Multi-Objective Energy Efficient Adaptive Whale Optimization Based Routing for Wireless Sensor Network
Abstract
:1. Introduction
2. Literature Review
3. Energy Efficient Data Transmission in WSN
3.1. Difference between WOA and Our Proposed Model
3.2. Cluster Head Selection Using AWOA
3.2.1. Encoding the Solution
3.2.2. Create Quasi-Oppositional Solution
3.2.3. Fitness Calculation
- → Average distance between CH and SN
- → SD
- n → Number of SN
- → Distance between SN and CH.
- m → Number of CHs
3.2.4. Update the Position of the Current CH
Encircling Prey
- → Present iteration
- , → Coefficient vector
- → Best solution,
- → Vector of the current position,
- ∥ → Absolute value
Bubble-Net Attacking Method
Shrinking Encircling Mechanism
Spiral Updating Position
Searching for Prey (Exploration Phase)
3.3. Super Cluster Head Selection
- The MF completely describes the fuzzy set;
- A, MF offers a quantity of the degree of resemblance of a component to a fuzzy set;
- MF can take any shape; however, some general examples become visible in real applications [28].
3.4. Routing
4. Result and Discussion
4.1. Metrics for Evaluation
- Delay:
- Delay Ratio:
- Throughput:
4.2. Performance Comparison
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nake, N.B.; Chatur, P.N. An energy efficient grid based routing in mobile sink based wireless sensor networks. In Proceedings of the 2016 Second International Conference on Science Technology Engineering and Management (ICONSTEM), Chennai, India, 30 March 2016. [Google Scholar]
- Sachan, A.; Nigam, S.; Bajpai, A. An Energy Efficient Virtual-MIMO Communication for Cluster Based Cooperative Wireless Sensor Network. In Proceedings of the 9th International Conference on Computing, Communication and Networking Technologies (ICCCNT), Bengaluru, India, 10–12 July 2018; pp. 1–6. [Google Scholar] [CrossRef]
- Singh, R.; Rai, B.K.; Bose, S.K. Modeling and Performance Analysis for Pipelined-Forwarding MAC Protocols for Linear Wireless Sensor Networks. IEEE Sens. J. 2019, 19, 6539–6552. [Google Scholar] [CrossRef]
- Bhavitha, K.; Sravani, T.; Alluri, B.K.R. Energy Efficient Channel Accessing Protocol for Wireless Sensor Network. In Proceedings of the 2018 IEEE International Conference on System, Computation, Pondicherry, India, 6–7 July 2018, Automation and Networking (ICSCA); pp. 1–6. [CrossRef]
- Suryawanshi, R. H-WSN with maximized QoS using secure data aggregation. In Proceedings of the 2016 2nd International Conference on Contemporary Computing and Informatics (IC3I), Greater Noida, India, 14–17 December 2016. [Google Scholar]
- Chithaluru, P.; Tiwari, R.; Kumar, K. AREOR–Adaptive ranking based energy efficient opportunistic routing scheme in Wireless Sensor Network. Comput. Netw. 2019, 162, 106863. [Google Scholar] [CrossRef]
- Asif, M.; Khan, S.; Ahmad, R.; Sohail, M.; Singh, D. Quality of Service of Routing Protocols in Wireless Sensor Networks: A Review. IEEE Access 2017, 5, 1846–1871. [Google Scholar] [CrossRef]
- Guo, H.; Gao, Y.; Xu, T.; Zhang, X.; Ye, J. A secure and efficient three-factor multi-gateway authentication protocol for wireless sensor networks. Ad Hoc Netw. 2019, 95, 101965. [Google Scholar] [CrossRef]
- Chen, D.-R. An energy-efficient QoS routing for wireless sensor networks using self-stabilizing algorithm. Ad Hoc Netw. 2016, 37, 240–255. [Google Scholar] [CrossRef]
- Mateen, A.; Sehar, M.; Abbas, K.; Akbar, M.A. Comparative analysis of wireless sensor networks with wireless multimedia sensor networks. In Proceedings of the 2017 IEEE International Conference on Power, Control, Chennai, India, 21–22 September 2017, Signals and Instrumentation Engineering (ICPCSI); pp. 80–83. [CrossRef]
