Assessment of the Feasibility of Energy Transformation Processes in European Union Member States
Abstract
:1. Introduction
2. Implementation of Sustainable Development Goals Relating to the Energy Transition in the EU Countries
2.1. ”Smart and Efficient Energy Systems” in the SDG Agenda in the Context of the Energy Transformation in EU Countries
Variable | Description | Type * | Symbol |
---|---|---|---|
Energy Consumption | |||
Energy losses | Energy consumption of the energy sector itself and losses occurring during transformation and distribution of energy (tonnes of oil equivalent (TOE) per capita). | D | X1 |
Energy productivity | The indicator measures the amount of economic output that is produced per unit of gross available energy. The gross available energy represents the quantity of energy products necessary to satisfy all demand of entities in the geographical area under consideration (PPS per kilogram of oil equivalent (KGOE)). | S | X2 |
Greenhouse gas emissions intensity of energy consumption | The indicator is calculated as the ratio between energy-related GHG emissions and gross inland consumption of energy. It expresses how many tonnes CO2 equivalents of energy-related GHGs are being emitted in a particular economy per unit of energy that is being consumed. | D | X3 |
Energy Supply | |||
Share of renewable energy in gross final energy consumption | The indicator measures the share of renewable energy consumption in gross final energy consumption according to the Renewable Energy Directive. The gross final energy consumption is the energy used by end-consumers plus grid losses and self-consumption of power plants. | S | X4 |
Energy import dependency | The indicator shows the share of total energy needs of a country met by imports from other countries. Energy dependence = (imports − exports) / gross available energy. | D | X5 |
Access to Affordable Energy | |||
Population unable to keep home adequately warm | The indicator measures the share of the population who are unable to keep home adequately warm. | D | X6 |
The Circular Economy | |||
Circular material use rate | The circular material use rate (CMR) measures the share of material recovered and fed back into the economy in overall material use. | S | X7 |
Generation of waste excluding major mineral wastes | The indicator measures all waste generated in a country (kg per 1000 inhabitants). Due to the strong fluctuations in waste generation in the mining and construction sectors and their limited data quality and comparability, major mineral wastes, dredging spoils and soils are excluded. | D | X8 |
Gross value added in environmental goods and services | The gross value added in EGSS represents the contribution of the environmental goods and services sector to GDP and is defined as the difference between the value of the sector’s output and intermediate consumption (% of GDP). | S | X9 |
2.2. ”Macroeconomic Heterogeneity” of the SDG Agenda in the Context of Energy Transformations in EU Countries
3. Research Methods and Data
- Based on the lowest value in the distance matrix, a pair of the most similar objects and is established,
- Objects and are formed into one cluster, reducing the number of groups to ,
- The distance between the newly formed cluster and other items is calculated,
- Steps 2–4 are repeated until sample units are combined into a single large cluster of size .
4. Results
4.1. ”Smart and Efficient Energy Systems” Analysis
4.2. ”Macroeconomic Heterogeneity” Analysis
4.3. Analysis of Potential to Follow up Energy Transition Processes
5. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Strunz, S. The German energy transition as a regime shift. Ecol. Econ. 2014, 100, 150–158. [Google Scholar] [CrossRef] [Green Version]
- Tian, J.; Yu, L.; Xue, R.; Zhuang, S.; Shan, Y. Global low-carbon energy transition in the post-COVID-19 era. Appl. Energy 2021, 307, 118205. [Google Scholar] [CrossRef]
- Pietrzak, M.; Igliński, B.; Kujawski, W.; Iwański, P. Energy Transition in Poland—Assessment of the Renewable Energy Sector. Energies 2021, 14, 2046. [Google Scholar] [CrossRef]
- Chovancová, J.; Tej, J. Decoupling economic growth from greenhouse gas emissions: The case of the energy sector in V4 countries. Equilib. Q. J. Econ. Econ. Policy 2020, 15, 235–251. [Google Scholar] [CrossRef]
- Henderson, J.; Anupama, S. The Energy Transition: Key Challenges for Incumbent and New Players in the Global Energy System, OIES Paper. Oxford Institute for Energy Studies. 2021. Available online: https://www.oxfordenergy.org/publications/the-energy-transition-key-challenges-for-incumbent-and-new-players-in-the-global-energy-system/ (accessed on 19 September 2021).
