Overview of Hybrid Excitation in Electrical Machines
Abstract
:1. Introduction
Overview of This Article
2. The Excitation Flux
3. Benefits of Hybrid Excitation
3.1. Advantage of Variable Flux in Hybrid Excitation
3.2. Optimization of Volume and Weight in Hybrid Excitation Designs
3.3. Decrease Risks with Hybrid Excitation
3.4. Optimization of Economic Aspects in Hybrid Excitation
- Investment costs (considering the machine itself and its construction in an application),
- Net production income (considering efficiency and availability),
- Operational and maintenance costs,
- Replacement costs (at end of operational life),
4. Outlook of Future Applications
4.1. Hybrid Excitation for Wind Power Generators
4.2. Hybrid Excitation for Electrical Vehicle Motors
4.3. Hybrid Excitation for Hydro Power Generators
5. Categorization of Hybrid Excitation Designs
- the reluctance circuit of the magnetic flux path, either PM in series with FW or PM in parallel with FW.
- the location of the excitation system, that is, if the FW and PM are placed in the rotor or in the stator, or if the PMs are in the rotor and the FW are in the stator.
- the geometrical location of the different types of excitation; whether they are different axial segments of the machine or a distribution of different types of poles around the circumference.
6. Basic Flux Path Designs: Series and Parallel
6.1. PM in Series with FW
6.2. PM in Parallel with FW
- When the FW have a high DC field current, the iron will be saturated and the iron in the electromagnet has a high reluctance (low permeability). The combined flux from both the FW and the PM then passes through the air gap since the saturated iron has a high reluctance, as illustrated in Figure 14a.
- When the FW have a low DC field current, the iron of the electromagnet has a low reluctance (high permeability) because the PM flux leaks through the iron core when it has a low reluctance. All the flux contributions from the PM may then not pass through the air gap, as illustrated in Figure 14b.
6.3. Alternatives to the Basic Flux Path Designs
- Overlapping flux paths with an iron bridge, which use series flux paths from both FW and PM fluxes but with an iron flux bridge in parallel besides the PMs.
6.4. Series Flux Path with Iron Flux Bridge
6.5. Separated Flux Paths in Parallel
- dual-rotor systems with axially separated parts; each part of the rotor length has its own type of excitation.
- different types of excitation for different poles, then creating tangentially separated magnetic systems.
7. Categories Based on How to Combine PM and FW
- Combined excitation within each pole, where both the PM and FW are combined in each pole. All poles have the same design, and only the polarity of the magnetization is different between the poles, either as a series flux path or a parallel flux path.
- Axially separated hybrid excitation, where each motor end has a different type of excitation system. These are generally designed as isolated parallel flux path systems and are usually designed with axially separated parts of the rotor when the excitation system is in the rotor. However, there could also be separated parts of the stator for flux-switching machines.
- Each pole has different type of excitation. Some poles are built with FW excitation and others are built with PM excitation but can also use other designs for the poles. The magnetic circuit can be either a series flux path or a parallel flux path.
7.1. Hybridization by Two Axially Segments
7.2. Hybridization by Different Types of Poles
7.3. Series Flux Path with Different Types of Poles
7.4. Other Types of Combining Different Types of Poles
8. Placement of the Excitation System
- Rotor PM, rotor field winding
- Rotor PM, stator field winding
- Stator PM, stator field winding
8.1. Examples of Excitation Systems
8.2. Excitation Winding in Stator and PM in Rotor
8.3. Consequent Pole Machines
8.4. Two Axially Segmented Consequent Pole Machines
- (a) 2 poles (Jie Wu et al. [136]).
8.5. Spoke Type Rotor Machines
8.6. Obstacles with Three-Dimensional Flux Paths
8.7. Excitation System in the Stator
9. Other Types of HE Machines
9.1. Claw-Pole Machines
9.2. Machines with a Non-Radial Flux
9.3. Machines with Several Rotors or Stators
- a two stator machine with one rotor, as in the design by Liu et al. [59].
- a two-stator design with different kinds of poles on the different stator, in addition to a rotor: Giulii-Capponi et al. [39].
- an excitation stator between the outer stator and the rotor: Hua et al. [182]
- a two-stator design with both types of poles on the rotor and alternating flux paths on both stators: Aydin et al. [142].
- a machine with two rotors placed inside a stator (“Dual rotor”) with both an inner and an outer rotor [183].
10. Similar Concepts in a Broader Perspective
10.1. Line-Start PMSM
10.2. PM-Based Electrical Excitation for FW in SM
10.3. Variable Flux by Mechanical Control
- systems with variable reluctance of the magnetic circuit;
- systems with magnetic flux diverters;
- systems with adjustable active air gap areas.
10.4. Memory Motors
11. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
Abbreviations | |
Constant power speed range (of flux-weakening region) | |
Doubly fed induction generator | |
Electro-motoric force | |
Field winding | |
Hybrid excitation | |
Hybrid excitation synchronous machine | |
Internal permanent magnet | |
Line start permanent magnet synchronous machine | |
Magneto-motoric force | |
Permanent magnet | |
Permanent magnet synchronous machine | |
Rare earth | |
Synchronous machine | |
Surface-mounted permanent magnet | |
Transmission system operator | |
Variable flux permanent magnet machine | |
Wound-rotor induction generator | |
Wound-rotor synchronous machine | |
Symbols (Greek letters) | |
load angle | |
efficiency of machine | |
permeability | |
relative permeability | |
recoil permeability of PM | |
resistivity | |
density (mass per volume) | |
phase angle | |
magnetic flux | |
flux from field winding | |
combined flux of hybrid excitation | |
maximum flux | |
minimum flux | |
flux from permanent magnet | |
saturation flux | |
magnetic susceptibility | |
angular speed | |
base angular speed | |
maximum angular speed | |
Symbols (Roman letters) | |
Magnetic vector potential | |
A | Area |
Area of conductor of field winding | |
Effective area of flux path | |
Area of iron core within field winding | |
Magnetic flux density | |
B | Scalar magnetic flux density |
Remanent flux density | |
Saturation flux density | |
Electric field | |
E | EMF |
MMF of PM | |
H | Scalar magnetic field strength |
Intrinsic coercive field | |
Width of yoke | |
I | Current |
Direct component of stator current | |
Field winding current | |
Stator armature current | |
Quadrature component of stator current | |
current density | |
equivalent current density of PM | |
length of permanent magnet | |
length of a turn in a winding | |
Magnetization | |
Magnetization of PM | |
remanent magnetization | |
m | mass |
N | number of turns in winding |
Ampere-turns of FW (MMF of FW) | |
Ampere-turns of stator armature (MMF of armature) | |
P | power |
power losses in rotor | |
power losses in FW | |
power losses in excitation system | |
power losses by cooling system | |
Reluctance of airgap | |
Reluctance of flux bridge | |
Internal reluctance of permanent magnet | |
Reluctance of rotor iron core | |
Reluctance of stator iron core | |
