; Matthews, J. Energy-efficient retrofitting of multi-storey residential buildings. Facilities 2021, 39, 722–736. [Google Scholar] [CrossRef]
- Ho, A.; Lai, J. Building retrofit: Review on modelling studies, real applications and barriers. In Proceedings of the 9th Great Pearl River Delta and 2nd Guangdong, Hong Kong and Macao Dawan District Building Operation and Maintenance Conference, Guangzhou, China, 15 December 2018; pp. 54–61. [Google Scholar]
- Ho, A.M.Y.; Lai, J.H.K.; Chiu, B.W.Y. Key performance indicators for holistic evaluation of building retrofits: Systematic literature review and focus group study. J. Build. Eng. 2021, 43, 102926. [Google Scholar] [CrossRef]
- Shaikh, P.H.; Shaikh, F.; Sahito, A.A.; Uqaili, M.A.; Umrani, Z. Chapter 9-An Overview of the Challenges for Cost-Effective and Energy-Efficient Retrofits of the Existing Building Stock. In Cost-Effective Energy-Efficient Building Retrofitting, 1st ed.; Fernando, P., Claes-Göran, G., Bjørn, P.J., Giuseppe, P.V., Nicola, B., Jarek, K., Eds.; Woodhead Publishing: Cambridge, UK, 2017; pp. 257–278. [Google Scholar]
- Jagarajan, R.; Abdullah, M.; Asmoni, M.N.; Mohammed, A.H.; Jaafar, M.N.; Lee, Y.M.J.; Baba, M. Green retrofitting–A review of current status, implementations and challenges. Renew. Sustain. Energy Rev. 2017, 67, 1360–1368. [Google Scholar] [CrossRef]
- Aghamolaei, R. Evaluation of Supply and Demand in Building Energy Performance: Application of Retrofit Scenarios in Residential Building. Energy Eng. 2019, 116, 60–79. [Google Scholar] [CrossRef]
- Ferrari, S.; Beccali, M. Energy-environmental and cost assessment of a set of strategies for retrofitting a public building toward nearly zero-energy building target. Sustain. Cities Soc. 2017, 32, 226–234. [Google Scholar] [CrossRef]
- Wilkinson, S. Analysing sustainable retrofit potential in premium office buildings. Struct. Surv. 2012, 30, 398–410. [Google Scholar] [CrossRef]
- Gagliano, A.; Detommaso, M.; Nocera, F.; Patania, F.; Aneli, S. The Retrofit of Existing Buildings Through the Exploitation of the Green Roofs–A Simulation Study. Energy Procedia 2014, 62, 52–61. [Google Scholar] [CrossRef] [Green Version]
- Tokede, O.; Ahiaga-Dagbui, D. Evaluating the whole-life cost implication of revocability and disruption in office retrofit building projects. In Proceedings of the 32nd ARCOM Conference, Association of Researchers in Construction Management, Manchester, UK, 5–7 September 2016; pp. 321–330. [Google Scholar]
- Jafari, A.; Valentin, V. An optimization framework for building energy retrofits decision-making. Build. Environ. 2017, 115, 118–129. [Google Scholar] [CrossRef]
- Ma, Z.; Cooper, P.; Daly, D.; Ledo, L. Existing building retrofits: Methodology and state-of-the-art. Energy Build. 2012, 55, 889–902. [Google Scholar] [CrossRef]
- Terés-Zubiaga, J.; Martin, K.; Erkoreka, A.; Aparicio, X.; del Portillo, L.A. Chapter 18-Cost-Effective Energy Retrofitting of Buildings in Spain: An Office Building of the University of the Basque Country. In Cost-Effective Energy Efficient Building Retrofitting, 1st ed.; Fernando, P., Claes-Göran, G., Bjørn, P.J., Giuseppe, P.V., Nicola, B., Jarek, K., Eds.; Woodhead Publishing: Cambridge, UK, 2017; pp. 515–551. [Google Scholar]
- Remer, D.S.; Nieto, A.P. A compendium and comparison of 25 project evaluation techniques. Part 1. Net present value and rate of return methods. Int. J. Prod. Econ. 1995, 42, 79–96. [Google Scholar] [CrossRef]
