Analysis of the Head of a Simulation Crash Test Dummy with Speed Motion
Abstract
:1. Introduction
- Computer simulation tests that are performed in simulation programs with the use of virtual models representing experimental dummies,
- experimental crash-test studies that are performed using material human models reflecting human behavior during a collision.
- Low costs of building simulation models,
- ease of conducting research on virtual models.
2. Research Object
- System of rigid bodies.
- Known dimensions, masses, and moments of inertia.
- Model in which the movement takes place in three-dimensional space.
- Connections of solids using hinges.
- The only force acting on the system is the initial speed Vx (chair speed).
- Belts and seat modeled on the basis of experimental research.
3. Results of Simulation Tests
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Nie, B.; Sathyanarayan, D.; Ye, X.; Crandall, J.R.; Panzer, M.B. Active muscle response contributes to increased injury risk of lower extremity in occupant–knee airbag interaction. Traffic Inj. Prev. 2017, 19, 76–82. [Google Scholar] [CrossRef]
- Corazza, M.; Trincone, S.; Virgili, A. Effects of Airbag Deployment. Am. J. Clin. Dermatol. 2004, 5, 295–300. [Google Scholar] [CrossRef]
- THOR-50M Qualification Procedures Manual. Available online: https://www.nhtsa.gov/sites/nhtsa.dot.gov/files/thor-50m_qualification_august2016.pdf (accessed on 1 February 2021).
- Description and Performance of the Hybrid III Three-Year-Old, Six-Year-Old and Small Female Test Dummies in Restraint System and Out-Of-Position Air Bag Environments. Available online: https://www.nhtsa.gov/sites/nhtsa.dot.gov/files/1998esvpaper.pdf (accessed on 1 February 2021).
- Dębecki, R. Kiedy Działa Airbag? [When Does Airbag Work?]. Available online: https://www.auto-swiat.pl/porady/eksploatacja/kiedy-dziala-airbag/cfbvlwt (accessed on 1 February 2021).
- Kostek, R.; Aleksandrowicz, P. Simulation of car collision with an impact block. In Proceedings of the 11th International Congress of Automotive and Transport Engineering 2017, Pitesti, Romania, 8–10 November 2017; pp. 1–6. [Google Scholar] [CrossRef] [Green Version]
- Cunningham, K.; Brown, T.D.; Gradwell, E.; Nee, P.A. Airbag associated fatal head injury: Case report and review of the literature on airbag injuries. Emerg. Med. J. 2000, 17, 139–142. [Google Scholar] [CrossRef] [Green Version]
- Liu, Z.; Zhang, X.; Chen, H.; Shi, Y. Optimization of calibration parameters for hybrid III 5th female dummy neck calibration based on taguchi method. In Proceedings of the 2010 Third International Conference on Information and Computing, Wuxi, China, 6 June 2010; Volume 4, pp. 97–100. [Google Scholar] [CrossRef]
- Goo, A.; Laubscher, C.A.; Farris, R.J.; Sawicki, J.T. Design and Evaluation of a Pediatric Lower-Limb Exoskeleton Joint Actuator. Actuators 2020, 9, 138. [Google Scholar] [CrossRef]