Stator resistance | |
Resistance per turn in FW | |
inner radius (radius of rotor shaft) | |
outer radius (outer yoke) | |
radius of rotor side in airgap | |
radius of stator side in airgap | |
T | Torque |
maximum Torque | |
Curie temperature | |
V | Volume |
Stator voltage | |
pole body width | |
Stator reactance |
References
- Wardach, M.; Palka, R.; Paplicki, P.; Prajzendanc, P.; Zarebski, T. Modern Hybrid Excited Electric Machines. Energies 2020, 13, 5910. [Google Scholar] [CrossRef]
- Zhu, Z.Q.; Cai, S. Hybrid excited permanent magnet machines for electric and hybrid electric vehicles. CES Trans. Electr. Mach. Syst. 2019, 3, 233–247. [Google Scholar] [CrossRef]
- Wang, Q.; Niu, S. Overview of flux-controllable machines: Electrically excited machines, hybrid excited machines and memory machines. Renew. Sustain. Energy Rev. 2017, 68, 475–491. [Google Scholar] [CrossRef]
- Wang, S.; Ni, S.; Xia, Y.; Wang, X.; Su, P.; Huang, S. Hybrid excitation permanent magnet synchronous machines and their structures—Combination art of elements of machines. In Proceedings of the 2014 International Conference on Electrical Machines (ICEM), Berlin, Germany, 2–5 September 2014; pp. 2618–2624. [Google Scholar] [CrossRef]
- Gieras, J.F. PM synchronous generators with hybrid excitation systems and voltage control Capabilities: A review. In Proceedings of the 2012 XXth International Conference on Electrical Machines, Marseille, France, 2–5 September 2012; pp. 2573–2579. [Google Scholar] [CrossRef]
- Wang, S.; Xia, Y.; Wang, X.; Su, P.; Huang, S.; Zhang, A. State of the art of hybrid excitation permanent magnet synchronous machines. In Proceedings of the 2010 International Conference on Electrical Machines and Systems, Incheon, Korea, 10–13 October October 2010; pp. 1004–1009. [Google Scholar]
- Owen, R.L.; Zhu, Z.Q.; Jewell, G.W. Hybrid excited flux-switching permanent magnet machines. In Proceedings of the 2009 13th European Conference on Power Electronics and Applications, Barcelona, Spain, 8–10 September 2009; pp. 1–10. [Google Scholar]
- Zhao, C.; Yan, G. A review of development of hybrid excitation synchronous machine. In Proceedings of the Proceedings of the IEEE International Symposium on Industrial Electronics, Dubrovnik, Croatia, 20–23 June 2005; Volume 2, pp. 857–862. [Google Scholar] [CrossRef]
- Asfirane, S.; Hlioui, S.; Amara, Y.; Gabsi, M. Study of a Hybrid Excitation Synchronous Machine: Modeling and Experimental Validation. Math. Comput. Appl. 2019, 24, 34. [Google Scholar] [CrossRef] [Green Version]
- Hlioui, S.; Gabsi, M.; Ahmed, H.B.; Barakat, G.; Amara, Y.; Chabour, F.; Paulides, J.J.H. Hybrid Excited Synchronous Machines. IEEE Trans. Magn. 2022, 58, 1–10. [Google Scholar] [CrossRef]
- Zhou, Z.; Hua, H.; Zhu, Z. Flux-Adjustable Permanent Magnet Machines in Traction Applications. World Electr. Veh. J. 2022, 13, 60. [Google Scholar] [CrossRef]
- Amara, Y.; Vido, L.; Gabsi, M.; Hoang, E.; Ben Ahmed, A.H.; Lecrivain, M. Hybrid Excitation Synchronous Machines: Energy-Efficient Solution for Vehicles Propulsion. IEEE Trans. Veh. Technol. 2009, 58, 2137–2149. [Google Scholar] [CrossRef]
- Al-Adsani, A.S.; Schofield, N. Hybrid permanent magnet generators for electric vehicle applications. In Proceedings of the 2009 IEEE International Electric Machines and Drives Conference, Miami, FL, USA, 3–6 May 2009; pp. 1754–1761. [Google Scholar] [CrossRef]
- Hlioui, S.; Amara, Y.; Hoang, E.; Lecrivain, M.; Gabsi, M. Overview of hybrid excitation synchronous machines technology. In Proceedings of the 2013 International Conference on Electrical Engineering and Software Applications, Hammamet, Tunisia, March 2013; pp. 1–10. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Deng, Z. Hybrid Excitation Topologies and Control Strategies of Stator Permanent Magnet Machines for DC Power System. IEEE Trans. Ind. Electron. 2012, 59, 4601–4616. [Google Scholar] [CrossRef]
- Chen, Z.; Wang, B.; Chen, Z.; Yan, Y. Comparison of Flux Regulation Ability of the Hybrid Excitation Doubly Salient Machines. IEEE Trans. Ind. Electron. 2014, 61, 3155–3166. [Google Scholar] [CrossRef]
- Owen, R.; Zhu, Z.Q.; Wang, J.B.; Stone, D.A.; Urquhart, I. Review of variable-flux permanent magnet machines. In Proceedings of the 2011 International Conference on Electrical Machines and Systems, Beijing, China, 20–23 August 2011; pp. 1–6. [Google Scholar] [CrossRef]
- Yang, H.; Lin, H.; Zhu, Z.Q.; Wang, D.; Fang, S.; Huang, Y. A Variable-Flux Hybrid-PM Switched-Flux Memory Machine for EV/HEV Applications. IEEE Trans. Ind. Appl. 2016, 52, 2203–2214. [Google Scholar] [CrossRef]
- Kamiev, K.; Nerg, J.; Pyrhönen, J.; Zaboin, V. Hybrid excitation synchronous generators for island operation. In Proceedings of the The XIX International Conference on Electrical Machines–ICEM 2010, Rome, Italy, 6–8 September 2010; pp. 1–6. [Google Scholar] [CrossRef]
- Kamiev, K.; Nerg, J.; Pyrhönen, J.; Zaboin, V.; Hrabovcová, V.; Rafajdus, P. Hybrid excitation synchronous generators for island operation. IET Electr. Power Appl. 2012, 6, 1–11. [Google Scholar] [CrossRef]
- Zhang, Q.; Huang, S.; Ding, X. Hybrid excitation machine with isolated magnetic paths. In Proceedings of the 2008 International Conference on Electrical Machines and Systems, Wuhan, China, 17–20 October 2008; pp. 3010–3015. [Google Scholar]
- Kim, H.; Kim, D.; Jeong, J.; Hong, J. Proposition of Structures for Brushless Hybrid-Excitation Synchronous Motors With Improved Rotor. IEEE Trans. Magn. 2016, 52, 1–15. [Google Scholar] [CrossRef]
- Powers, W. Dynamoelectric Machine. U.S. Patent US2802959A, 13 August 1957. [Google Scholar]
- Kamiev, K.; Pyrhönen, J.; Nerg, J.; Zaboin, V.; Tapia, J. Modeling and Testing of an Armature-Reaction-Compensated (PM) Synchronous Generator. IEEE Trans. Energy Convers. 2013, 28, 849–859. [Google Scholar] [CrossRef]
- Kamiev, K.; Nerg, J.; Pyrhönen, J.; Zaboin, V.; Tapia, J. Feasibility of an Armature-Reaction-Compensated Permanent-Magnet Synchronous Generator in Island Operation. IEEE Trans. Ind. Electron. 2014, 61, 5075–5085. [Google Scholar] [CrossRef] [Green Version]
- Yamazaki, K.; Nishioka, K.; Shima, K.; Fukami, T.; Shirai, K. Estimation of Assist Effects by Additional Permanent Magnets in Salient-Pole Synchronous Generators. IEEE Trans. Ind. Electron. 2012, 59, 2515–2523. [Google Scholar] [CrossRef]
- Hwang, S.W.; Sim, J.H.; Hong, J.P.; Lee, J.; Kim, J. Torque improvement of wound field synchronous motor for electric vehicle by PM-assist. In Proceedings of the 2016 IEEE Energy Conversion Congress and Exposition (ECCE), Milwaukee, WI, USA, 18–22 September 2016; pp. 1–6. [Google Scholar] [CrossRef]
- Hwang, S.W.; Sim, J.H.; Hong, J.P.; Lee, J.Y. Torque Improvement of Wound Field Synchronous Motor for Electric Vehicle by PM-Assist. IEEE Trans. Ind. Appl. 2018, 54, 3252–3259. [Google Scholar] [CrossRef]
- Amara, Y.; Hlioui, S.; Ahmed, H.B.; Gabsi, M. Power Capability of Hybrid Excited Synchronous Motors in Variable Speed Drives Applications. IEEE Trans. Magn. 2019, 55, 1–12. [Google Scholar] [CrossRef]
- Ammar, A.; Berbecea, A.C.; Gillon, F.; Brochet, P. Influence of the ratio of hybridization on the performances of synchronous generator with Hybrid Excitation. In Proceedings of the 2012 XXth International Conference on Electrical Machines, Marseille, France, 2–5 September 2012; pp. 2921–2926. [Google Scholar] [CrossRef]