- Verbeeck, G.; Hens, H. Energy savings in retrofitted dwellings: Economically viable. Energy Build. 2005, 37, 747–754. [Google Scholar] [CrossRef]
- Nikolaidis, Y.; Pilavachi, P.A.; Chletsis, A. Economic evaluation of energy saving measures in a common type of Greek building. Appl. Energy 2009, 86, 2550–2559. [Google Scholar] [CrossRef]
- Peterson, S.; Svendsen, S. Method for component-based economical optimisation for use in design of new low–energy buildings. Renew. Energy 2012, 38, 173–180. [Google Scholar] [CrossRef]
- Ornetzeder, M.; Wicher, M.; Suschek-Berger, J. User satisfaction and well-being in energy efficient office buildings: Evidence from cutting-edge projects in Austria. Energy Build. 2016, 118, 18–26. [Google Scholar] [CrossRef]
- Beccali, M.; Bonomolo, M.; Lo Brano, V.; Ciulla, G.; Di Dio, V.; Massaro, F.; Favuzza, S. Energy saving and user satisfaction for a new advanced public lighting system. Energy Convers. 2019, 195, 943–957. [Google Scholar] [CrossRef]
- Kylili, A.; Paris, A. Fokaides, and Petra Amparo Lopez Jimenez. Key Performance Indicators (KPIs) approach in buildings renovation for the sustainability of the built environment: A review. Renew. Sustain. Energy Rev. 2016, 56, 906–915. [Google Scholar] [CrossRef]
- Gourlis, G.; Kovacic, I. A study on building performance analysis for energy retrofit of existing industrial facilities. Appl. Energy 2016, 184, 1389–1399. [Google Scholar] [CrossRef]
- Walter, T.; Sohn, M.D. A regression-based approach to estimating retrofit savings using the Building Performance Database. Appl. Energy 2016, 179, 996–1005. [Google Scholar] [CrossRef] [Green Version]
- Cuerda, E.; Guerra-Santin, O.; Sendra, J.J.; Neila, F.J. Understanding the performance gap in energy retrofitting: Measured input data for adjusting building simulation models. Energy Build. 2020, 209, 109688. [Google Scholar] [CrossRef]
- Pohoryles, D.A.; Maduta, C.; Bournas, D.A.; Kouris, L.A. Energy performance of existing residential buildings in Europe: A novel approach combining energy with seismic retrofitting. Energy Build. 2020, 223, 110024. [Google Scholar] [CrossRef]
- Seyedzadeh, S.; Rahimian, F.P.; Oliver, S.; Rodriguez, S.; Glesk, I. Machine learning modelling for predicting non-domestic buildings energy performance: A model to support deep energy retrofit decision-making. Appl. Energy 2020, 279, 115908. [Google Scholar] [CrossRef]
- Al Dakheel, J.; Del Pero, C.; Aste, N.; Leonforte, F. Smart buildings features and key performance indicators: A review. Sustain. Cities Soc. 2020, 61, 102328. [Google Scholar] [CrossRef]
- Collins, A.J.; Hester, P.; Ezell, B.; Horst, J. An improvement selection methodology for key performance indicators. Environ. Syst. Decis. 2016, 36, 196–208. [Google Scholar] [CrossRef]
- Xu, P.; Chan, E.H.W.; Queena, Q.K. Key performance indicators (KPI) for the sustainability of building energy efficiency retrofit (BEER) in hotel buildings in China. Facilities 2012, 30, 432–448. [Google Scholar]
- Lai, J.H.; Hou, H.C.; Chiu, B.W.; Edwards, D.; Yuen, P.L.; Sing, M.; Wong, P. Importance of hospital facilities management performance indicators: Building practitioners’ perspectives. J. Build. Eng. 2022, 45, 103428. [Google Scholar] [CrossRef]
- Luther, M.B.; Rajagopalan, P. Defining and developing an energy retrofitting approach. J. Green Build. 2014, 9, 151–162. [Google Scholar] [CrossRef] [Green Version]