- Nikolov, M.; Haas, Z.J. Encoded Sensing for Energy Efficient Wireless Sensor Networks. IEEE Sens. J. 2017, 18, 875–889. [Google Scholar] [CrossRef]
- Singh, R.; Verma, A.K. Efficient image transfer over WSN using cross layer architecture. Optik 2016, 130, 499–504. [Google Scholar] [CrossRef]
- Brar, G.S.; Rani, S.; Chopra, V.; Malhotra, R.; Song, H.; Ahmed, S.H. Energy Efficient Direction-Based PDORP Routing Protocol for WSN. IEEE Access 2016, 4, 3182–3194. [Google Scholar] [CrossRef]
- Yingwei, Y.; Giannakis, G.B. Energy-efficient scheduling for wireless sensor networks. IEEE Trans. Commun. 2005, 53, 1333–1342. [Google Scholar]
- Zhang, W.; Li, L.; Han, G.; Zhang, L. E2HRC: An Energy-Efficient Heterogeneous Ring Clustering Routing Protocol for Wireless Sensor Networks. IEEE Access 2017, 5, 1702–1713. [Google Scholar] [CrossRef]
- Zhang, W.; Wei, X.; Han, G.; Tan, X. An Energy-Efficient Ring Cross-Layer Optimization Algorithm for Wireless Sensor Networks. IEEE Access 2018, 6, 16588–16598. [Google Scholar] [CrossRef]
- Elsmany, E.F.A.; Omar, M.A.; Wan, T.-C.; Altahir, A.A. EESRA: Energy Efficient Scalable Routing Algorithm for Wireless Sensor Networks. IEEE Access 2019, 7, 96974–96983. [Google Scholar] [CrossRef]
- Ezdiani, S.; Acharyya, I.S.; Sivakumar, S.; Al-Anbuky, A. Wireless Sensor Network Softwarization: Towards WSN Adaptive QoS. IEEE Internet Things J. 2017, 4, 1517–1527. [Google Scholar] [CrossRef]
- Anees, J.; Zhang, H.-C.; Baig, S.; Lougou, B.G.; Bona, T.G.R. Hesitant Fuzzy Entropy-Based Opportunistic Clustering and Data Fusion Algorithm for Heterogeneous Wireless Sensor Networks. Sensors 2020, 20, 913. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fineberg, S.J.; Nandyala, S.V.; Marquez-Lara, A.; Oglesby, M.; Patel, A.A.; Singh, K. Incidence and risk factors for postoperative delirium after lumbar spine surgery (Phila Pa 1976). Spine 2013, 38, 1790–1796. [Google Scholar] [CrossRef] [PubMed]
- Boursianis, A.D.; Papadopoulou, M.S.; Gotsis, A.; Wan, S.; Sarigiannidis, P.; Nikolaidis, S.; Goudos, S.K. Smart Irrigation System for Precision Agriculture—The AREThOU5A IoT Platform. IEEE Sens. J. 2020, 21, 17539–17547. [Google Scholar] [CrossRef]
- Yamsanwar, Y.; Sutar, S. Performance analysis of wireless sensor networks for QoS. In Proceedings of the 2017 International Conference on Big Data, IoT and Data Science (BID), Pune, India, 20–22 December 2017; pp. 120–123. [Google Scholar] [CrossRef]
- Golubnichaya, E. Analysis of wireless sensor networks characteristics. In Proceedings of the 2017 4th International Scientific-Practical Conference Problems of Info-communications, Science and Technology (PICS&T), Kharkov, Ukraine, 10–13 October 2017. [Google Scholar]
- Samara, K.; Hosseini, H. Simulation Study of QoS in Wireless Sensor Networks. In Proceedings of the 2017 International Conference on Computational Science and Computational Intelligence (CSCI), Las Vegas, NV, USA, 14–16 December 2017. [Google Scholar]
- Chéour, R.; Jmal, M.W.; Khriji, S.; El Houssaini, D.; Trigona, C.; Abid, M.; Kanoun, O. Towards Hybrid Energy-Efficient Power Management in Wireless Sensor Networks. In Proceedings of the 2017 International Conference on Smart, Monitored and Controlled Cities (SM2C), Sfax, Tunisia, 17–19 February 2017. [Google Scholar] [CrossRef]