- Amara, Y.; Hlioui, S.; Ben Ahmed, H.; Gabsi, M. Pre-optimization of hybridization ratio in hybrid excitation synchronous machines using electrical circuits modelling. Math. Comput. Simul. 2021, 184, 118–136. [Google Scholar] [CrossRef]
- Shah Mohammadi, A.; Trovão, J.P.; Dubois, M.R. Hybridisation ratio for hybrid excitation synchronous motors in electric vehicles with enhanced performance. IET Electr. Syst. Transp. 2018, 8, 12–19. [Google Scholar] [CrossRef]
- McDonald, A.S. Hybrid excitation of synchronous generators for wind turbines. In Proceedings of the 2nd IET Renewable Power Generation Conference (RPG 2013), Beijing, China, 9–11 September 2013; pp. 1–4. [Google Scholar] [CrossRef]
- Cinti, L.; Michieletto, D.; Bianchi, N.; Bertoluzzo, M. A Comparison between Hybrid Excitation and Interior Permanent Magnet Motors. In Proceedings of the 2021 IEEE Workshop on Electrical Machines Design, Control and Diagnosis (WEMDCD), Modena, Italy, 8–9 April 2021; pp. 10–15. [Google Scholar] [CrossRef]
- Ployard, M.; Gillon, F.; Ammar, A.; Laloy, D.; Vido, L. Hybrid excitation topologies of synchronous generator for direct drive wind turbine. In Proceedings of the 2016 IEEE Energy Conversion Congress and Exposition (ECCE), Milwaukee, WI, USA, 18–22 September 2016; pp. 1–7. [Google Scholar] [CrossRef]
- Wardach, M.; Prajzendanc, P.; Palka, R.; Cierzniewski, K.; Pstrokonski, R.; Cichowicz, M.; Pacholski, S.; Ciurus, J.; Hao, C. Hybrid-Excited Permanent Magnet-Assisted Synchronous Reluctance Machine. Energies 2022, 15, 2997. [Google Scholar] [CrossRef]
- Bianchi, N.; Carlet, P.G.; Cinti, L.; Ortombina, L. A Review about Flux-Weakening Operating Limits and Control Techniques for Synchronous Motor Drives. Energies 2022, 15, 1930. [Google Scholar] [CrossRef]
- Rossi, C.; Casadei, D.; Pilati, A.; Marano, M. Wound Rotor Salient Pole Synchronous Machine Drive for Electric Traction. In Proceedings of the Conference Record of the 2006 IEEE Industry Applications Conference Forty-First IAS Annual Meeting, Tampa, FL, USA, 8–12 October 2006; Volume 3, pp. 1235–1241. [Google Scholar] [CrossRef]
- Giulii Capponi, F.; De Donato, G.; Borocci, G.; Caricchi, F. Axial-Flux Hybrid-Excitation Synchronous Machine: Analysis, Design, and Experimental Evaluation. IEEE Trans. Ind. Appl. 2014, 50, 3173–3184. [Google Scholar] [CrossRef]
- Giulii Capponi, F.; Borocci, G.; De Donato, G.; Caricchi, F. Flux Regulation Strategies for Hybrid Excitation Synchronous Machines. IEEE Trans. Ind. Appl. 2015, 51, 3838–3847. [Google Scholar] [CrossRef]
- Michieletto, D.; Cinti, L.; Bianchi, N. Hybrid Excitation PM Synchronous Motors: Part I—Per Unit Analysis. IEEE Trans. Energy Convers. 2022, 37, 487–494. [Google Scholar] [CrossRef]
- Mahmoudi, A.; Soong, W.L.; Pellegrino, G.; Armando, E. Efficiency maps of electrical machines. In Proceedings of the 2015 IEEE Energy Conversion Congress and Exposition (ECCE), Montreal, QC, Canada, 20–24 September 2015; pp. 2791–2799. [Google Scholar] [CrossRef] [Green Version]
- Song, T.; Zhang, Z.; Liu, H.; Hu, W. Multi-objective optimisation design and performance comparison of permanent magnet synchronous motor for EVs based on FEA. IET Electr. Power Appl. 2019, 13, 1157–1166. [Google Scholar] [CrossRef]
- Ness, W.; Raggl, K. E-motor Types for Secondary Electric Drives in Comparison. MTZ Worldw 2022, 83, 40–45. [Google Scholar] [CrossRef]
- Chu, W.Q.; Zhu, Z.Q.; Chen, J.T. Simplified Analytical Optimization and Comparison of Torque Densities Between Electrically Excited and Permanent-Magnet Machines. IEEE Trans. Ind. Electron. 2014, 61, 5000–5011. [Google Scholar] [CrossRef]
- Prajzendanc, P.; Paplicki, P. Performance Evaluation of an Axial Flux Machine with a Hybrid Excitation Design. Energies 2022, 15, 2733. [Google Scholar] [CrossRef]
- Kamiev, K.; Parviainen, A.; Pyrhönen, J. Hybrid excitation synchronous generators for small hydropower plants. In Proceedings of the 2016 XXII International Conference on Electrical Machines (ICEM), Lausanne, Switzerland, 4–7 September 2016; pp. 2529–2535. [Google Scholar] [CrossRef]
- Sun, L.; Zhang, Z.; Yu, L.; Gu, X.; Vansompel, H.; Sergeant, P. Design and Analysis of Hybrid Excitation Generators for Aircraft Applications Under Limiting Open-Circuit Voltage. IEEE Trans. Transp. Electrif. 2022, 8, 3390–3400. [Google Scholar] [CrossRef]
- Mudhigollam, U.K.; Choudhury, U.; Hatua, K. Non-Saliency of Interior Permanent Magnet Hybrid Excitation Machine. In Proceedings of the 2018 IEEE International Conference on Power Electronics, Drives and Energy Systems (PEDES), Chennai, India, 18–21 December 2018; pp. 1–6. [Google Scholar] [CrossRef]
- Chu, W.Q.; Zhu, Z.Q.; Zhang, J.; Ge, X.; Liu, X.; Stone, D.; Foster, M. Comparison of electrically excited and interior permanent magnet machines for hybrid electric vehicle application. In Proceedings of the 2014 17th International Conference on Electrical Machines and Systems (ICEMS), Hangzhou, China, 22–25 October 2014; pp. 401–407. [Google Scholar] [CrossRef]
- Afinowi, I.A.A.; Zhu, Z.Q.; Guan, Y.; Mipo, J.C.; Farah, P. Hybrid-Excited Doubly Salient Synchronous Machine With Permanent Magnets Between Adjacent Salient Stator Poles. IEEE Trans. Magn. 2015, 51, 1–9. [Google Scholar] [CrossRef]
- Liu, L.S.; Kuhl, G. Development of New High Temperature and High Performance Permanent Magnet Materials; Report UDR-TR-2000-00092; University of Dayton: Dayton, OH, USA, 2000. [Google Scholar]
- Skomski, R. Permanent Magnets: History, Current Research, and Outlook. Nov. Funct. Magn. Mater. 2016, 231, 359–395. [Google Scholar] [CrossRef]
- Fernandez, V. Rare-earth elements market: A historical and financial perspective. Resour. Policy 2017, 53, 26–45. [Google Scholar] [CrossRef]
- Berkoune, K.; Sedrine, E.B.; Vido, L.; Ballois, S.L. Robust control of hybrid excitation synchronous generator for wind applications. Math. Comput. Simul. 2017, 131, 55–75. [Google Scholar] [CrossRef]
- Chau, K.; Li, Y.; Jiang, J.; Niu, S. Design and Control of a PM Brushless Hybrid Generator for Wind Power Application. IEEE Trans. Magn. 2006, 42, 3497–3499. [Google Scholar] [CrossRef] [Green Version]
- Kucuk, F.; Sunan, E. Performance analysis of an alnico-based permanent magnet reluctance generator for wind energy conversion system. IEEJ Trans. Electr. Electron. Eng. 2018, 13, 1296–1302. [Google Scholar] [CrossRef]
- Nakamura, K.; Ichinokura, O. Super-Multipolar Permanent Magnet Reluctance Generator Designed for Small-Scale Wind-Turbine Generation. IEEE Trans. Magn. 2012, 48, 3311–3314. [Google Scholar] [CrossRef]
- Liu, X.; Lin, H.; Zhu, Z.Q.; Yang, C.; Fang, S.; Guo, J. A Novel Dual-Stator Hybrid Excited Synchronous Wind Generator. IEEE Trans. Ind. Appl. 2009, 45, 947–953. [Google Scholar] [CrossRef] [Green Version]
- Krings, A.; Monissen, C. Review and Trends in Electric Traction Motors for Battery Electric and Hybrid Vehicles. In Proceedings of the 2020 International Conference on Electrical Machines (ICEM), Gothenburg, Sweden, 23–26 August 2020; Volume 1, pp. 1807–1813. [Google Scholar] [CrossRef]
- Chan, C.; Chau, K.; Jiang, J.; Xia, W.; Zhu, M.; Zhang, R. Novel permanent magnet motor drives for electric vehicles. IEEE Trans. Ind. Electron. 1996, 43, 331–339. [Google Scholar] [CrossRef] [Green Version]
- Chau, K.; Jiang, J.; Wang, Y. A novel stator doubly fed doubly salient permanent magnet brushless machine. IEEE Trans. Magn. 2003, 39, 3001–3003. [Google Scholar] [CrossRef]