- Grosse, T.G. Low Carbon Economy Policy in Poland: An Example of the Impact of Europeanisation. Equilib. Quart. J. Econ. Econ. Policy 2011, 6, 9–39. [Google Scholar] [CrossRef]
- Szopik-Depczynska, K.; Cheba, K.; Bąk, I.; Stajniak, M.; Simboli, A.; Ioppolo, G. The study of relationship in a hierarchical structure of EU sustainable development indicators. Ecol. Indic. 2018, 90, 120–131. [Google Scholar] [CrossRef]
- Rees, W.E. Globalization, trade and migration: Undermining sustainability. Ecol. Econ. 2006, 59, 220–225. [Google Scholar] [CrossRef]
- Overland, I. Energy: The missing link in globalization. Energy Res. Soc. Sci. 2016, 14, 122–130. [Google Scholar] [CrossRef] [Green Version]
- Cheba, K.; Szopik-Depczyńska, K. Multidimensional comparative analysis of the competitive capacity of the European Union countries and geographical regions. Oeconomia Copernic. 2017, 8, 487–504. [Google Scholar] [CrossRef] [Green Version]
- Szopik-Depczynska, K.; Kędzierska-Szczepaniak, A.; Szczepaniak, K.; Cheba, K.; Gajda, W.; Ioppolo, G. Innovation in sustainable development: An investigation of the EU context using 2030 agenda indicators. Land Use Policy 2018, 79, 251–262. [Google Scholar] [CrossRef]
- Kijek, T.; Matras-Bolibok, A. The relationship between TFP and innovation performance: Evidence from EU regions. Equilib. Q. J. Econ. Econ. Policy 2019, 14, 695–709. [Google Scholar] [CrossRef]
- Kijek, A.; Matras-Bolibok, A. Technological convergence across European regions. Equilib. Q. J. Econ. Econ. Policy 2020, 15, 295–313. [Google Scholar] [CrossRef]
- Ginevičius, R. Multi-criteria assessment of socioeconomic systems’ conditions based on hierarchically structured indicator systems. Econ. Sociol. 2020, 13, 256–266. [Google Scholar] [CrossRef]
- Androniceanu, A.-M.; Kinnunen, J.; Georgescu, I.; Androniceanu, A. A Multidimensional Approach to Competitiveness, Innovation and Well-Being in the EU Using Canonical Correlation Analysis. J. Compet. 2020, 12, 5–21. [Google Scholar] [CrossRef]
- Piekut, M. The Consumption of Renewable Energy Sources (RES) by the European Union Households between 2004 and 2019. Energies 2021, 14, 5560. [Google Scholar] [CrossRef]
- Gajdos, A.; Arendt, L.; Balcerzak, A.P.; Pietrzak, M.B. Future trends of labour market polarisation in Poland. Perspect. Trans. Bus. Econ. 2020, 19, 114–135. [Google Scholar]
- Rollnik-Sadowska, E.; Dąbrowska, E. Cluster analysis of effectiveness of labour market policy in the European Union. Oeconomia Copernic. 2018, 9, 143–158. [Google Scholar] [CrossRef]
- Fragkos, P.; Paroussos, L. Employment creation in EU related to renewables expansion. Appl. Energy 2018, 230, 935–945. [Google Scholar] [CrossRef]
- Chocholatá, M.; Furková, A. The analysis of employment rates in the context of spatial connectivity of the EU regions. Equilib. Quart. J. Econ. Econ. Policy 2018, 13, 181–213. [Google Scholar] [CrossRef]
- United Nations. Theme Report on Energy Transition. Toward the Achievement of SDG7 and Net-Zero Emission. 2021. Available online: https://www.un.org/sites/un2.un.org/files/2021-twg_2-062321.pdf (accessed on 1 September 2021).
- Lin, M.-X.; Liou, H.M.; Chou, K.T. National Energy Transition Framework toward SDG7 with Legal Reforms and Policy Bundles: The Case of Taiwan and Its Comparison with Japan. Energies 2020, 13, 1387. [Google Scholar] [CrossRef] [Green Version]
- Markandya, A.; Arto, I.; González-Eguino, M.; Román, M.V. Towards a green energy economy? Tracking the employment effects of low-carbon technologies in the European Union. Appl. Energy 2016, 179, 1342–1350. [Google Scholar] [CrossRef] [Green Version]
- Gielen, D.; Boshell, F.; Saygin, D.; Bazilian, M.D.; Wagner, N.; Gorini, R. The role of renewable energy in the global energy transformation. Energy Strat. Rev. 2019, 24, 38–50. [Google Scholar] [CrossRef]
- International Monetary Fund (IMF). World Economic Outlook; International Monetary Fund (IMF): Washington, DC, USA, 2021; ISBN 1557757402. [Google Scholar]
- United Nations. World Population Prospects. 2019. Available online: https://population.un.org/wpp/ (accessed on 23 February 2020).
- IEA. Tracking SDG. The Energy Progress Report. 2019. Available online: https://www.iea.org/reports/tracking-sdg7-the-energy-progress-report-2019 (accessed on 10 October 2021).
- Chygryn, O.; Rosokhata, A.; Rybina, O.; Stoyanets, N. Green competitiveness: The evolution of concept formation. E3S Web Conf. 2021, 234, 00004. [Google Scholar] [CrossRef]
- United Nations. Resolution Adopted by the General Assembly on 25 September Transforming Our World: The 2030 Agenda for Sustainable Development. 2015. Available online: https://www.eea.europa.eu/policy-documents/resolution-adopted-by-the-general (accessed on 19 October 2021).
- United Nations. Transforming Our World: The 2030 Agenda for Sustainable Development. Available online: https://sdgs.un.org/2030agenda (accessed on 7 December 2021).
- European Commission. The European Green Deal. 2019. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=COM%3A2019%3A640%3AFIN (accessed on 7 December 2021).
- Zielenkiewicz, M. Institutional Environment in the Context of Development of Sustainable Society in the European Union Countries. Equilib. Quart. J. Econ. Econ. Policy 2014, 9, 21–38. [Google Scholar] [CrossRef]
- Iddrisu, I.; Bhattacharyya, S. Sustainable Energy Development Index: A multi-dimensional indicator for measuring sustainable energy development. Renew. Sustain. Energy Rev. 2015, 50, 513–530. [Google Scholar] [CrossRef] [Green Version]
- Global Energy Institute (GEI). Assessing Risk in a Global Energy Market 2020. 2020. Available online: https://www.globalenergyinstitute.org/assessing-risk-global-energy-market (accessed on 7 December 2021).