- Lemmen, P.; Hynd, D.; Carroll, J.; Davidsson, J.; Bernard, B.; Song, E.; Steeger, B. Thoracic Injury Assessment for Improved Vehicle Safety. Procedia Soc. Behav. Sci. 2012, 48, 1649–1661. [Google Scholar] [CrossRef] [Green Version]
- Frej, D.; Zuska, A.; Cadge, K. Analysis of vertical vibrations affecting a child transported in a child seat during a vehicle passing over the release speed bump. Arch. Automot. Eng. 2019, 86, 111–125. [Google Scholar] [CrossRef]
- Amiri, S.; Naserkhaki, S.; Parnianpour, M. Modeling and validation of a detailed FE viscoelastic lumbar spine model for vehicle occupant dummies. Comput. Biol. Med. 2018, 99, 191–200. [Google Scholar] [CrossRef]
- Nycz, D. Influence of selected design parameters of the composite-foam cover rail on the course of the TB11 crash test of a road safety barrier forming a horizontal concave arc. Arch. Automot. Eng. Arch. Motoryz. 2017, 76. [Google Scholar] [CrossRef]
- Szada-Borzyszkowski, W.; Szada-Borzyszkowska, M. Wpływ prędkości pojazdów na wielkość uszkodzeń podczas zderzenia (Influence of vehicle speed on the magnitude of damage during a collision). Autobusy Tech. Eksploat. Syst. Transp. 2015, 16, 224–227. [Google Scholar]
- Brolin, K.; Stockman, I.; Andersson, M.; Bohman, K.; Gras, L.L.; Jakobsson, L. Safety of children in cars: A review of biomechanical aspects and human body models. Iatss Res. 2015, 38, 92–102. [Google Scholar] [CrossRef] [Green Version]
- Żuchowski, A. Seatbelt impact on a child during a frontal collision. Arch. Automot. Eng. Arch. Motoryz. 2017, 75. [Google Scholar] [CrossRef]
- Żuchowski, A. Analysis of the influence of the vehicle impact velocity on the loads of the dummies in the front and rear seats. Arch. Automot. Eng. Arch. Motoryz. 2018, 81, 159–176. [Google Scholar] [CrossRef]
- Available online: https://www.humaneticsatd.com (accessed on 1 January 2020).
- Final Publishable Report. Available online: https://ec.europa.eu/transport/road_safety/sites/roadsafety/files/pdf/projects_sources/fid_final_report.pdf (accessed on 1 January 2020).
- Stańczyk, T.L.; Zuska, A. Review of anthropodynamic dummies used to evaluate the effect of vibrations on sitting human (vehicle driver). Arch. Automot. Eng. Arch. Motoryz. 2014, 65, 65–74. [Google Scholar]
- Jaśkiewicz, M.; Jurecki, R.; Witaszek, K.; Więckowski, D. Overview and analysis of dummies used for crash tests. Sci. J. Marit. Univ. Szczec. 2013, 35, 22–31. [Google Scholar]
- Kent, R.; Bass, C.; Woods, W.; Salzar, R.; Lee, S.; Melvin, J. The role of muscle tensing on the force-deflection response of the thorax and a reassessment of frontal impact thoracic biofidelity corridors. J. Automob. Eng. Proc. Inst. Mech. Eng. 2006, 220, 853–868. [Google Scholar] [CrossRef]
- Jaśkiewicz, M.; Więckowski, D.; Witaszek, K. Przegląd i analiza manekinów stosowanych do testów zderzeniowych (Review and analysis of crash test dummies). Zesz. Nauk. Mech. Politech. Opol. 2013, 101, 47–48. [Google Scholar]
- Lemmen, P.; Been, B.; Hynd, D.; Carroll, J. Development of an advanced thorax/shoulder complex for the THOR dummy. In Proceedings of the Symposium on International Automotive Technology (SIAT), Pune, India, 9–12 January 2013; Volume 17, pp. 25–26. [Google Scholar] [CrossRef]