- Chau, K.T.; Chan, C.C.; Liu, C. Overview of Permanent-Magnet Brushless Drives for Electric and Hybrid Electric Vehicles. IEEE Trans. Ind. Electron. 2008, 55, 2246–2257. [Google Scholar] [CrossRef] [Green Version]
- Elsonbaty, N.A.; Enany, M.A.; Hassanin, M.I. An Efficient Vector Control Policy for EV-Hybrid Excited Permanent-Magnet Synchronous Motor. World Electr. Veh. J. 2020, 11, 42. [Google Scholar] [CrossRef]
- Cai, J.; Lu, Q.; Jin, Y.; Chen, C.; Ye, Y. Performance investigation of multi-tooth flux-switching PM linear motor. In Proceedings of the 2011 International Conference on Electrical Machines and Systems, Beijing, China, 20–23 August 2011; pp. 1–6. [Google Scholar] [CrossRef]
- Wu, W.; Zhu, X.; Quan, L.; Fan, D.; Xiang, Z. Characteristic analysis of a less-rare-earth hybrid PM-assisted synchronous reluctance motor for EVs application. AIP Adv. 2017, 7, 056648. [Google Scholar] [CrossRef] [Green Version]
- Barcaro, M.; Bianchi, N. Interior PM machines using Ferrite to substitute rare-earth surface PM machines. In Proceedings of the 2012 XXth International Conference on Electrical Machines, Marseille, France, 2–5 September 2012; pp. 1339–1345. [Google Scholar] [CrossRef]
- Morimoto, S. Trend of permanent magnet synchronous machines. IEEJ Trans. Electr. Electron. Eng. 2007, 2, 101–108. [Google Scholar] [CrossRef]
- Dorrell, D.G.; Knight, A.M.; Evans, L.; Popescu, M. Analysis and Design Techniques Applied to Hybrid Vehicle Drive Machines—Assessment of Alternative IPM and Induction Motor Topologies. IEEE Trans. Ind. Electron. 2012, 59, 3690–3699. [Google Scholar] [CrossRef]
- Hwang, C.C.; Li, P.L.; Liu, C.T. Design and Analysis of a Novel Hybrid Excited Linear Flux Switching Permanent Magnet Motor. IEEE Trans. Magn. 2012, 48, 2969–2972. [Google Scholar] [CrossRef]
- Schofield, N.; Al-Adsani, A. Operation of a hybrid PM generator in a series hybrid EV power-train. In Proceedings of the 2011 IEEE Vehicle Power and Propulsion Conference, Chicago, IL, USA, 6–9 September 2011; pp. 1–6. [Google Scholar] [CrossRef]
- Cheng, B.; Pan, G.; Mao, Z. Analytical Calculation and Optimization of the Segmented-Stator Dual-Rotor Axial Flux Permanent Magnet Motors. IEEE Trans. Magn. 2020, 56, 1–9. [Google Scholar] [CrossRef]
- Kosaka, T.; Matsui, N. Hybrid excitation machines with powdered iron core for electrical traction drive applications. In Proceedings of the 2008 International Conference on Electrical Machines and Systems, Wuhan, China, 17–20 October 2008; pp. 2974–2979. [Google Scholar]
- Di Barba, P.; Bonislawski, M.; Palka, R.; Paplicki, P.; Wardach, M. Design of Hybrid Excited Synchronous Machine for Electrical Vehicles. IEEE Trans. Magn. 2015, 51, 1–6. [Google Scholar] [CrossRef]
- Riba, J.R.; López-Torres, C.; Romeral, L.; Garcia, A. Rare-earth-free propulsion motors for electric vehicles: A technology review. Renew. Sustain. Energy Rev. 2016, 57, 367–379. [Google Scholar] [CrossRef] [Green Version]
- Hoang, E.; Lécrivain, M.; Hlioui, S.; Gabsi, M. Hybrid excitation synchronous permanent magnets synchronous machines optimally designed for hybrid and full electrical vehicle. In Proceedings of the 8th International Conference on Power Electronics—ECCE Asia, The Shilla Jeju, Korea, 30 May–3 June 2011. [Google Scholar]
- Yin, J.; Quan, L.; Zhu, X.; Xiang, Z.; Zhou, H. The performance of a hybrid excitation flux switching motor with ferrite magnets for EVs. In Proceedings of the 2014 IEEE Conference and Expo Transportation Electrification Asia-Pacific (ITEC Asia-Pacific), Beijing, China, 1 August–3 September 2014; pp. 1–4. [Google Scholar] [CrossRef]
- Okada, T.; Kosaka, T.; Matsumori, H.; Matsui, N. Comparative Study on Hybrid Excitation Flux Switching Motors without and with Variably Magnetizable Permanent Magnets for Electrified Vehicle Propulsion. World Electr. Veh. J. 2021, 12. [Google Scholar] [CrossRef]
- Sulaiman, E.; Kosaka, T.; Matsui, N. A novel hybrid excitation flux switching synchronous machine for a high-speed hybrid electric vehicle applications. In Proceedings of the 2011 International Conference on Electrical Machines and Systems, Beijing, China, 20–23 August 2011; pp. 1–6. [Google Scholar] [CrossRef]
- Hou, J.; Geng, W.; Li, Q.; Zhang, Z. 3-D Equivalent Magnetic Network Modeling and FEA Verification of a Novel Axial-Flux Hybrid-Excitation In-wheel Motor. IEEE Trans. Magn. 2021, 57, 1–12. [Google Scholar] [CrossRef]
- Ployard, M.; Ammar, A.; Iamamura, J.; Gillon, F.; Vido, L.; Laloy, D. Multi-structure model to optimize a hybrid excitation synchronous generator. In Proceedings of the 2014 International Conference on Electrical Machines (ICEM), Berlin, Germany, 2–5 September 2014; pp. 2632–2637. [Google Scholar] [CrossRef]
- Hua, H.; Zhu, Z.Q.; Pride, A.; Deodhar, R.; Sasaki, T. Comparative study of variable flux memory machines with parallel and series hybrid magnets. In Proceedings of the 2017 IEEE Energy Conversion Congress and Exposition (ECCE), Cincinnati, OH, USA, 1–5 October 2017; pp. 3942–3949. [Google Scholar] [CrossRef]
- Amara, Y.; Barakat, G.; Gabsi, M. Comparison of flux control capability of a series double excitation machine and a parallel double excitation machine. In Proceedings of the 2010 IEEE Vehicle Power and Propulsion Conference, Lille, France, 1–3 September 2010. [Google Scholar] [CrossRef]
- Michieletto, D.; Cinti, L.; Bianchi, N. Hybrid Excitation PM Synchronous Motors: Part II—Finite Element Analysis. IEEE Trans. Energy Convers. 2022, 37, 495–504. [Google Scholar] [CrossRef]
- Fodorean, D.; Djerdir, A.; Viorel, I.; Miraoui, A. A Double Excited Synchronous Machine for Direct Drive Application—Design and Prototype Tests. IEEE Trans. Energy Convers. 2007, 22, 656–665. [Google Scholar] [CrossRef]
- Amara, Y.; Lucidarme, J.; Gabsi, M.; Lecrivain, M.; Almed, A.H.B.; Akemakou, A.D. A new topology of hybrid synchronous machine. IEEE Trans. Ind. Appl. 2001, 37, 1273–1281. [Google Scholar] [CrossRef]
- Bali, H.; Amara, Y.; Barakat, G.; Ibtiouen, R.; Gabsi, M. Analytical Modeling of Open Circuit Magnetic Field in Wound Field and Series Double Excitation Synchronous Machines. IEEE Trans. Magn. 2010, 46, 3802–3815. [Google Scholar] [CrossRef]
- Hoseinpour, A.; Mardaneh, M.; Rahideh, A. Investigation of the Effects of Different Magnetization Patterns on the Performance of Series Hybrid Excitation Synchronous Machines. Prog. Electromagn. Res. M 2018, 64, 109–121. [Google Scholar] [CrossRef] [Green Version]
- Yamazaki, K.; Tamiya, S.; Shima, K.; Fukami, T. Calculation of the Characteristics of Salient-Pole Synchronous Machines Assisted by Permanent Magnets on the Basis of the Operating Principle. Electr. Eng. Jpn. 2015, 191, 19–26. [Google Scholar] [CrossRef]
- Yamazaki, K.; Tamiya, S.; Shima, K.; Fukami, T. Reduction of magnetic saturation by using additional permanent magnets in synchronous machines. In Proceedings of the 2011 IEEE Energy Conversion Congress and Exposition, Phoenix, AZ, USA, 17–22 September 2011; pp. 1560–1567. [Google Scholar] [CrossRef]
- Hosoi, T.; Watanabe, H.; Shima, K.; Fukami, T.; Hanaoka, R.; Takata, S. Demagnetization Analysis of Additional Permanent Magnets in Salient-Pole Synchronous Machines With Damper Bars Under Sudden Short Circuits. IEEE Trans. Ind. Electron. 2012, 59, 2448–2456. [Google Scholar] [CrossRef]
- Pang, L.; Zhao, C.; Shen, H. Research on Tangential Magnetization Parallel Magnetic Path Hybrid Excitation Synchronous Machine. J. Electr. Eng. Technol. 2022. [Google Scholar] [CrossRef]