- Nussbaumer, P.; Bazilian, M.; Modi, V. Measuring energy poverty: Focusing on what matters. Renew. Sustain. Energy Rev. 2012, 16, 231–243. [Google Scholar] [CrossRef] [Green Version]
- Kuc-Czarnecka, M.; Olczyk, M.; Zinecker, M. Improvements and Spatial Dependencies in Energy Transition Measures. Energies 2021, 14, 3802. [Google Scholar] [CrossRef]
- OECD-JRC. Handbook on Constructing Composite Indicators: Methodology and User Guide, OECD Statistics Working Paper JT00188147, STD/DOC(2005)3; OECD-JRC: Ispra, Italy, 2008. [Google Scholar]
- Saltelli, A. Composite Indicators between Analysis and Advocacy. Soc. Indic. Res. 2007, 81, 65–77. [Google Scholar] [CrossRef]
- Gnaldi, M.; Del Sarto, S. Variable Weighting via Multidimensional IRT Models in Composite Indicators Construction. Soc. Indic. Res. 2016, 136, 1139–1156. [Google Scholar] [CrossRef]
- Greco, S.; Ishizaka, A.; Tasiou, M.; Torrisi, G. On the Methodological Framework of Composite Indices: A Review of the Issues of Weighting, Aggregation, and Robustness. Soc. Indic. Res. 2018, 141, 61–94. [Google Scholar] [CrossRef] [Green Version]
- Cinelli, M.; Spada, M.; Kim, W.; Zhang, Y.; Burgherr, P. MCDA Index Tool: An interactive software to develop indices and rankings. Environ. Syst. Decis. 2021, 41, 82–109. [Google Scholar] [CrossRef]
- Sgouridis, S.; Csala, D. A Framework for Defining Sustainable Energy Transitions: Principles, Dynamics, and Implications. Sustainability 2014, 6, 2601–2622. [Google Scholar] [CrossRef] [Green Version]
- World Economic Forum (WEF). Fostering Effective Energy Transition 2019; World Economic Forum (WEF): Cologny, Switzerland, 2019. [Google Scholar]
- Sachs, J.; Woo, W.; Yoshino, N.; Taghizadeh-Hesary, F. (Eds.) Handbook of Green Finance: Energy Security and Sustainable Development; Springer: Berlin/Heidelberg, Germany, 2019. [Google Scholar]
- Van de Putte, A.; Campbell-Holt, A.; Littlejohn, G. Financing the Sustainable Energy Transition; Springer International Publishing: Berlin/Heidelberg, Germany, 2020; Volume 73, ISBN 9783030390662. [Google Scholar]
- Vainio, A.; Varho, V.; Tapio, P.; Pulkka, A.; Paloniemi, R. Citizens’ images of a sustainable energy transition. Energy 2019, 183, 606–616. [Google Scholar] [CrossRef]
- Zinecker, M.; Doubravský, K.; Balcerzak, A.P.; Pietrzak, M.B.; Dohnal, M. The Covid-19 disease and policy response to mitigate the economic impact in the EU: An exploratory study based on qualitative trend analysis. Technol. Econ. Dev. Econ. 2021, 27, 742–762. [Google Scholar] [CrossRef]
- Kuzemko, C.; Bradshaw, M.; Bridge, G.; Goldthau, A.; Jewell, J.; Overland, I.; Scholten, D.; Van de Graaf, T.; Westphal, K. Covid-19 and the politics of sustainable energy transitions. Energy Res. Soc. Sci. 2020, 68, 101685. [Google Scholar] [CrossRef] [PubMed]
- Luciani, G. The Impacts of the Energy Transition on Growth and Income Distribution; Springer International Publishing: Berlin/Heidelberg, Germany, 2020; Volume 73, ISBN 9783030390662. [Google Scholar]
- Pysmenna, U.Y.; Trypolska, G.S. Sustainable Energy Transitions: Overcoming Negative Externalities. Energ. Proc. CIS High. Educ. Inst. Power Eng. Assoc. 2020, 63, 312–327. [Google Scholar] [CrossRef]
- Schwanitz, V.J. The Sustainable Energy Transition—A Critical View on the Monitoring of SDG. In Paradigms, Models, Scenarios and Practices for Strong Sustainability; Editions Oeconomia: Paris, France, 2020; pp. 51–60. [Google Scholar]
- Rösch, C.; Bräutigam, K.-R.; Kopfmüller, J.; Stelzer, V.; Fricke, A. Sustainability assessment of the German energy transition. Energy Sustain. Soc. 2018, 8, 12. [Google Scholar] [CrossRef]
- Nikas, A.; Neofytou, H.; Karamaneas, A.; Koasidis, K.; Psarras, J. Sustainable and socially just transition to a post-lignite era in Greece: A multi-level perspective. Energy Sources Part B Econ. Plan. Policy 2020, 15, 513–544. [Google Scholar] [CrossRef]
- Azzuni, A.; Breyer, C. Global Energy Security Index and Its Application on National Level. Energies 2020, 13, 2502. [Google Scholar] [CrossRef]
- Muniz, R.N.; Stefenon, S.F.; Buratto, W.G.; Nied, A.; Meyer, L.H.; Finardi, E.C.; Kühl, R.M.; De Sá, J.A.S.; Da Rocha, B.R.P. Tools for Measuring Energy Sustainability: A Comparative Review. Energies 2020, 13, 2366. [Google Scholar] [CrossRef]
- Phillis, A.; Grigoroudis, E.; Kouikoglou, V.S. Assessing national energy sustainability using multiple criteria decision analysis. Int. J. Sustain. Dev. World Ecol. 2020, 28, 18–35. [Google Scholar] [CrossRef]
- Kouikoglou, V.S.; Grigoroudis, E.; Phillis, Y.A. National Energy Sustainability and Ranking of Countries. Energy Syst. Eval. 2021, 2, 63–101. [Google Scholar] [CrossRef]
- Gunnarsdottir, I.; Davidsdottir, B.; Worrell, E.; Sigurgeirsdottir, S. Review of indicators for sustainable energy development. Renew. Sustain. Energy Rev. 2020, 133, 110294. [Google Scholar] [CrossRef]
- Razmjoo, A.A.; Sumper, A.; Davarpanah, A. Development of sustainable energy indexes by the utilization of new indicators: A comparative study. Energy Rep. 2019, 5, 375–383. [Google Scholar] [CrossRef]
- Ligus, M.; Peternek, P. The Sustainable Energy Development Index—An Application for European Union Member States. Energies 2021, 14, 1117. [Google Scholar] [CrossRef]
- Eurostat, Sustainable Development in the European Union. Monitoring Report on Progress Towards the SDGs in an EU Context 2020 Edition. 2021. Available online: https://ec.europa.eu/eurostat/web/products-statistical-books/-/ks-02-20-202 (accessed on 7 December 2021).