- Mohan, P.; Marzougui, D.; Kan, C. Development and Validation of Hybrid III Crash Test Dummy; SAE Technical Paper 2009-01-0473; SAE International; The George Washington University: Washington, DC, USA, 2009. [Google Scholar] [CrossRef]
- Zhang, W.; Kapoor, T.; Tot, M.; Altenhof, W. A Comparison of the Kinematics of a Child Finite Element Model and the HYBRID III 3-Year-Old Dummies in Frontal Crashes; SAE Technical Paper 2007-01-0977; SAE International: Warrendale PA, USA, 2007. [Google Scholar] [CrossRef]
- Wang, W.; Zhang, D.; Ji, J.; Tian, H.; Zhao, H. Seat belt protection of train driver during secondary impact. In Proceedings of the 2016 IEEE International Conference on Intelligent Transportation Engineering (ICITE), Singapore, 20–22 August 2016; pp. 85–88. [Google Scholar] [CrossRef]
- Jaśkiewicz, M.; Więckowski, D.; Poliak, M.; Frej, D. Shoulder joint design of the anthropometric dummy used for crash tests. In Proceedings of the 2020 XII International Science-Technical Conference Automotive Safety, Kielce, Poland, 21–23 October 2020; pp. 1–5. [Google Scholar] [CrossRef]
- Nordhoff, L.; Freeman, M.; Siegmund, G. Human Volunteer and Anthropomorphic Dummy Tests of General Motors Driver Air Cushion System, SAE Paper No. 740578, Society of Automotive Engineers, Warrendale, PA, 1974. In Human Subject Crash Testing: Innovations and Advances; SAE International: Warrendale, PA, USA, 2007; pp. 307–321. [Google Scholar]
- Biofidelity Impact Response Requirements for an Advanced Mid-Sized Male Crash Test Dummy. Available online: https://hal.archives-ouvertes.fr/hal-01490941/document (accessed on 1 January 2020).
- Forman, J.; Poplin, G.S.; Shaw, C.G.; McMurry, T.L.; Schmidt, K.; Ash, J.; Sunnevang, C. Automobile injury trends in the contemporary fleet: Belted occupants in frontal collisions. Traffic Inj. Prev. 2019, 20, 607–612. [Google Scholar] [CrossRef]
- Han, Y.; Tang, H.; Tian, F.; Huang, H.; Mizuno, K. Analysis of the equation of motion on the chest of hybrid III 3YO dummy in dynamic loads. In Proceedings of the 2018 International Conference on Robots and Intelligent System (ICRIS), Changsha, China, 26–27 May 2018; pp. 529–533. [Google Scholar] [CrossRef]
- Ludwinek, K.; Jurecki, R.; Jaskiewicz, M.; Szumska, E.; Sulowicz, M. A test stand for the experimental analysis of physical quantities during crash test at low speeds. In Proceedings of the 2018 XI International Science-Technical Conference Automotive Safety, Casta, Slovakia, 18–20 April 2018; pp. 1–7. [Google Scholar] [CrossRef]
- Manary, M.A.; Klinich, K.D.; Orton, N.R.; Reed, M.R.; Rupp, J.D. Comparing the CRABI-12 and CRABI-18 for Infant Child Restraint System Evaluation; (Report No. DOT HS 812 156); National Highway Traffic Safety Administration: Washington, DC, USA, 2015. Available online: https://www.nhtsa.gov/sites/nhtsa.dot.gov/files/documents/11316-crabi_12and18_060215_v4_tag.pdf (accessed on 1 February 2021).