- Mudhigollam, U.K.; Choudhury, U.; Hatua, K. Wide regulated series hybrid excitation alternator. IET Electr. Power Appl. 2018, 12, 439–446. [Google Scholar] [CrossRef]
- Hu, W.; Zhang, X.; Yin, H.; Geng, H.; Zhang, Y.; Shi, L. Analysis of Magnetic Field and Electromagnetic Performance of a New Hybrid Excitation Synchronous Motor with dual-V type Magnets. Energies 2020, 13, 1501. [Google Scholar] [CrossRef] [Green Version]
- Hu, W.; Zhang, X.; Lei, Y.; Du, Q.; Shi, L.; Liu, G. Analytical Model of Air-Gap Field in Hybrid Excitation and Interior Permanent Magnet Machine for Electric Logistics Vehicles. IEEE Access 2020, 8, 148237–148249. [Google Scholar] [CrossRef]
- Syverson, C.D. Hybrid Alternator. U.S. Patent US5397975A, 14 March 1995. [Google Scholar]
- Bernatt, J.; Dukalski, P.; Gawron, S. Modeling 3D of generator with hybrid excitation. In Proceedings of the International Aegean Conference on Electrical Machines and Power Electronics and Electromotion, Joint Conference, Istanbul, Turkey, 8–10 September 2011; pp. 787–792. [Google Scholar] [CrossRef]
- Popenda, A.; Chwalba, S. The synchronous generator based on a hybrid excitation with the extended range of voltage adjustment. E3S Web Conf. 2019, 84, 02009. [Google Scholar] [CrossRef]
- Naoe, N.; Fukami, T. Trial production of a hybrid excitation type synchronous machine. In Proceedings of the IEMDC 2001. IEEE International Electric Machines and Drives Conference (Cat. No.01EX485), Cambridge, MA, USA, 17–20 June 2001; pp. 545–547. [Google Scholar] [CrossRef]
- Chalmers, B.J.; Akmese, R.; Musaba, L. Design and field-weakening performance of permanent-magnet/reluctance motor with two-part rotor. IEE Proc. Electr. Power Appl. 1998, 145, 133–139. [Google Scholar] [CrossRef]
- Sun, L.; Zhang, Z.; Gu, X.; Yu, L. Analysis of a Hybrid Excitation Brushless DC Generator with an Integrated Shared-Flux-Path Exciter. IEEE Trans. Ind. Electron. 2020, 2020, 1. [Google Scholar] [CrossRef]
- Gu, X.; Zhang, Z.; Sun, L.; Yu, L. Phase Displacement Characteristics of a Parallel Hybrid Excitation Brushless DC Generator. IEEE Trans. Energy Convers. 2020, 35, 875–885. [Google Scholar] [CrossRef]
- Gu, X.; Zhang, Z.; Sun, L.; Yu, L. Magnetic Field Enhancement Characteristic of an Axially Parallel Hybrid Excitation DC Generator. IEEE Trans. Magn. 2021, 57, 1–5. [Google Scholar] [CrossRef]
- Geng, W.; Zhang, Z.; Jiang, K.; Yan, Y. A New Parallel Hybrid Excitation Machine: Permanent-Magnet/Variable-Reluctance Machine With Bidirectional Field-Regulating Capability. IEEE Trans. Ind. Electron. 2015, 62, 1372–1381. [Google Scholar] [CrossRef]
- Li, X.; Shen, F.; Yu, S.; Xue, Z. Flux-Regulation Principle and Performance Analysis of a Novel Axial Partitioned Stator Hybrid-Excitation Flux-Switching Machine Using Parallel Magnetic Circuit. IEEE Trans. Ind. Electron. 2021, 68, 6560–6573. [Google Scholar] [CrossRef]
- Wang, Y.; Deng, Z.Q. A Position Sensorless Method for Direct Torque Control With Space Vector Modulation of Hybrid Excitation Flux-Switching Generator. IEEE Trans. Energy Convers. 2012, 27, 912–921. [Google Scholar] [CrossRef]
- Fu, X.; Zou, J. Numerical Analysis on the Magnetic Field of Hybrid Exciting Synchronous Generator. IEEE Trans. Magn. 2009, 45, 4590–4593. [Google Scholar] [CrossRef]
- Salameh, M.; Gioia, A.D.; Brown, I.P.; Krishnamurthy, M. Evaluating the Feasibility of Single-Rotor Topologies in Hybrid Excitation Synchronous Machines for Automotive Traction Applications. In Proceedings of the 2018 IEEE Transportation Electrification Conference and Expo (ITEC), Long Beach, CA, USA, 13–15 June 2018; pp. 621–626. [Google Scholar] [CrossRef]
- Luo, X.; Lipo, T.A. A synchronous/permanent magnet hybrid AC machine. In Proceedings of the IEEE International Electric Machines and Drives Conference (Cat. No.99EX272), Seattle, WA, USA, 9–12 May 1999; pp. 19–21. [Google Scholar] [CrossRef]
- Luo, X.; Lipo, T.A. A synchronous/permanent magnet hybrid AC machine. IEEE Trans. Energy Convers. 2000, 15, 203–210. [Google Scholar] [CrossRef] [Green Version]
- Niizuma, T.; Sakai, K. Electronic motors capable of pole-changing and variable machine constants. In Proceedings of the 2012 15th International Conference on Electrical Machines and Systems (ICEMS), Sapporo, Japan, 21–24 October 2012; pp. 1–4. [Google Scholar]
- Sakai, K.; Hashimoto, H. Permanent magnet motors to change poles and machine constants. In Proceedings of the 2012 XXth International Conference on Electrical Machines, Marseille, France, 2–5 September 2012; pp. 435–440. [Google Scholar] [CrossRef]
- Yuzawa, N.; Sakai, K. A permanent magnet motor capable of pole changing for variable speed drive. In Proceedings of the 2013 International Conference on Electrical Machines and Systems (ICEMS), Busan, Korea, 26–29 October 2013; pp. 1127–1132. [Google Scholar] [CrossRef]
- Ostovic, V. Pole-changing permanent-magnet machines. IEEE Trans. Ind. Appl. 2002, 38, 1493–1499. [Google Scholar] [CrossRef]
- Zhang, Q.; Huang, S.; Xie, G. Design and Experimental Verification of Hybrid Excitation Machine With Isolated Magnetic Paths. IEEE Trans. Energy Convers. 2010, 25, 993–1000. [Google Scholar] [CrossRef]
- Ockhuis, D.K.; Kamper, M.J.; Loubser, A.T. Hybrid Excitation Method for Higher Pole Number Grid-Tie Synchronous Generators. In Proceedings of the 2020 IEEE Energy Conversion Congress and Exposition (ECCE), Detroit, MI, USA, 11–15 October 2020; pp. 1439–1446. [Google Scholar] [CrossRef]
- Akemakou, A.D. Dual Excitation Electrical Machine, and Especially Motor Vehicle Alternator. U.S. Patent US6072257A, 6 June 2000. [Google Scholar]
- Akemakou, A.D.; Phounsombat, S.K. Electrical Machine with Double Excitation, Especially a Motor Vehicle Alternator. U.S. Patent US6147429A, 14 November 2000. [Google Scholar]
- Finken, T.; Hameyer, K. Study of Hybrid Excited Synchronous Alternators for Automotive Applications Using Coupled FE and Circuit Simulations. IEEE Trans. Magn. 2008, 44, 1598–1601. [Google Scholar] [CrossRef]
- Nøland, J.K.; Giset, M.; Alves, E.F. Continuous Evolution and Modern Approaches of Excitation Systems for Synchronous Machines. In Proceedings of the 2018 XIII International Conference on Electrical Machines (ICEM), Alexandroupoli, Greece, 3–6 September 2018; pp. 104–110. [Google Scholar] [CrossRef]
- Nøland, J.K.; Nuzzo, S.; Tessarolo, A.; Alves, E.F. Excitation System Technologies for Wound-Field Synchronous Machines: Survey of Solutions and Evolving Trends. IEEE Access 2019, 7, 109699–109718. [Google Scholar] [CrossRef]
- Kobayashi, I.; Yokoi, Y.; Higuchi, T.; Miyamoto, Y.; Kamiev, K. Consequent Pole Design for Reducing Magnet Volume in PM Machines. In Proceedings of the 2018 21st International Conference on Electrical Machines and Systems (ICEMS), Jeju, Korea, 7–10 October 2018; pp. 46–49. [Google Scholar] [CrossRef]
- Palomo, R.E.Q.; Gwozdziewicz, M. Effect of Demagnetization on a Consequent Pole IPM Synchronous Generator. Energies 2020, 13, 6371. [Google Scholar] [CrossRef]
- Tapia, J.A.; Leonardi, F.; Lipo, T.A. Consequent pole permanent magnet machine with field weakening capability. In Proceedings of the IEMDC 2001 IEEE International Electric Machines and Drives Conference (Cat. No.01EX485), Cambridge, MA, USA, 17–20 June 2001; pp. 126–131. [Google Scholar] [CrossRef]