- International Renewable Energy Agency (IRENA) Accelerating the Energy Transition through Innovation. 2017. Available online: https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2017/Jun/IRENA_Energy_Transition_Innovation_2017.pdf (accessed on 5 October 2021).
- Musiał, W.; Zioło, M.; Luty, L.; Musiał, K. Energy Policy of European Union Member States in the Context of Renewable Energy Sources Development. Energies 2021, 14, 2864. [Google Scholar] [CrossRef]
- Moreau, V.; Vuille, F. Decoupling energy use and economic growth: Counter evidence from structural effects and embodied energy in trade. Appl. Energy 2018, 215, 54–62. [Google Scholar] [CrossRef]
- Chovancová, J.; Vavrek, R. Decoupling analysis of energy consumption and economic growth of v4 countries. Probl. Ekorozw. 2019, 14, 159–165. [Google Scholar]
- Papież, M.; Śmiech, S.; Frodyma, K. The role of energy policy on the decoupling processes in the European Union countries. J. Clean. Prod. 2021, 318, 128484. [Google Scholar] [CrossRef]
- World Economic Forum (WEF). Agenda of WEF. 2021. Available online: https://www.weforum.org/agenda/ (accessed on 1 September 2021).
- Lund, P.D.; Skytte, K.; Bolwig, S.; Bolkesjö, T.F.; Bergaentzlé, C.; Gunkel, P.A.; Kirkerud, J.G.; Klitkou, A.; Koduvere, H.; Gravelsins, A.; et al. Pathway Analysis of a Zero-Emission Transition in the Nordic-Baltic Region. Energies 2019, 12, 3337. [Google Scholar] [CrossRef] [Green Version]
- Ram, M.; Child, M.; Aghahosseini, A.; Bogdanov, D.; Lohrmann, A.; Breyer, C. A comparative analysis of electricity generation costs from renewable, fossil fuel and nuclear sources in G20 countries for the period 2015–2030. J. Clean. Prod. 2018, 199, 687–704. [Google Scholar] [CrossRef]
- Krepl, V.; Shaheen, H.I.; Fandi, G.; Smutka, L.; Muller, Z.; Tlustý, J.; Husein, T.; Ghanem, S. The Role of Renewable Energies in the Sustainable Development of Post-Crisis Electrical Power Sectors Reconstruction. Energies 2020, 13, 6326. [Google Scholar] [CrossRef]
- European Commission. Green New Deal. 2019. Available online: https://ec.europa.eu/info/strategy/priorities-2019-2024/european-green-deal_en (accessed on 7 December 2021).
- Ugarte, S.; Van Der Ree, B.; Voogt, M.; Eichhammer, W.; Ordoñez, J.A.; Matthias, R.; Schlomann, B.; Lloret, P.; Villafáfila, R. Energy Efficiency for Low-Income Households. 2016. Available online: https://upcommons.upc.edu/handle/2117/100956 (accessed on 18 October 2021).
- Flachsbarth, F.; Wingenbach, M.; Koch, M. Addressing the Effect of Social Acceptance on the Distribution of Wind Energy Plants and the Transmission Grid in Germany. Energies 2021, 14, 4824. [Google Scholar] [CrossRef]
- Segreto, M.; Principe, L.; Desormeaux, A.; Torre, M.; Tomassetti, L.; Tratzi, P.; Paolini, V.; Petracchini, F. Trends in Social Acceptance of Renewable Energy Across Europe—A Literature Review. Int. J. Environ. Res. Public Health 2020, 17, 9161. [Google Scholar] [CrossRef] [PubMed]
- Eurostat, Sustainable Development Indicators. 2021. Available online: https://ec.europa.eu/eurostat/web/sdi/main-tables (accessed on 7 December 2021).
- Reike, D.; Vermeulen, W.J.V.; Witjes, S. The circular economy: New or Refurbished as CE 3.0?—Exploring Controversies in the Conceptualization of the Circular Economy through a Focus on History and Resource Value Retention Options. Resour. Conserv. Recycl. 2018, 135, 246–264. [Google Scholar] [CrossRef]
- Chen, W.-M.; Kim, H. Circular economy and energy transition: A nexus focusing on the non-energy use of fuels. Energy Environ. 2019, 30, 586–600. [Google Scholar] [CrossRef]
- Su, C.; Urban, F. Circular economy for clean energy transitions: A new opportunity under the COVID-19 pandemic. Appl. Energy 2021, 289, 116666. [Google Scholar] [CrossRef]
- Wiseman, J. The great energy transition of the 21st century: The 2050 Zero-Carbon World Oration. Energy Res. Soc. Sci. 2017, 35, 227–232. [Google Scholar] [CrossRef]
- Taghizadeh-Hesary, F.; Rasoulinezhad, E. Analyzing Energy Transition Patterns in Asia: Evidence from Countries with Different Income Levels. Front. Energy Res. 2020, 8. [Google Scholar] [CrossRef]
- Sovacool, B.K. How long will it take? Conceptualizing the temporal dynamics of energy transitions. Energy Res. Soc. Sci. 2016, 13, 202–215. [Google Scholar] [CrossRef] [Green Version]
- Marinaș, M.-C.; Dinu, M.; Socol, A.-G.; Socol, C. Renewable energy consumption and economic growth. Causality relationship in Central and Eastern European countries. PLoS ONE 2018, 13, e0202951. [Google Scholar] [CrossRef] [Green Version]
- Apergis, N.; Payne, J.E. Renewable energy consumption and economic growth: Evidence from a panel of OECD countries. Energy Policy 2010, 38, 656–660. [Google Scholar] [CrossRef]
- Sineviciene, L.; Sotnyk, I.; Kubatko, O. Determinants of energy efficiency and energy consumption of Eastern Europe post-communist economies. Energy Environ. 2017, 28, 870–884. [Google Scholar] [CrossRef]
- International Renewable Energy Agency (IRENA) Global Energy Transformation: A roadmap to 2050. 2019. Available online: https://www.irena.org/publications/2019/Apr/Global-energy-transformation-A-roadmap-to-2050-2019Edition (accessed on 5 October 2021).