- Bertocci, G.E.; Szobota, S.; Hobson, D.A.; Digges, K. Computer simulation and sled test validation of a powerbase wheelchair and occupant subjected to frontal crash conditions. IEEE Trans. Rehabil. Eng. 1999, 7, 234–244. [Google Scholar] [CrossRef]
- Thuong, L.N.P. Vehicle frontal impact to pole barrier simulation using computer finite element model. In Proceedings of the 2018 4th International Conference on Green Technology and Sustainable Development (GTSD), Ho Chi Minh City, Vietnam, 23–24 November 2018; pp. 273–277. [Google Scholar] [CrossRef]
- Sun, Y.; Sun, X.; Rong, J.; Tai, Y. Development of energy absorbing refuge island using crash simulation. In Proceedings of the 2011 International Conference on Transportation, Mechanical, and Electrical Engineering (TMEE), Changchun, China, 16–18 December 2011; pp. 1012–1015. [Google Scholar] [CrossRef]
- Zhang, Y.; Song, J.; Qian, Y.; Gao, Q. Simulation and optimization of vehicle side airbag. In Proceedings of the 2018 International Computers, Signals and Systems Conference (ICOMSSC), Dalian, China, 19–21 December 2018; pp. 320–323. [Google Scholar] [CrossRef]
- Shameem, S.; Prasad, G.R.K.; Ch, V.T.; Kumar, K.B.; Yaswanth, M.; Ch, M. Design simulation and analysis of crash sensor for air bag system. In Proceedings of the 2018 3rd International Conference on Inventive Computation Technologies (ICICT), Coimbatore, India, 15–16 November 2018; pp. 718–723. [Google Scholar] [CrossRef]
- Sharma, A.; Sharma, S.; Chhabra, M. Recent Developments in Airbags for Passenger Safety in Automobile Engineering. Int. J. Res. Advent Technol. 2017, 5, 2321–9637. [Google Scholar]
- He, P.; Jiang, X.; Yang, J. A Study on rear seat occupant injuries in side impact. In Proceedings of the 2012 Third International Conference on Digital Manufacturing and Automation, GuiLin, China, 31 July–2 August 2012; pp. 144–147. [Google Scholar] [CrossRef]
- Zhang, Y.; Ju, C.; Yue, G.; Chen, X.; Sun, H. Simulation analysis of the rear seat female in front impact. In Proceedings of the 2012 Third International Conference on Digital Manufacturing and Automation, GuiLin, China, 31 July–2 August 2012; pp. 767–770. [Google Scholar] [CrossRef]
- Ruhai, G.; Manjiang, H.; Dong, X. Simulation study of bus occupant restraint system in emergency brake. In Proceedings of the 2010 International Conference on Optoelectronics and Image Processing, Haikou, China, 11–12 November 2010; pp. 392–395. [Google Scholar] [CrossRef]
- Jaśkiewicz, M.; Frej, D.; Tarnapowicz, D.; Poliak, M. Upper limb design of an anthropometric crash test dummy for low impact rates. Polymers 2020, 12, 2641. [Google Scholar]
- Sonawane, C.R.; Shelar, A.L. Strength Enhancement of Car Front Bumper for Slow Speed Impact by FEA Method as per IIHS Regulation. J. Inst. Eng. India Ser. C 2018, 99, 599–606. Available online: https://doi.org/10.1007/s40032-017-0365-y (accessed on 2 March 2021). [CrossRef] [Green Version]
- Jakobsson, L.; Norin, H.; Bunketorp, O. In-depth study of whiplash associated disorders in frontal Impacts: Influencing factors and consequences. In Proceedings of the International IRCOBI Conference on the Biomechanics of Impact, Munich, Germany, 18–20 September 2002; pp. 211–222. [Google Scholar]
- Croft, A.C.; Eldridge, T.R. Human subject rear passenger symptom response to frontal car-to-car low-speed crash tests. J. Chiropr. Med. 2011, 10, 141–146. [Google Scholar] [CrossRef] [Green Version]
- Krafft, M.; Kullgren, A.; Ydenius, A.; Boström, O.; Håland, Y.; Tingvall, C. Rear impact neck protection by reducing occupant forward acceleration—A study of cars on Swedish roads equipped with crash recorders and a new anti-whiplash device. In Proceedings of the International IRCOBI Conference, Graz, Austria, 22–24 September 2004; pp. 221–231. [Google Scholar]