- Tapia, J.A.; Leonardi, F.; Lipo, T.A. A design procedure for a PM machine with extended field weakening capability. In Proceedings of the Conference Record of the 2002 IEEE Industry Applications Conference 37th IAS Annual Meeting (Cat. No.02CH37344), Pittsburgh, PA, USA, 13–18 October 2002; Volume 3, pp. 1928–1935. [Google Scholar] [CrossRef]
- Tapia, J.A.; Leonardi, F.; Lipo, T.A. Consequent-pole permanent-magnet machine with extended field-weakening capability. IEEE Trans. Ind. Appl. 2003, 39, 1704–1709. [Google Scholar] [CrossRef] [Green Version]
- Amemiya, J.; Chiba, A.; Dorrell, D.G.; Fukao, T. Basic characteristics of a consequent-pole-type bearingless motor. IEEE Trans. Magn. 2005, 41, 82–89. [Google Scholar] [CrossRef] [Green Version]
- Asama, J.; Amada, M.; Takemoto, M.; Chiba, A.; Fukao, T.; Rahman, A. Voltage Characteristics of a Consequent-Pole Bearingless PM Motor With Concentrated Windings. IEEE Trans. Magn. 2009, 45, 2823–2826. [Google Scholar] [CrossRef]
- Asano, Y.; Mizuguchi, A.; Amada, M.; Asama, J.; Chiba, A.; Ooshima, M.; Takemoto, M.; Fukao, T.; Ichikawa, O.; Dorrell, D.G. Development of a Four-Axis Actively Controlled Consequent-Pole-Type Bearingless Motor. IEEE Trans. Ind. Appl. 2009, 45, 1378–1386. [Google Scholar] [CrossRef]
- Ayub, M.; Jawad, G.; Kwon, B.i. Consequent-Pole Hybrid Excitation Brushless Wound Field Synchronous Machine With Fractional Slot Concentrated Winding. IEEE Trans. Magn. 2019, 55, 1–5. [Google Scholar] [CrossRef]
- Li, J.; Wang, K.; Zhu, S.S.; Liu, C. Integrated-Induction-Based Hybrid Excitation Brushless DC Generator With Consequent-Pole Rotor. IEEE Trans. Transp. Electrif. 2022, 8, 2233–2248. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhang, M.; Yin, J.; Wu, J.; Yang, C. An Analytical Method for Calculating the Cogging Torque of a Consequent Pole Hybrid Excitation Synchronous Machine Based on Spatial 3D Field Simplification. Energies 2022, 15, 878. [Google Scholar] [CrossRef]
- Yamada, T.; Nakano, Y.; Asama, J.; Chiba, A.; Fukao, T.; Hoshino, T.; Nakajima, A. Outer Rotor Consequent-Pole Bearingless Motor With Improved Start-Up Characteristics. IEEE Trans. Magn. 2008, 44, 4273–4276. [Google Scholar] [CrossRef]
- Wang, M.; Qiu, X.; Yang, J.; Chen, X.; Dou, Y. Study on the Electromagnetic Characteristics of the Consequent Pole In-Wheel Motor. In Proceedings of the 2016 IEEE Vehicle Power and Propulsion Conference (VPPC), Hangzhou, China, 17–20 October 2016; pp. 1–5. [Google Scholar] [CrossRef]
- Spooner, E.; Khatab, S.A.W.; Nicolaou, N.G. Hybrid excitation of AC and DC machines. In Proceedings of the 1989 Fourth International Conference on Electrical Machines and Drives, London, UK, 13–15 September 1989; pp. 48–52. [Google Scholar]
- Wu, J.; Yin, J. An analytical method of calculating back-emf in dual consequent hybrid excitation synchronous machine. Chin. J. Electr. Eng. 2018, 4, 52–59. [Google Scholar] [CrossRef]
- Wang, H.; Qu, Z.; Tang, S.; Pang, M.; Zhang, M. Analysis and optimization of hybrid excitation permanent magnet synchronous generator for stand-alone power system. J. Magn. Magn. Mater. 2017, 436, 117–125. [Google Scholar] [CrossRef]
- Wang, H.; An, Z.; Tang, R.; Niu, Y. Design of a hybrid excitation permanent magnet synchronous with low voltage regulation. In Proceedings of the 2005 International Conference on Electrical Machines and Systems, Nanjing, China, 27–29 September 2005; Volume 1, pp. 480–483. [Google Scholar] [CrossRef]
- Mizuno, T.; Nagayama, K.; Ashikaga, T.; Kobayashi, T. Basic principles and characteristics of hybrid excitation synchronous machine. Electr. Eng. Jpn. 1996, 117, 110–123. [Google Scholar] [CrossRef]
- Zhang, H.; Li, Q.; An, Z.; Tang, R. Theory and design of hybrid excitation permanent magnet synchronous generators. In Proceedings of the Fifth International Conference on Electrical Machines and Systems (IEEE Cat. No.01EX501), Shenyang, China, 18–20 August 2001; Volume 2, pp. 898–900. [Google Scholar] [CrossRef]
- Paplicki, P.; Wardach, M.; Bonisławski, M.; Pałka, R. Simulation and experimental results of hybrid electric machine with a novel flux control strategy. Arch. Electr. Eng. 2015, 64, 37–51. [Google Scholar] [CrossRef]
- Aydin, E.; Kim, J.H.; Yildiriz, E.; Aydemir, M.T.; Sarlioglu, B. A hybrid-excited axial transverse flux permanent magnet generator. In Proceedings of the 2016 IEEE Energy Conversion Congress and Exposition (ECCE), Milwaukee, WI, USA, 18–22 September 2016; pp. 1–6. [Google Scholar] [CrossRef]
- Hoang, T.K.; Vido, L.; Gillon, F.; Gabsi, M. Structural optimization to maximize the flux control range of a double excitation synchronous machine. Math. Comput. Simul. 2019, 158, 235–247. [Google Scholar] [CrossRef]
- Mbayed, R.; Salloum, G.; Monmasson, E.; Gabsi, M. Hybrid excitation synchronous machine finite simulation model based on experimental measurements. IET Electr. Power Appl. 2016, 10, 304–310. [Google Scholar] [CrossRef]
- Zhang, Z.; Ma, S.; Dai, J.; Yan, Y. Investigation of Hybrid Excitation Synchronous Machines With Axial Auxiliary Air-Gaps and Non-Uniform Air-Gaps. IEEE Trans. Ind. Appl. 2014, 50, 1729–1737. [Google Scholar] [CrossRef]
- Zhang, Z.; Dai, J.; Dai, C.; Yan, Y. Design Considerations of a Hybrid Excitation Synchronous Machine with Magnetic Shunt Rotor. IEEE Trans. Magn. 2013, 49, 5566–5573. [Google Scholar] [CrossRef]
- Boughrara, K.; Ibtiouen, R.; Lubin, T. Analytical Prediction of Magnetic Field in Parallel Double Excitation and Spoke-Type Permanent-Magnet Machines Accounting for Tooth-Tips and Shape of Polar Pieces. IEEE Trans. Magn. 2012, 48, 2121–2137. [Google Scholar] [CrossRef] [Green Version]
- Nedjar, B.; Hlioui, S.; Amara, Y.; Vido, L.; Gabsi, M.; Lecrivain, M. A New Parallel Double Excitation Synchronous Machine. IEEE Trans. Magn. 2011, 47, 2252–2260. [Google Scholar] [CrossRef]
- Fernando, N.; Nutkani, I.U.; Saha, S.; Niakinezhad, M. Flux switching machines: A review on design and applications. In Proceedings of the 2017 20th International Conference on Electrical Machines and Systems (ICEMS), Sydney, NSW, Australia, 11–14 August 2017; pp. 1–6. [Google Scholar] [CrossRef]
- Chen, H.; EL-Refaie, A.M.; Demerdash, N.A.O. Flux-Switching Permanent Magnet Machines: A Review of Opportunities and Challenges—Part I: Fundamentals and Topologies. IEEE Trans. Energy Convers. 2020, 35, 684–698. [Google Scholar] [CrossRef]
- Chen, H.; EL-Refaie, A.M.; Demerdash, N.A.O. Flux-Switching Permanent Magnet Machines: A Review of Opportunities and Challenges-Part II: Design Aspects, Control, and Emerging Trends. IEEE Trans. Energy Convers. 2020, 35, 699–713. [Google Scholar] [CrossRef]
- Otsuka, K.; Okada, T.; Mifune, T.; Matsumori, H.; Kosaka, T.; Matsui, N. Basic Study on Efficiency Improvement of Hybrid Excitation Flux Switching Motor using Variably Magnetizable Permanent Magnets for Automotive Traction Drives. In Proceedings of the 2020 IEEE Energy Conversion Congress and Exposition (ECCE), Detroit, MI, USA, 11–15 October 2020; pp. 27–34. [Google Scholar] [CrossRef]
- Hasegawa, Y.; Nakamura, K.; Ichinokura, O. Basic consideration of switched reluctance motor with auxiliary windings and permanent magnets. In Proceedings of the 2012 XXth International Conference on Electrical Machines, Marseille, France, 2–5 September 2012; pp. 92–97. [Google Scholar] [CrossRef]
- Zhao, C.; Zhu, H.; Du, Y.; Ju, J.; Qin, Y. A Novel Bearingless Flux-Switching Permanent Magnet Motor. In Proceedings of the 2016 IEEE Vehicle Power and Propulsion Conference (VPPC), Hangzhou, China, 17–20 October 2016; pp. 1–5. [Google Scholar] [CrossRef]