- Ganda, F. The impact of innovation and technology investments on carbon emissions in selected organisation for economic Co-operation and development countries. J. Clean. Prod. 2019, 217, 469–483. [Google Scholar] [CrossRef]
- Jin, L.; Duan, K.; Shi, C.; Ju, X. The Impact of Technological Progress in the Energy Sector on Carbon Emissions: An Empirical Analysis from China. Int. J. Environ. Res. Public Health 2017, 14, 1505. [Google Scholar] [CrossRef] [Green Version]
- Shao, X.; Zhong, Y.; Li, Y.; Altuntaş, M. Does environmental and renewable energy R&D help to achieve carbon neutrality target? A case of the US economy. J. Environ. Manag. 2021, 296, 113229. [Google Scholar] [CrossRef]
- Chodkowska-Miszczuk, J.; Kola-Bezka, M.; Lewandowska, A.; Martinát, S. Local Communities’ Energy Literacy as a Way to Rural Resilience—An Insight from Inner Peripheries. Energies 2021, 14, 2575. [Google Scholar] [CrossRef]
- Van den Broek, K.L. Household energy literacy: A critical review and a conceptual typology. Energy Res. Soc. Sci. 2019, 57, 101256. [Google Scholar] [CrossRef]
- Motz, A. Consumer acceptance of the energy transition in Switzerland: The role of attitudes explained through a hybrid discrete choice model. Energy Policy 2021, 151, 112152. [Google Scholar] [CrossRef]
- Kic, P. Role of Universities in Relation and Strategy of Sustainable Development Goals. Agric. Mech. Asia Afr. Lat. Am. 2020, 51, 77–82. [Google Scholar]
- Nguyen, T.T.; Nguyen, T.-T.; Hoang, V.-N.; Wilson, C.; Managi, S. Energy transition, poverty and inequality in Vietnam. Energy Policy 2019, 132, 536–548. [Google Scholar] [CrossRef]
- Schlesewsky, L.; Winter, S. Inequalities in energy transition: The case of network charges in Germany. Int. J. Energy Econ. Policy 2018, 8, 102. [Google Scholar] [CrossRef]
- Mujtaba, G.; Shahzad, S.J.H. Air pollutants, economic growth and public health: Implications for sustainable development in OECD countries. Environ. Sci. Pollut. Res. 2020, 28, 12686–12698. [Google Scholar] [CrossRef]
- OECD. Enhancing Equal Access to Opportunities for all in G20 Countries, 2020. Available online: https://www.oecd.org/economy/enhancing-equal-access-to-opportunities-g20/ (accessed on 7 October 2021).
- Hamanaka, R.B.; Mutlu, G.M. Particulate Matter Air Pollution: Effects on the Cardiovascular System. Front. Endocrinol. 2018, 9, 680. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kuc-Czarnecka, M.; Piano, S.L.; Saltelli, A. Quantitative Storytelling in the Making of a Composite Indicator. Soc. Indic. Res. 2020, 149, 775–802. [Google Scholar] [CrossRef] [Green Version]
- Murtagh, F.; Legendre, P. Ward’s Hierarchical Agglomerative Clustering Method: Which Algorithms Implement Ward’s Criterion? J. Classif. 2014, 31, 274–295. [Google Scholar] [CrossRef] [Green Version]
- Ward, J.H. Hierarchical grouping to optimize an objective function. J. Am. Stat. Assoc. 1963, 58, 236–244. [Google Scholar] [CrossRef]
- Murtagh, F. Ward’s Hierarchical Clustering Method: Clustering Criterion and Agglomerative Algorithm. arXiv 2011, arXiv:1111.6285. [Google Scholar]
- Kaufman, L.; Rousseeuw, P.J. Finding Groups in Data: An Introduction to Cluster Analysis; Wiley Series in Probability and Statistics; Wiley & Sons: Hoboken, NJ, USA, 1990; ISBN 9780471878766. [Google Scholar] [CrossRef]
- Kruskal, W.H.; Wallis, W.A. Use of ranks in one-criterion variance analysis. J. Am. Stat. Assoc. 1952, 47, 583–621. [Google Scholar] [CrossRef]
- McHugh, M.L. The Chi-square test of independence. Biochem. Med. 2013, 23, 143–149. [Google Scholar] [CrossRef] [Green Version]
- Dreher, A. Does globalization affect growth? Evidence from a new index of globalization. Appl. Econ. 2006, 38, 1091–1110. [Google Scholar] [CrossRef] [Green Version]