- Cedeno, N.Z.; Asqui, O.P.; Chaw, E.E. The performance of QoS in wireless sensor networks. In Proceedings of the 2019 14th Iberian Conference on Information Systems and Technologies (CISTI), Coimbra, Portugal, 19–22 June 2019. [Google Scholar]
- Panimozhi, K.; Mahadevan, G. Bandwidth utilization in Wireless Sensor Networks with priority based multi-stack architecture. In Proceedings of the 2016 2nd International Conference on Applied and Theoretical Computing and Communication Technology (iCATccT), Bangalore, India, 21–23 July 2016. [Google Scholar]
- Anees, J.; Zhang, H.-C. FLOC: Hesitant Fuzzy Linguistic Term Set Analysis in Energy Harvesting Opportunistic Clustering Using Relative Thermal Entropy and RF Energy Transfer. Int. J. Comput. Netw. Commun. 2022, 14, 19–39. [Google Scholar] [CrossRef]
- Sahu, S.; Silakari, S. A Whale Optimization-Based Energy-Efficient Clustered Routing for Wireless Sensor Networks. In Soft Computing: Theories and Applications; Kumar, R., Ahn, C.W., Sharma, T.K., Verma, O.P., Agarwal, A., Eds.; Lecture Notes in Networks and Systems; Springer: Singapore, 2022; pp. 333–344. [Google Scholar] [CrossRef]
- Rathore, R.S.; Sangwan, S.; Prakash, S.; Adhikari, K.; Kharel, R.; Cao, Y. Hybrid WGWO: Whale grey wolf optimization-based novel energy-efficient clustering for EH-WSNs. EURASIP J. Wirel. Commun. Netw. 2020, 101, 1–28. [Google Scholar] [CrossRef]
Rule No. | Variables for Input | Output | ||
---|---|---|---|---|
Energy | Concentration | Centrality | Chance | |
I | H | L | H | VH |
II | H | L | I | VH |
III | H | L | L | H |
IV | H | I | H | H |
V | H | I | I | H |
VI | H | I | L | I |
VII | H | H | H | I |
VIII | H | H | I | I |
IX | H | H | L | L |
X | I | L | H | I |
XI | I | L | I | L |
XII | I | L | L | L |
XIII | I | I | H | I |
XIV | I | I | I | I |
XV | I | I | L | L |
XVI | I | H | H | I |
XVII | I | H | I | L |
XVIII | I | H | L | VL |
XIX | L | L | H | H |
XX | L | L | I | I |
XXI | L | L | L | L |
XXII | L | I | H | I |
XXIII | L | I | I | L |
XXIV | L | I | L | VL |
XXV | H | H | H | L |
XXVI | H | H | I | VL |
XXVII | L | H | L | VL |
Neighbor CHs of CH1 | Hop Count |
---|---|
CH4 | 4 |
CH2 | 5 |
CH3 | 5 |
Parameter Name | Value |
---|---|
Number of nodes | 100 |
Wireless protocol | 802.11 |
Area | 1000 × 1000 |
Simulation time | 50 s |
Packet size | 512 |
Transmit power | 0.660 W |
Receiving power | 0.395 W |
Initial energy | 40 J |
Transmission range | 250 m |
Constant bit rate | 500 kbps |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bali, H.; Gill, A.; Choudhary, A.; Anand, D.; Alharithi, F.S.; Aldossary, S.M.; Mazón, J.L.V. Multi-Objective Energy Efficient Adaptive Whale Optimization Based Routing for Wireless Sensor Network. Energies 2022, 15, 5237. https://doi.org/10.3390/en15145237
Bali H, Gill A, Choudhary A, Anand D, Alharithi FS, Aldossary SM, Mazón JLV. Multi-Objective Energy Efficient Adaptive Whale Optimization Based Routing for Wireless Sensor Network. Energies. 2022; 15(14):5237. https://doi.org/10.3390/en15145237
Chicago/Turabian StyleBali, Himani, Amandeep Gill, Abhilasha Choudhary, Divya Anand, Fahd S. Alharithi, Sultan M. Aldossary, and Juan Luis Vidal Mazón. 2022. "Multi-Objective Energy Efficient Adaptive Whale Optimization Based Routing for Wireless Sensor Network" Energies 15, no. 14: 5237. https://doi.org/10.3390/en15145237
APA StyleBali, H., Gill, A., Choudhary, A., Anand, D., Alharithi, F. S., Aldossary, S. M., & Mazón, J. L. V. (2022). Multi-Objective Energy Efficient Adaptive Whale Optimization Based Routing for Wireless Sensor Network. Energies, 15(14), 5237. https://doi.org/10.3390/en15145237