- Tong, M.; Cheng, M.; Wang, S.; Hua, W. An On-Board Two-Stage Integrated Fast Battery Charger for EVs Based on a Five-Phase Hybrid-Excitation Flux-Switching Machine. IEEE Trans. Ind. Electron. 2021, 68, 1780–1790. [Google Scholar] [CrossRef]
- Chen, J.T.; Zhu, Z.Q.; Iwasaki, S.; Deodhar, R.P. A Novel Hybrid-Excited Switched-Flux Brushless AC Machine for EV/HEV Applications. IEEE Trans. Veh. Technol. 2011, 60, 1365–1373. [Google Scholar] [CrossRef]
- Nasr, A.; Hlioui, S.; Gabsi, M.; Mairie, M.; Lalevee, D. Design Optimization of a Hybrid-Excited Flux-Switching Machine for Aircraft-Safe DC Power Generation Using a Diode Bridge Rectifier. IEEE Trans. Ind. Electron. 2017, 64, 9896–9904. [Google Scholar] [CrossRef] [Green Version]
- Gaussens, B.; Hoang, E.; Lécrivain, M.; Manfe, P.; Gabsi, M. A Hybrid-Excited Flux-Switching Machine for High-Speed DC-Alternator Applications. IEEE Trans. Ind. Electron. 2014, 61, 2976–2989. [Google Scholar] [CrossRef] [Green Version]
- Hua, W.; Cheng, M.; Zhang, G. A Novel Hybrid Excitation Flux-Switching Motor for Hybrid Vehicles. IEEE Trans. Magn. 2009, 45, 4728–4731. [Google Scholar] [CrossRef]
- Ilhan, E.; Gysen, B.L.J.; Paulides, J.J.H.; Lomonova, E.A. Analytical Hybrid Model for Flux Switching Permanent Magnet Machines. IEEE Trans. Magn. 2010, 46, 1762–1765. [Google Scholar] [CrossRef] [Green Version]
- Gao, Y.; Li, D.; Qu, R.; Fan, X.; Li, J.; Ding, H. A Novel Hybrid Excitation Flux Reversal Machine for Electric Vehicle Propulsion. IEEE Trans. Veh. Technol. 2018, 67, 171–182. [Google Scholar] [CrossRef]
- Ding, W.; Yang, S.; Hu, Y.; Li, S.; Wang, T.; Yin, Z. Design Consideration and Evaluation of a 12/8 High-Torque Modular-Stator Hybrid Excitation Switched Reluctance Machine for EV Applications. IEEE Trans. Ind. Electron. 2017, 64, 9221–9232. [Google Scholar] [CrossRef]
- Diab, H.; Amara, Y.; Hlioui, S.; Paulides, J.J.H. Design and Realization of a Hybrid Excited Flux Switching Vernier Machine for Renewable Energy Conversion. Energies 2021, 14, 6060. [Google Scholar] [CrossRef]
- Liu, G.; Ding, L.; Zhao, W.; Chen, Q.; Jiang, S. Nonlinear Equivalent Magnetic Network of a Linear Permanent Magnet Vernier Machine With End Effect Consideration. IEEE Trans. Magn. 2018, 54, 1–9. [Google Scholar] [CrossRef]
- Nakamura, K.; Sunan, E.; Ichinokura, O. Development of 72/96-Pole Rare-Earth Free Permanent Magnet Reluctance Generator for Small-Scale Renewable Power Generation. IEEJ J. Ind. Appl. 2014, 3, 41–46. [Google Scholar] [CrossRef] [Green Version]
- Ni, Y.; Wang, Q.; Bao, X.; Zhu, W. Optimal design of a hybrid excitation claw-pole alternator based on a 3-D MEC method. In Proceedings of the 2005 International Conference on Electrical Machines and Systems, Nanjing, China, 27–29 September 2005; Volume 1, pp. 644–647. [Google Scholar] [CrossRef]
- Yang, C.; Li, H.; Jian, G. Magnetic field analysis of hybrid excitation brushless claw-pole motor with three-dimensional finite element method. In Proceedings of the 2005 International Conference on Electrical Machines and Systems, Nanjing, China, 27–29 September 2005; Volume 1, pp. 664–666. [Google Scholar] [CrossRef]
- Hagstedt, D.; Reinap, A.; Ottosson, J.; Alaküla, M. Design and experimental evaluation of a compact hybrid excitation claw-pole rotor. In Proceedings of the 2012 XXth International Conference on Electrical Machines, Marseille, France, 2–5 September 2012; pp. 2896–2901. [Google Scholar] [CrossRef]
- Jian, L.; Gong, Y.; Wei, J.; Shi, Y.; Shao, Z.; Ching, T.W. A novel claw pole memory machine for wide-speed-range applications. J. Appl. Phys. 2015, 117, 17A725. [Google Scholar] [CrossRef]
- Li, J.; Zhu, C.; Cong, M.; Shen, Y. Dynamic Performance Simulation of Hybrid Excitation Claw-pole Alternator. In Proceedings of the 2016 International Conference on Energy, Power and Electrical Engineering, Shenzhen, China, 30–31 October 2016; pp. 288–292. [Google Scholar] [CrossRef] [Green Version]
- Upadhayay, P.; Kedous-Lebouc, A.; Garbuio, L.; Mipo, J.C.; Dubus, J.M. Design and comparison of a conventional and permanent magnet based claw-pole machine for automotive application. In Proceedings of the 2017 15th International Conference on Electrical Machines, Drives and Power Systems (ELMA), Sofia, Bulgaria, 1–3 June 2017; pp. 1–5. [Google Scholar] [CrossRef]
- Wardach, M. Hybrid excited claw pole electric machine. In Proceedings of the 2016 21st International Conference on Methods and Models in Automation and Robotics (MMAR), Miedzyzdroje, Poland, 29 August–1 September 2016; pp. 152–156. [Google Scholar] [CrossRef]
- Cao, Y.; Zhu, S.; Yu, J.; Liu, C. Thermal Analysis of Dual-Axis-Direction Hybrid Excitation Generator for Electric Vehicles. Energies 2022, 15, 3011. [Google Scholar] [CrossRef]
- Blache, C.; Paccard, D. Magnetic circuits classification. IEEE Trans. Magn. 1993, 29, 2221–2227. [Google Scholar] [CrossRef]
- Eastham, J.F.; Evans, P.D.; Coles, P.C.; Ibrahim, M. Double disc alternators with hybrid excitation. IEEE Trans. Magn. 1992, 28, 3039–3041. [Google Scholar] [CrossRef]
- Dou, Y.; Chen, H. A design research for hybrid excitation rare earth permanent magnet synchronous generator. In Proceedings of the Fifth International Conference on Electrical Machines and Systems (IEEE Cat. No.01EX501), Shenyang, China, 18–20 August 2001; Volume 2, pp. 856–859. [Google Scholar] [CrossRef]
- Zhao, J.; Lin, M.; Xu, D.; Hao, L.; Zhang, W. Vector Control of a Hybrid Axial Field Flux-Switching Permanent Magnet Machine Based on Particle Swarm Optimization. IEEE Trans. Magn. 2015, 51, 1–4. [Google Scholar] [CrossRef]
- Wang, X.; Wan, Z.; Tang, L.; Xu, W.; Zhao, M. Electromagnetic Performance Analysis of an Axial Flux Hybrid Excitation Motor for HEV Drives. IEEE Trans. Appl. Supercond. 2021, 31, 1–5. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, Q.; Wang, R.; Hu, J.; Zhang, L.; Cai, B. An Asymmetric-Primary Axis-Flux Hybrid-Excitation Generator for the Vertical Axis Wind Turbine. IEEE Access 2021, 9, 92318–92325. [Google Scholar] [CrossRef]
- Wang, D.; Wang, B.; Zhang, F.; Peng, C. Design Consideration of AC Hybrid-Excitation Permanent-Magnet Machine With Axial Stator Using Simplified Reluctance Network. IEEE Trans. Ind. Electron. 2022, 69, 12447–12457. [Google Scholar] [CrossRef]
- Hua, H.; Zhu, Z.Q.; Zhan, H. Novel Consequent-Pole Hybrid Excited Machine With Separated Excitation Stator. IEEE Trans. Ind. Electron. 2016, 63, 4718–4728. [Google Scholar] [CrossRef]
- Hua, H.; Zhu, Z.Q. Novel Parallel Hybrid Excited Machines With Separate Stators. IEEE Trans. Energy Convers. 2016, 31, 1212–1220. [Google Scholar] [CrossRef]
- Dalal, A.; Nekkalapu, S.; Kumar, P. 2-D Analytical Subdomain Model for Hybrid Dual-Rotor Motor. IEEE Trans. Magn. 2016, 52, 1–9. [Google Scholar] [CrossRef]
- Rahman, M.; Osheiba, A. Performance of large line-start permanent magnet synchronous motors. IEEE Trans. Energy Convers. 1990, 5, 211–217. [Google Scholar] [CrossRef]
- Liu, C.; Chau, K.T.; Jiang, J.Z.; Liu, X.; Wang, Z. Design and Control of a Doubly-Excited Permanent-Magnet Brushless Integrated-Starter-Generator for Hybrid Electric Vehicles. In Proceedings of the 2007 IEEE Industry Applications Annual Meeting, New Orleans, LA, USA, 23–27 September 2007; pp. 1702–1709. [Google Scholar] [CrossRef]