- Simionescu, M.; Lazányi, K.; Sopková, G.; Dobeš, K.; Balcerzak, A.P. University of Economics in Bratislava Determinants of Economic Growth in V4 Countries and Romania. J. Compet. 2017, 9, 103–116. [Google Scholar] [CrossRef] [Green Version]
- Skare, M.; Porada-Rochoń, M. Financial and economic development link in transitional economies: A spectral Granger causality analysis 1991–2017. Oeconomia Copernic. 2019, 10, 7–35. [Google Scholar] [CrossRef]
- Balcerzak, A.P. Quality of Institutions in the European Union countries. Application of TOPSIS Based on Entropy Measure for Objective Weighting. Acta Polytech. Hung. 2020, 17, 101–122. [Google Scholar] [CrossRef]
- Jankiewicz, M.; Pietrzak, M.B. Assesment of Trends in the Share of Expenditure on Services and Food in the Visegrad Group Member States. Int. J. Bus. Soc. 2020, 21, 977–996. [Google Scholar] [CrossRef]
- Ellabban, O.; Abu-Rub, H.; Blaabjerg, F. Renewable energy resources: Current status, future prospects and their enabling technology. Renew. Sustain. Energy Rev. 2014, 39, 748–764. [Google Scholar] [CrossRef]
- Carley, S.; Konisky, D.M. The justice and equity implications of the clean energy transition. Nat. Energy 2020, 5, 569–577. [Google Scholar] [CrossRef]
- Oehlmann, M.; Meyerhoff, J. Stated preferences towards renewable energy alternatives in Germany—Do the consequentiality of the survey and trust in institutions matter? J. Environ. Econ. Policy 2016, 6, 1–16. [Google Scholar] [CrossRef]
- Rogers, J.; Simmons, E.; Convery, I.; Weatherall, A. Public perceptions of opportunities for community-based renewable energy projects. Energy Policy 2008, 36, 4217–4226. [Google Scholar] [CrossRef] [Green Version]
- Zoellner, J.; Schweizer-Ries, P.; Wemheuer, C. Public acceptance of renewable energies: Results from case studies in Germany. Energy Policy 2008, 36, 4136–4141. [Google Scholar] [CrossRef]
Variable | Description | Type * | Symbol |
---|---|---|---|
Investment | |||
Investment share of GDP (total investment) | Defined as gross fixed capital formation (GFCF) expressed as a percentage of GDP for the government, business, and household sectors. | S | X10 |
Innovation | |||
Gross domestic expenditure on R&D | The indicator measures gross domestic expenditure on R&D (GERD) as a percentage of the gross domestic product (GDP). | S | X11 |
R&D personnel | The indicator measures the share of R&D personnel. Data are presented in full-time equivalents as a share of the economically active population. | S | X12 |
Education and Income Household | |||
Tertiary educational attainment | The indicator measures the share of the population aged 25–34 who have successfully completed tertiary studies. | S | X13 |
Adjusted gross disposable income of households per capita | The indicator reflects households’ purchasing power and ability to invest in goods and services or save for the future by accounting for taxes and social contributions and monetary in-kind social benefits. | S | X14 |
Dirtiness of Economy | |||
Air emission intensity from industry | This indicator measures the emissions intensity of fine particulate matter (PM2.5). | D | X15 |
Average CO2 emissions per km from new passenger cars | The indicator is defined as the average carbon dioxide (CO2) emissions per km by new passenger cars in a given year. | D | X16 |
Variable | Min | Max | Mean | Median | S.D. | C.V. | As |
---|---|---|---|---|---|---|---|
X1 | 0.25 | 1.39 | 0.78 | 0.74 | 0.38 | 0.49 | 0.37 |
X2 | 5.53 | 19.63 | 9.20 | 8.45 | 2.93 | 0.32 | 2.09 |
X3 | 63.10 | 102.60 | 81.82 | 80.95 | 8.87 | 0.11 | 0.19 |
X4 | 8.77 | 56.39 | 23.96 | 20.62 | 11.86 | 0.50 | 1.06 |
X5 | 4.83 | 77.48 | 55.68 | 60.47 | 19.27 | 0.35 | −0.81 |