- Escrivá-Escrivá, G. Basic actions to improve energy efficiency in commercial buildings in operation. Energy Build. 2011, 43, 3106–3111. [Google Scholar] [CrossRef]
- Mawed, M.; Tilani, V.; Hamani, K. The role of facilities management in green retrofit of existing buildings in the United Arab Emirates. J. Facil. Manag. 2020, 18, 36–52. [Google Scholar] [CrossRef]
- Lai, J.H.K.; Man, C.S. Performance indicators for facilities operation and maintenance (Part 1): Systematic classification and mapping. Facilities 2018, 36, 476–494. [Google Scholar] [CrossRef]
- Lai, J.H.K.; Man, C.S. Performance indicators for facilities operation and maintenance (Part 2): Shortlisting through a focus group study. Facilities 2018, 36, 495–509. [Google Scholar] [CrossRef]
- Lai, J.H.K.; Yuen, P.L. Identification, classification and shortlisting of performance indicators for hospital facilities management. Facilities 2021, 39, 4–18. [Google Scholar] [CrossRef]
- Corder, G.W.; Foreman, D.I. Nonparametric Statistics: A Step-by-Step Approach, 2nd ed.; Wiley: Hoboken, NJ, USA, 2014. [Google Scholar]
- Rodríguez, P.; Montequín, V.R.; Morán, H.; de Arriba, L. Gender influence in project management: Analysis of a case study based on master students. Procedia Comput. Sci. 2017, 121, 461–468. [Google Scholar] [CrossRef]
- Miller, A.; Higgins, C. Deep Energy Savings in Existing Buildings. ASHRAE Trans. 2015, 121, 380–394. [Google Scholar]
- Lai, J.H.K. Operation and maintenance budgeting for commercial buildings in Hong Kong. Constr. Manag. Econ. 2010, 28, 415–427. [Google Scholar] [CrossRef]
- Environmental Campaign Committee and Environmental Protection Department. Hong Kong Green Organisation Certification-Guidebook for IAQwi$e Certificate. Available online: https://www.hkgoc.gov.hk/uploads/2021%20IAQ-Guidebook_Eng_Clean.pdf (accessed on 16 August 2021).
- Bortolini, R.; Forcada, N. Facility managers’ perceptions on building performance assessment. Front. Eng. Manag. 2018, 5, 324–333. [Google Scholar]
- Kumar, U.; Galar, D.; Parida, A.; Stenström, C.; Berges, L. Maintenance performance metrics: A state-of-the-art review. J. Qual. Maint. Eng. 2013, 19, 233–277. [Google Scholar] [CrossRef] [Green Version]
- Lai, J.H.K. Maintenance performance: Examination of the computer-aided maintenance data of a large commercial building. J. Perform. Constr. Facil. 2015, 29, 4014118. [Google Scholar] [CrossRef]
- Charnes, A.; Clark, C.T.; Cooper, W.W.; Golany, B. A developmental study of data envelopment analysis in measuring the efficiency of maintenance units in the US air forces. Ann. Oper. Res. 1984, 2, 95–112. [Google Scholar] [CrossRef]
- Lai, J.; Yik, F.; Jones, P. Expenditure on operation and maintenance service and rental income of commercial buildings. Facilities 2008, 26, 242–265. [Google Scholar] [CrossRef]
- Amann, J.T.; Mendelsohn, E. Comprehensive Commercial Retrofit Programs: A Review of Activity and Opportunities; American Council for an Energy-Efficient Economy: Washington, DC, USA, 2005. [Google Scholar]
- Preiser, W.; Nasar, J. Assessing Building Performance: Its Evolution from Post-Occupancy Evaluation. Int. J. Archit. Res. 2008, 2, 84–99. [Google Scholar]