- Jaśkiewicz, M.; Frej, D.; Šarkan, B. Construction of the knee joint of the dummy designed for crash tests. Trans. Res. Procedia 2020, 44, 121–128. [Google Scholar] [CrossRef]
- Nordhoff, L.; Freeman, M.; Siegmund, G. Kinetic and kinematic responses of the RID2a, hybrid III, and human volunteers in low-speed rear-end collisions. Stapp Car Crash J. 2001, 45, 239–256, (in Human Subject Crash Testing: Innovations and Advances, SAE 2007, 865–882). [Google Scholar]
- Nordhoff, L.; Freeman, M.; Siegmund, G. TRL Rear Impact Volunteer Testing: Methods and Measurements. In Human Subject Crash Testing: Innovations and Advances, Proceedings of the 1st APSN Workshop on Biomechanical Experiments, Advanced Passive Safety Network, Graz, Austria, 21 September 2004; SAE International: Warrendale, PA, USA, 2007; pp. 611–627. [Google Scholar]
- Nordhoff, L.; Freeman, M.; Siegmund, G. Human Volunteer Head-T1 Response for Oblique Impact Conditions. In Human Subject Crash Testing: Innovations and Advances, Proceedings of the International IRCOBI Conference on the Biomechanics of Impact, Graz, Austria, 22–24 September 2004; pp. 53–68; SAE International: Warrendale, PA, USA, 2007; pp. 269–284. [Google Scholar]
- Nordhoff, L.; Freeman, M.; Siegmund, G. Relationship between localized spine deformation and cervical vertebral motions for low speed rear impacts using human volunteers. In Human Subject Crash Testing: Innovations and Advances, Proceedings of the International IRCOBI Conference on the Biomechanics of Impact, Stiges, Spain, 23–24 September 1999; pp. 149–164; SAE International: Warrendale, PA, USA, 2007; pp. 773–788. [Google Scholar]
- Yamazaki, K.; Ono, K.; Ishii, M. Biofidelity of rear impact dummies in low speed rear-end impact: Comparison of rigid seat and mass production car seat in human volunteers. International Phantom data sheet. In Proceedings of the 2008 International Ircobi Conference on the Biomechanics of Injury, Bern, Switzerland, 17–19 September 2008; Available online: http://www.komiweb.co.kr/data/v310.pdf (accessed on 22 February 2020).
- Castro, W.H.; Meyer, S.J.; Becke, M.E.; Nentwig, C.G.; Hein, M.F.; Ercan, B.I.; Thomann, S.; Wessels, U.; Du Chesne, A.E. No stress—No whiplash? Prevalence of “whiplash” symptoms following exposure to a placebo rear-end collision. Int. J. Leg. Med. 2001, 114, 316–322. [Google Scholar] [CrossRef] [PubMed]
- Nordhoff, L.S., Jr.; Freeman, M.D.; Siegmund, G.P. Human Subject Crash Testing: Innovations and Advances (PT-134); SAE International: Warrendale, PA, USA, 2007; ISBN 9780768019315. [Google Scholar]
- Hynd, D.; Willis, C.; Roberts, A. TRL rear impact volunteer testing: Method and measurements. In Proceedings of the D16-WG 5.2 Workshop on Biomechanical Experiments, Berks, UK, 21 September 2004; pp. 18–28. [Google Scholar]
- Lopez-Valdes, F.J.; Kent, R.; Arbogast, K.; Higuchi, K. Analysis of spinal motion during frontal impacts. Comparison between PMHS and ATD. Ann. Adv. Automot. Med. 2010, 54, 61–78. [Google Scholar] [PubMed]
- Noureddine, A.; Eskandarian, A.; Kennerly, D. Computer modeling and validation of a Hybrid III dummy for crashworthiness simulation. Math. Comput. Model. 2002, 35, 885–893. [Google Scholar] [CrossRef]
- Bailey, A.; Chirstopher, J.; Henderson, K.; Brozoski, F.; Salzar, R.S. Comparison of hybrid-III and PMHS response to simulated underbody blast loading conditions. In Proceedings of the 13th International Research Council on the Biomechanics of Injury Conference (IRCOBI), Gothenburg, Sweden, 11–13 September 2013; pp. 58–171. [Google Scholar]
- Stand for Simulation Testing of Dynamic Stresses, Especially in the Elements Securing the Driver. Available online: https://patents.google.com/patent/PL430055A1/pl?oq=430055+ (accessed on 1 January 2020).