X6 | 1.80 | 30.10 | 7.91 | 5.15 | 7.82 | 0.99 | 1.81 |
X7 | 1.30 | 30.00 | 9.66 | 7.20 | 7.46 | 0.77 | 1.28 |
X8 | 0.02 | 7.36 | 0.53 | 0.21 | 1.47 | 2.79 | 4.78 |
X9 | 0.88 | 5.68 | 2.42 | 2.21 | 1.16 | 0.48 | 1.42 |
X10 | 10.14 | 45.60 | 22.64 | 21.59 | 6.09 | 0.27 | 2.10 |
X11 | 0.48 | 3.40 | 1.76 | 1.47 | 0.90 | 0.51 | 0.49 |
X12 | 0.36 | 2.12 | 1.32 | 1.32 | 0.48 | 0.36 | −0.18 |
X13 | 25.50 | 55.40 | 41.33 | 42.60 | 8.04 | 0.19 | −0.24 |
X14 | 10,875.00 | 30,142.00 | 20,872.79 | 19,952.00 | 5094.83 | 0.24 | 0.09 |
X15 | 0.02 | 0.88 | 0.18 | 0.08 | 0.24 | 1.31 | 2.24 |
X16 | 98.40 | 137.60 | 122.41 | 122.60 | 9.26 | 0.08 | −0.61 |
ISO | X1 | X2 | X3 | X4 | X5 |
---|---|---|---|---|---|
SE | 1.38 | 7.39 | 68.30 | 56.39 | 30.24 |
EE | 1.36 | 6.91 | 79.70 | 31.89 | 4.83 |
FI | 1.22 | 5.53 | 69.60 | 43.08 | 42.09 |
MEAN | 1.32 | 6.61 | 72.53 | 43.78 | 25.72 |
ISO | X6 | X7 | X8 | X9 | - |
SE | 1.90 | 6.50 | 0.21 | 2.08 | - |
EE | 2.50 | 15.60 | 7.36 | 4.45 | - |
FI | 1.80 | 6.30 | 0.47 | 5.68 | - |
MEAN | 2.00 | 9.46 | 2.68 | 4.07 | - |
ISO | X1 | X2 | X3 | X4 | X5 | X6 | X7 | X8 | X9 |
---|---|---|---|---|---|---|---|---|---|
IE | 0.47 | 19.63 | 79.6 | 11.98 | 68.4 | 4.90 | 1.60 | 0.33 | 0.88 |
BE | 1.16 | 6.50 | 84.6 | 9.92 | 76.68 | 3.90 | 24.20 | 0.31 | 0.94 |
HU | 0.61 | 8.34 | 77.3 | 12.61 | 69.70 | 5.40 | 6.80 | 0.11 | 1.11 |
SK | 0.88 | 7.01 | 77.7 | 16.89 | 69.76 | 7.80 | 6.40 | 0.29 | 1.47 |
SL | 0.80 | 8.36 | 89.8 | 21.97 | 52.14 | 2.30 | 11.40 | 0.72 | 1.6 |
FR | 1.34 | 8.81 | 79.5 | 17.22 | 47.60 | 6.20 | 20.00 | 0.02 | 1.62 |
IT | 0.51 | 11.38 | 82.2 | 18.18 | 77.48 | 11.10 | 19.50 | 0.03 | 1.87 |
DE | 0.82 | 10.16 | 87.2 | 17.35 | 67.61 | 2.50 | 12.30 | 0.02 | 1.96 |
PL | 0.71 | 8.37 | 85.9 | 12.16 | 46.82 | 4.20 | 10.30 | 0.06 | 2.21 |
ES | 0.73 | 9.95 | 79.7 | 18.36 | 74.96 | 7.50 | 10.00 | 0.03 | 2.22 |
NL | 0.78 | 7.88 | 92.6 | 8.77 | 64.72 | 3.00 | 30.00 | 0.15 | 2.25 |
CZ | 1.39 | 7.17 | 73.6 | 16.24 | 40.89 | 2.80 | 8.30 | 0.15 | 2.30 |
MEAN | 0.85 | 9.46 | 82.48 | 15.13 | 63.06 | 5.13 | 13.4 | 0.19 | 1.70 |
ISO | X1 | X2 | X3 | X4 | X5 | X6 | X7 | X8 | X9 |
---|---|---|---|---|---|---|---|---|---|
HR | 0.32 | 9.37 | 86.60 | 28.47 | 56.22 | 6.60 | 5.20 | 0.22 | 1.45 |
LV | 0.25 | 8.32 | 83.80 | 40.98 | 43.96 | 8.00 | 4.30 | 0.36 | 2.53 |
RO | 0.42 | 12.68 | 85.70 | 24.29 | 30.37 | 9.30 | 1.30 | 0.06 | 3.00 |
DK | 0.43 | 13.05 | 63.10 | 37.20 | 38.78 | 2.80 | 7.60 | 0.31 | 3.19 |
AT | 0.45 | 10.08 | 83.90 | 33.63 | 71.73 | 1.80 | 11.50 | 0.21 | 4.30 |
MEAN | 0.37 | 10.7 | 80.62 | 32.91 | 48.21 | 5.70 | 5.98 | 0.23 | 2.89 |
ISO | X1 | X2 | X3 | X4 | X5 | X6 | X7 | X8 | X9 |
---|---|---|---|---|---|---|---|---|---|
GR | 0.75 | 8.53 | 74.90 | 19.68 | 74.11 | 17.90 | 4.20 | 0.14 | 0.84 |
BG | 1.20 | 6.09 | 97.10 | 21.56 | 38.10 | 30.10 | 2.30 | 0.44 | 1.90 |
LI | 0.26 | 9.10 | 102.60 | 25.46 | 75.22 | 26.70 | 3.90 | 0.50 | 2.20 |
PT | 0.48 | 10.24 | 78.60 | 30.62 | 73.85 | 18.90 | 2.30 | 0.13 | 2.28 |
MEAN | 0.67 | 8.49 | 88.30 | 24.33 | 65.32 | 23.40 | 3.17 | 0.30 | 1.81 |
Test Chi-Squared | X1 | X2 | X3 | X4 | X5 | X6 | X7 | X8 | X9 |
---|---|---|---|---|---|---|---|---|---|
Statistics | 13.891 | 6936 | 3584 | 18.212 | 8657 | 13.270 | 9502 | 5112 | 8169 |
p-Value | 0.003 | 0.074 | 0.310 | 0.0004 | 0.034 | 0.004 | 0.023 | 0.163 | 0.042 |
ISO | X10 | X11 | X12 | X13 | X14 | X15 | X16 |
---|---|---|---|---|---|---|---|
BE | 24.16 | 2.89 | 1.91 | 47.30 | 27,082 | 0.07 | 121.5 |
DK | 21.30 | 2.91 | 2.12 | 47.10 | 25,754 | 0.02 | 111.9 |
DE | 21.69 | 3.18 | 1.73 | 33.30 | 30,142 | 0.02 | 131.2 |
IE | 45.60 | 0.78 | 1.58 | 55.40 | 22,541 | 0.02 | 114.00 |
FR | 23.63 | 2.19 | 1.59 | 48.20 | 26,158 | 0.06 | 113.7 |