- National Research Council; John, H.C.; Federal Facilities Council Ad Hoc; Committee on Performance Indicators for Federal Real Property Asset Management; Jocelyn, S.D.; Division on Engineering Physical Sciences; Federal Facilities Council. Key Performance Indicators for Federal Facilities Portfolios; National Academies Press Publications Sales Office: Washington, DC, USA, 2005. [Google Scholar]
- Cripps, S. Calgary K-12 district benefits from the facilities management evaluation program. Facil. Manag. 1998, 14, 27,28,31,33. [Google Scholar]
- Saaty, T.L. The Analytic Hierarchy Process; McGraw-Hill: New York, NY, USA, 1980. [Google Scholar]
- Saaty, T.L. Theory and Applications of the Analytic Network Process: Decision Making with Benefits, Opportunities, Costs, and Risks; RWS Publications: Pittsburgh, PA, USA, 2005. [Google Scholar]
No. | Indicator | Aspect (No. of Indicators) |
---|---|---|
1 | Energy savings (%) | Environmental (5) |
2 | Normalised energy savings (kWh/m2 year) | |
3 | Electricity consumption saving per year (kWh/year) | |
4 | Energy payback period (year) | |
5 | Target green building label | |
6 | Payback period (year) | Economic (7) |
7 | Return on investment (%) | |
8 | Internal rate of return (%) | |
9 | Investment cost (USD) | |
10 | Normalised investment cost (USD/m2) | |
11 | Life cycle cost (USD) | |
12 | Increase of building value (%) | |
13 | Ratio of actual to target no. of statutory orders removed (%) | Health and Safety (2) |
14 | Ratio of actual to target no. of accidents per year reduced (%) | |
15 | Target indoor air temperature (°C) | Users’ perspective (5) |
16 | Δ Indoor carbon dioxide levels or harmful substances (ppm) | |
17 | Target IAQ class (good/excellent level) | |
18 | Target workplane illuminance (lux) | |
19 | Target equivalent continuous weighted sound pressure level (dBA) |
Characteristic | Subgroup | Number | Percentage |
---|---|---|---|
Gender | Male | 104 | 83.9% |
Female | 20 | 16.1% | |
Work experience | 5 years | 22 | 17.9% |
>5 to <20 years | 21 | 17.1% | |
20 to <30 years | 39 | 31.7% | |
30 years | 42 | 33.9% | |
Nature of organisation | Government | 11 | 8.9% |
NGO | 23 | 18.6% | |
Private company | 90 | 72.6% | |
Type of employer | Owner/developer | 43 | 34.7% |
Management company | 44 | 35.5% | |
Contractor | 18 | 14.5% | |
Others | 19 | 15.3% | |
Job level | Strategic | 38 | 30.7% |
Tactical | 86 | 69.4% | |
Academic qualification | Associate degree/diploma/certificate | 7 | 5.6% |
Bachelor degree | 32 | 25.8% | |
Master degree | 81 | 65.3% | |
Doctorate degree | 2 | 1.6% | |
Others | 2 | 1.6% |
Group | Subgroups in Comparison | rs | p-Value | |
---|---|---|---|---|
G1: Gender | Male | Female | 0.591 ** | 0.008 |
G2: Work experience | (≤5 years) | (>5 to <20 years) | 0.396 | 0.093 |
(20 to 30 years) | 0.350 | 0.142 | ||
(>30 years) | 0.120 | 0.624 | ||
(>5 to <20 years) | (20 to 30 years) | 0.661 ** | 0.002 | |
(>30 years) | 0.536 ** | 0.018 | ||
(20 to 30 years) | (>30 years) | 0.505 * | 0.027 | |
G3: Nature of organisation | Government | NGO | 0.190 | 0.435 |
Private | 0.112 | 0.647 | ||
NGO | Private | 0.406 | 0.085 | |
G4: Type of employer | Owner/developer | Management company | 0.859 ** | 0.000 |
Contractor | 0.380 | 0.108 | ||
Others | 0.470 * | 0.042 | ||
Management company | Contractor | 0.470 * | 0.042 | |
Others | 0.370 | 0.119 | ||
Contractor | Others | 0.516 * | 0.024 | |
G5: Job level | Strategic level | Tactical level | 0.475 * | 0.040 |
G6: Academic qualification | Subdegree orundergraduate degree | Postgraduate degree | 0.654 ** | 0.002 |