- Zellmer, H.; Muser, M.; Stamm, M.; Walz, F.; Hell, W.; Langweider, K.; Philippens, M. Performance comparison of rear impact dummies: Hybrid III (TRID), BioRID and RID 2. In Proceedings of the International IRCOBI Conference on the Biomechanics of Impact, Munich, Germany, 18–20 September 2002. [Google Scholar]
- Cappon, H.J.; Philippens, M.; van Ratingen, M.R.; Wismans, J.S.H.M. Evaluation of dummy behaviour during low severity rear impact. In Proceedings of the IRCOBI Conference on the Biomechanics of Impact, Montpeller, France, 20–22 September 2000; pp. 53–66. [Google Scholar]
- Frej, D.; Ja’skiewicz, M. Przegub Kolanowy Manekina Antropometrycznego do Testów Zderzeniowych [Knee-Joint of the Anthropometric Crash Test Dummy]. PL. Patent P.431522, 21 October 2019. [Google Scholar]
- Frej, D.; Ja´skiewicz, M. Przegub Barkowy Manekina Antropometrycznego do Testów Zderzeniowych [Shoulder Joint of the Anthropometric Crash Test Dummy Application]. PL. Patent P.433041, 27 February 2020. [Google Scholar]
The Name of the Block | Mass (kg) |
---|---|
forearm | 3.60 |
arm | 0.50 |
hand | 4.60 |
food | 9.4 |
shank | 0.60 |
thigh | 13.80 |
neck | 0.95 |
head | 3.70 |
hips | 20.40 |
chest | 9.80 |
stomach | 10.00 |
(Σ) | 78.7 |
Parameters | Values | Allocation to the Population Percentile |
---|---|---|
Mass (kg) | 90 | C95 |
Height (cm) | 181 | C95 |
Head circumference (cm) | 59 | C95 |
Torso length (cm) | 60 | C95 |
Chest circumference (cm) | 108 | C95 |
Arm circumference (cm) | 37 | C50 |
Arm length (cm) | 33 | C50 |
Forearm circumference (cm) | 31 | C50 |
Wrist circumference (cm) | 20 | C50 |
Wrist width (cm) | 10 | C50 |
Hand width (cm) | 25 | C95 |
Thigh circumference (cm) | 57 | C50 |
Circumference of the lower leg (cm) | 40 | C50 |
Ankle circumference (cm) | 26 | C50 |
Foot length (cm) | 24 | C50 |
Comparison | The First Phase of the Head Movement | The Second Phase of Head Movement | ||
---|---|---|---|---|
Relative to the X Axis | Relative to the Y Axis | Relative to the X Axis | Relative to the Y Axis | |
Simulation dummy—Hybrid III dummy | 95% | 98% | 88% | 89% |
Simulation dummy—Volunteer | 94% | 90% | 94.5% | 82% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jaśkiewicz, M.; Frej, D.; Matej, J.; Chaba, R. Analysis of the Head of a Simulation Crash Test Dummy with Speed Motion. Energies 2021, 14, 1476. https://doi.org/10.3390/en14051476
Jaśkiewicz M, Frej D, Matej J, Chaba R. Analysis of the Head of a Simulation Crash Test Dummy with Speed Motion. Energies. 2021; 14(5):1476. https://doi.org/10.3390/en14051476
Chicago/Turabian StyleJaśkiewicz, Marek, Damian Frej, Jan Matej, and Rafał Chaba. 2021. "Analysis of the Head of a Simulation Crash Test Dummy with Speed Motion" Energies 14, no. 5: 1476. https://doi.org/10.3390/en14051476
APA StyleJaśkiewicz, M., Frej, D., Matej, J., & Chaba, R. (2021). Analysis of the Head of a Simulation Crash Test Dummy with Speed Motion. Energies, 14(5), 1476. https://doi.org/10.3390/en14051476