- Yu, C.; Chau, K.T.; Jiang, J.Z. A permanent-magnet flux-mnemonic integrated-starter-generator for hybrid electric vehicles. In Proceedings of the 2008 IEEE Vehicle Power and Propulsion Conference, Harbin, China, 3–5 September 2008; pp. 1–6. [Google Scholar] [CrossRef]
- Hassanpour Isfahani, A.; Vaez-Zadeh, S. Line start permanent magnet synchronous motors: Challenges and opportunities. Energy 2009, 34, 1755–1763. [Google Scholar] [CrossRef]
- Kalluf, F.J.H.; Pompermaier, C.; Ferreira da Luz, M.V.; Sadowski, N. Magnet flux optimization method for Line-Start Permanent Magnet motors. In Proceedings of the 2009 IEEE International Electric Machines and Drives Conference, Miami, FL, USA, 3–6 May 2009; pp. 953–957. [Google Scholar] [CrossRef]
- Damaki Aliabad, A.; Mirsalim, M.; Farrokhzad Ershad, N. Line-Start Permanent-Magnet Motors: Significant Improvements in Starting Torque, Synchronization, and Steady-State Performance. IEEE Trans. Magn. 2010, 46, 4066–4072. [Google Scholar] [CrossRef]
- Zhao, J.; Cheng, D.; Zheng, P.; Liu, X.; Tong, C.; Song, Z.; Zhang, L. Field weakening capability investigation of an axial flux permanent-magnet synchronous machine with radially sliding permanent magnets used for electric vehicles. J. Appl. Phys. 2012, 111, 07A719. [Google Scholar] [CrossRef]
- Parviainen, A. Method and Arrangement for Adjusting the Magnetization of a Permanent Magnet Machine. International Patent WO 2016/203101 Al, 22 December 2016. [Google Scholar]
- Kim, K. A Novel Magnetic Flux Weakening Method of Permanent Magnet Synchronous Motor for Electric Vehicles. IEEE Trans. Magn. 2012, 48, 4042–4045. [Google Scholar] [CrossRef]
- Li, C.; Li, C. Research on variable leakage flux function for a self-adaptive passive flux-weakening PMSM. In Proceedings of the 2015 18th International Conference on Electrical Machines and Systems (ICEMS), Pattaya, Thailand, 25–28 October 2015; pp. 1471–1474. [Google Scholar] [CrossRef]
- Caricchi, F.; Crescimbini, F.; Capponi, F.; Solero, L. Permanent-magnet, direct-drive, starter/alternator machine with weakened flux linkage for constant-power operation over extremely wide speed range. In Proceedings of the Conference Record of the 2001 IEEE Industry Applications Conference 36th IAS Annual Meeting (Cat. No.01CH37248), Chicago, IL, USA, 30 September–4 October 2001; Volume 3, pp. 1626–1633. [Google Scholar] [CrossRef]
- Del Ferraro, L.; Caricchi, F.; Capponi, F. Analysis and comparison of a speed-dependant and a torque-dependant mechanical device for wide constant power speed range in AFPM starter/alternators. IEEE Trans. Power Electron. 2006, 21, 720–729. [Google Scholar] [CrossRef]
- Zhou, G.; Miyazaki, T.; Kawamata, S.; Kaneko, D.; Hino, N. Development of variable magnetic flux motor suitable for electric vehicle. In Proceedings of the 2010 International Power Electronics Conference–ECCE ASIA, Sapporo, Japan, 21–24 June 2010; pp. 2171–2174. [Google Scholar] [CrossRef]
- Del Ferraro, L.; Capponi, F.G.; Terrigi, R.; Caricchi, F.; Honorati, O. Ironless Axial Flux PM Machine With Active Mechanical Flux Weakening For Automotive Applications. In Proceedings of the Conference Record of the 2006 IEEE Industry Applications Conference Forty-First IAS Annual Meeting, Tampa, FL, USA, 8–12 October 2006; Volume 1, pp. 1–7. [Google Scholar] [CrossRef]
- Ma, L.; Sanada, M.; Morimoto, S.; Takeda, Y. Advantages of IPMSM with adjustable PM armature flux linkage in efficiency improvement and operating range extension. In Proceedings of the Power Conversion Conference-Osaka 2002 (Cat. No.02TH8579), Osaka, Japan, 2–5 April 2002; Volume 1, pp. 136–141. [Google Scholar] [CrossRef]
- Owen, R.; Zhu, Z.Q.; Wang, J.B.; Stone, D.A.; Urquhart, I. Mechanically adjusted variable-flux concept for switched-flux permanent-magnet machines. In Proceedings of the 2011 International Conference on Electrical Machines and Systems, Beijing, China, 20–23 August 2011; pp. 1–6. [Google Scholar] [CrossRef]
- Yiguang, C.; Wei, P.; Ying, W.; Renyuan, T.; Jing, W. Interior composite-rotor controllable-flux PMSM-memory motor. In Proceedings of the 2005 International Conference on Electrical Machines and Systems, Nanjing, China, 27–29 September 2005; Volume 1, pp. 446–449. [Google Scholar] [CrossRef]
- Ma, L.; Sanada, M.; Morimoto, S.; Takeda, Y.; Matsui, N. High efficiency adjustable speed control of IPMSM with variable permanent magnet flux linkage. In Proceedings of the Conference Record of the 1999 IEEE Industry Applications Conference. Thirty-Forth IAS Annual Meeting (Cat. No.99CH36370), Phoenix, AZ, USA, 3–7 October 1999; Volume 2, pp. 881–887. [Google Scholar] [CrossRef]
- Baoquan, K.; Chunyan, L.; Shukang, C. A new flux weakening method of permanent magnet synchronous machine. In Proceedings of the 2005 International Conference on Electrical Machines and Systems, Nanjing, China, 27–29 September 2005; Volume 1, pp. 500–503. [Google Scholar] [CrossRef]
- Ostovic, V. Memory motors-a new class of controllable flux PM machines for a true wide speed operation. In Proceedings of the Conference Record of the 2001 IEEE Industry Applications Conference. 36th IAS Annual Meeting (Cat. No.01CH37248), Chicago, IL, USA, 30 September–4 October 2001; Volume 4, pp. 2577–2584. [Google Scholar] [CrossRef]
- Ostovic, V. Memory motors. IEEE Ind. Appl. Mag. 2003, 9, 52–61. [Google Scholar] [CrossRef]
- Wang, Q.; Niu, S. Electromagnetic Design and Analysis of a Novel Fault-Tolerant Flux-Modulated Memory Machine. Energies 2015, 8, 8069–8085. [Google Scholar] [CrossRef] [Green Version]
- Liu, C.; Chau, K.T.; Qiu, C. Design and Analysis of a New Magnetic-Geared Memory Machine. IEEE Trans. Appl. Supercond. 2014, 24, 1–5. [Google Scholar] [CrossRef]
- Maekawa, S.; Yuki, K.; Matsushita, M.; Nitta, I.; Hasegawa, Y.; Shiga, T.; Hosoito, T.; Nagai, K.; Kubota, H. Study of the Magnetization Method Suitable for Fractional-Slot Concentrated-Winding Variable Magnetomotive-Force Memory Motor. IEEE Trans. Power Electron. 2014, 29, 4877–4887. [Google Scholar] [CrossRef]
Material | Density [g/cm3] | Application |
---|---|---|
Steel | 7.85 | Soft magn. core |
Steel (0.03 Si) | 7.65 | Soft magn. core |
Iron | 7.86 | Soft magn. core |
NdFeB | 7.3–7.7 | PM |
SmCo | 7.3–7.7 | PM |
Hard Ferrite | 4.9–5.1 | PM |
Copper | 8.96 | Conductor |
Aluminum | 2.7 | Conductor |
Material | (25 °C) [T] | [kA/m] | [°C] |
---|---|---|---|
Sr Ferrite | 0.39 | 275 | 733 |
SmCo5 | 0.90 | 1700 | 691 |
Sm2Co17 | 1.07 | 1100 | 805 |
Alnico 5 | 1.28 | 55 | 840 |
NdFeB | 1.38 | 1000 | 310 |
Material | Resistivity [m] | Density [g/cm3] |
---|---|---|
Copper | 1.72 | 8.96 |
Aluminum | 2.65 | 2.7 |
Permeability | Permeability | |
---|---|---|
Material | Regular fields | Above saturation |
Iron | 10,000–200,000 | 1 |
Elec. Steel (0.03 Si) | 4000–100,000 | 1 |
Material | Permeability |
---|---|
NdFeB | 1.0–1.1 |
SmCo | 1.0–1.1 |
Ferrite | 1.05–1.2 |
Alnico | 1.3–6.2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mörée, G.; Leijon, M. Overview of Hybrid Excitation in Electrical Machines. Energies 2022, 15, 7254. https://doi.org/10.3390/en15197254
Mörée G, Leijon M. Overview of Hybrid Excitation in Electrical Machines. Energies. 2022; 15(19):7254. https://doi.org/10.3390/en15197254
Chicago/Turabian StyleMörée, Gustav, and Mats Leijon. 2022. "Overview of Hybrid Excitation in Electrical Machines" Energies 15, no. 19: 7254. https://doi.org/10.3390/en15197254
APA StyleMörée, G., & Leijon, M. (2022). Overview of Hybrid Excitation in Electrical Machines. Energies, 15(19), 7254. https://doi.org/10.3390/en15197254