NL | 21.25 | 2.16 | 1.78 | 49.10 | 26,842 | 0.05 | 98.40 |
AT | 24.68 | 3.19 | 1.87 | 41.60 | 28,177 | 0.02 | 125.5 |
FI | 23.74 | 2.79 | 1.93 | 42.00 | 25,912 | 0.09 | 115.30 |
SE | 24.41 | 3.40 | 1.72 | 48.40 | 25,004 | 0.06 | 119.70 |
MEAN | 25.61 | 2.61 | 1.80 | 45.82 | 26,401.30 | 0.04 | 116.8 |
ISO | X10 | X11 | X12 | X13 | X14 | X15 | X16 |
---|---|---|---|---|---|---|---|
BG | 18.52 | 0.84 | 0.81 | 32.70 | 10,875 | 0.27 | 137.60 |
CZ | 27.07 | 1.94 | 1.51 | 32.60 | 20,106 | 0.04 | 128.70 |
EE | 26.21 | 1.61 | 0.97 | 42.80 | 17,786 | 0.44 | 130.10 |
GR | 10.14 | 1.27 | 1.18 | 42.40 | 15,904 | 0.25 | 115.60 |
ES | 19.87 | 1.25 | 1.01 | 46.50 | 20,346 | 0.10 | 121.30 |
HR | 21.02 | 1.11 | 0.82 | 35.50 | 14,969 | 0.19 | 119.40 |
IT | 17.96 | 1.45 | 1.41 | 27.70 | 23,003 | 0.06 | 119.40 |
LV | 22.19 | 0.64 | 0.64 | 43.80 | 15,519 | 0.88 | 127.90 |
LI | 21.37 | 1.00 | 0.92 | 55.20 | 19,798 | 0.04 | 132.00 |
HU | 27.12 | 1.48 | 1.24 | 30.60 | 15,896 | 0.09 | 131.80 |
PL | 18.52 | 1.32 | 0.99 | 43.50 | 17,306 | 0.32 | 132.00 |
PT | 18.15 | 1.40 | 1.23 | 37.40 | 19,628 | 0.87 | 109.40 |
RO | 23.63 | 0.48 | 0.36 | 25.50 | 16,608 | 0.22 | 124.30 |
SL | 19.64 | 2.04 | 1.67 | 44.10 | 19,548 | 0.14 | 123.70 |
SK | 21.49 | 0.83 | 0.78 | 39.20 | 16,043 | 0.06 | 133.40 |
MEAN | 20.86 | 1.244 | 1.04 | 38.63 | 17,555.70 | 0.26 | 125.77 |
Test Chi-Squared | X10 | X11 | X12 | X13 | X14 | X15 | X16 |
---|---|---|---|---|---|---|---|
Statistics | 3875 | 10.561 | 15.254 | 5270 | 15.724 | 9337 | 5004 |
p-Value | 0.049 | 0.001 | 0.0001 | 0.021 | 0.001 | 0.002 | 0.025 |
Variable | Cluster 1 | Cluster 2 | Cluster 3 | Cluster 4 | Variable | Cluster 1 | Cluster 2 | Cluster 3 | Cluster 4 |
---|---|---|---|---|---|---|---|---|---|
X1 | 0.53 | 0.76 | 0.91 | 1.10 | X9 | 2.03 | 1.71 | 2.21 | 3.85 |
X2 | 9.19 | 10.03 | 8.69 | 8.22 | X10 | 19.29 | 24.66 | 23.08 | 23.92 |
X3 | 87.04 | 80.73 | 85.56 | 70.18 | X11 | 0.96 | 1.39 | 2.72 | 2.68 |
X4 | 27.29 | 16.05 | 17.38 | 42.14 | X12 | 0.85 | 1.27 | 1.78 | 1.69 |
X5 | 55.98 | 62.52 | 65.67 | 28.99 | X13 | 38.93 | 39.95 | 43.90 | 45.08 |
X6 | 16.79 | 5.75 | 3.48 | 2.25 | X14 | 16,185.86 | 19,348.63 | 27,680.20 | 23,614.00 |
X7 | 3.36 | 9.29 | 19.60 | 9.00 | X15 | 0.39 | 0.10 | 0.04 | 0.15 |
X8 | 0.26 | 0.22 | 0.14 | 2.09 | X16 | 123.74 | 125.54 | 118.06 | 119.25 |
Test Chi-Squared | X1 | X2 | X3 | X4 | X5 | X6 | X7 | X8 |
---|---|---|---|---|---|---|---|---|
Statistics | 8894 | 2202 | 2585 | 9424 | 4452 | 16.140 | 14.337 | 1284 |
p-value | 0.031 | 0.532 | 0.460 | 0.024 | 0.217 | 0.001 | 0.003 | 0.733 |
Test Chi-Squared | X9 | X10 | X11 | X12 | X13 | X14 | X15 | X16 |
Statistics | 3805 | 5063 | 16.614 | 14.929 | 3894 | 15.362 | 7958 | 4062 |
p-Value | 0.283 | 0.167 | 0.001 | 0.002 | 0.273 | 0.015 | 0.047 | 0.2548 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pietrzak, M.B.; Olczyk, M.; Kuc-Czarnecka, M.E. Assessment of the Feasibility of Energy Transformation Processes in European Union Member States. Energies 2022, 15, 661. https://doi.org/10.3390/en15020661
Pietrzak MB, Olczyk M, Kuc-Czarnecka ME. Assessment of the Feasibility of Energy Transformation Processes in European Union Member States. Energies. 2022; 15(2):661. https://doi.org/10.3390/en15020661
Chicago/Turabian StylePietrzak, Michał Bernard, Magdalena Olczyk, and Marta Ewa Kuc-Czarnecka. 2022. "Assessment of the Feasibility of Energy Transformation Processes in European Union Member States" Energies 15, no. 2: 661. https://doi.org/10.3390/en15020661
APA StylePietrzak, M. B., Olczyk, M., & Kuc-Czarnecka, M. E. (2022). Assessment of the Feasibility of Energy Transformation Processes in European Union Member States. Energies, 15(2), 661. https://doi.org/10.3390/en15020661