KPI | Mean | Rank | Shortlisted | |
---|---|---|---|---|
1 | Energy savings (%) | 3.76 | 1 | Yes |
2 | Normalised energy savings (kWh/m2 year) | 3.46 | =12 | Yes |
3 | Electricity consumption saving per year (kWh/year) | 3.56 | =3 | Yes |
4 | Energy payback period (year) | 3.44 | =15 | - |
5 | Target green building label | 3.14 | 19 | - |
6 | Payback period (year) | 3.47 | =10 | Yes |
7 | Return on investment (%) | 3.36 | 16 | - |
8 | Internal rate of return (%) | 3.15 | 18 | - |
9 | Investment cost (USD) | 3.75 | 2 | Yes |
10 | Normalised investment cost (USD/m2) | 3.48 | =8 | Yes |
11 | Life cycle cost (USD) | 3.48 | =8 | Yes |
12 | Increase of building value (%) | 3.44 | =15 | - |
13 | Ratio of actual to target no. of statutory orders removed (%) | 3.46 | =12 | Yes |
14 | Ratio of actual to target no. of accidents per year reduced (%) | 3.45 | 13 | Yes |
15 | Target indoor air temperature (°C) | 3.50 | 6 | Yes |
16 | Δ Indoor carbon dioxide levels or harmful substances (ppm) | 3.56 | =3 | Yes |
17 | Target IAQ class | 3.51 | 5 | Yes |
18 | Target workplane illuminance (lux) | 3.47 | =10 | Yes |
19 | Target equivalent continuous weighted sound pressure level (dBA) | 3.27 | 17 | - |
Rating | No. of KPIs Included | Aspects Covered |
---|---|---|
3.00 (Moderate importance) | 19 | 4 |
3.40 | 15 | 4 |
3.45 (Moderate-to-high importance) | 13 | 4 |
3.50 | 6 | 3 |
4 (High importance) | 0 | 0 |
Original (13 KPIs) | Final (8 KPIs) |
---|---|
KPI-1: Energy savings (%) | KPI-1 *: Energy savings (%) |
KPI-2: Normalised energy savings (kWh/m2 year) | |
KPI-3: Electricity consumption saving per year (kWh/year) | |
KPI-6: Payback period (year) | KPI-2 *: Payback period (year) |
KPI-9: Investment cost (USD) | KPI-3 *: Investment cost (USD) |
KPI-10: Normalised investment cost (USD/m2) | |
KPI-11: Life cycle cost (USD) | |
KPI-13: Ratio of actual to target no. of statutory orders removed (%) | KPI-4 *: Ratio of actual to target no. of statutory orders removed (%) |
KPI-14: Ratio of actual to target no. of accidents per year reduced (%) | KPI-5 *: Ratio of actual to target no. of accidents per year reduced (%) |
KPI-15: Target indoor air temperature (°C) | KPI-6 *: Target indoor air temperature (°C) |
KPI-16: Δ Indoor carbon dioxide levels or harmful substances (ppm) | KPI-7 *: Target IAQ class |
KPI-17: Target IAQ class | |
KPI-18: Target workplane illuminance (lux) | KPI-8 *: Target workplane illuminance (lux) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ho, M.Y.; Lai, J.H.K.; Hou, H.; Zhang, D. Key Performance Indicators for Evaluation of Commercial Building Retrofits: Shortlisting via an Industry Survey. Energies 2021, 14, 7327. https://doi.org/10.3390/en14217327
Ho MY, Lai JHK, Hou H, Zhang D. Key Performance Indicators for Evaluation of Commercial Building Retrofits: Shortlisting via an Industry Survey. Energies. 2021; 14(21):7327. https://doi.org/10.3390/en14217327
Chicago/Turabian StyleHo, Man Ying (Annie), Joseph H. K. Lai, Huiying (Cynthia) Hou, and Dadi Zhang. 2021. "Key Performance Indicators for Evaluation of Commercial Building Retrofits: Shortlisting via an Industry Survey" Energies 14, no. 21: 7327. https://doi.org/10.3390/en14217327
APA StyleHo, M. Y., Lai, J. H. K., Hou, H., & Zhang, D. (2021). Key Performance Indicators for Evaluation of Commercial Building Retrofits: Shortlisting via an Industry Survey. Energies, 14(21), 7327. https://doi.org/10.3390/en14217327