Improvements to and Experimental Validation of PI Controllers Using a Reference Bias Control Algorithm for Wind Turbines
Abstract
:1. Introduction
2. Target Wind Turbine Model
3. Controller Design
3.1. Reference Bias Control Algorithm
3.2. MPPT Control with a Torque Limiter
3.3. PI Control Algorithm
4. Controller Validation
4.1. Hardware in the Loop Simulator
4.2. Wind Tunnel Testing
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Nomenclature
Symbols | |
Reference generator speed for DPPT control | |
Rated generator speed | |
Power command | |
Optimal torque gain at generator | |
Measured power | |
Rated power | |
Reference bias at pitch control | |
Reference bias at torque control | |
Reference generator speed | |
Reference generator torque for DPPT control | |
Rated generator torque | |
Upper limit of generator torque for DPPT control | |
Measured generator speed | |
Lower limit of generator torque | |
Lower limit of generator torque for DPPT control | |
Proportional gain | |
Integral gain |
References
- Manwell, J.F.; Mcgowan, J.G.; Rogers, A.L. Wind Energy Explained, 2nd ed.; John Wiley & Sons Ltd.: Hoboken, NJ, USA, 2009. [Google Scholar]
- Bossanyi, E.A. The design of closed loop controllers for wind turbines. Wind Energy 2000, 3, 149–163. [Google Scholar] [CrossRef]
- Nam, Y. Wind Turbine System Control, 1st ed.; GS Intervision: Seoul, Korea, 2013. [Google Scholar]
- Bianchi, F.; De Battista, H.; Mantz, R. Wind Turbine Control Systems: Principles, Modelling and Gain Scheduling Design; Springer Verlag: London, UK, 2007. [Google Scholar]
- Nam, Y.; Kim, J.; Paek, I.; Mun, Y.; Kim, S.; Kim, D. Feedforward pitch control using wind speed estimation. J. Power Electron. 2011, 11, 211–217. [Google Scholar] [CrossRef] [Green Version]
- Dixit, A.; Suryanarayanan, S. Towards pitch-scheduled drive train damping in variable-speed, horizontal-axis large wind turbines. In Proceedings of the 44th IEEE Conference on Decision and Control, Seville, Spain, 12–15 December 2005; pp. 1295–1300. [Google Scholar]
- Kim, K.; Kim, H.-G.; Paek, I. Application and Validation of Peak Shaving to Improve Performance of a 100 KW Wind Turbine. Int. J. Precis. Eng. Manuf. Green Tech. 2020, 7, 411–421. [Google Scholar] [CrossRef]
- Bossanyi, E.A. Wind turbine control for load reduction. Wind Energy 2003, 6, 229–244. [Google Scholar] [CrossRef]
- Pham, T.; Nam, Y.; Kim, H.; Son, J. LQR control for a multi-MW wind turbine. World Acad. Sci. Eng. Technol. 2012, 62, 670–675. [Google Scholar]
- Jeon, T.; Paek, I. Design and Verification of the LQR Controller Based on Fuzzy Logic for Large Wind Turbine. Energies 2021, 14, 230. [Google Scholar] [CrossRef]
- Jeon, T.; Kim, D.; Song, Y.; Paek, I. Design and Validation of Demanded Power Point Tracking Control Algorithm for MIMO Cpontrollers in Wind Turbines. Energies 2021, 14, 5818. [Google Scholar] [CrossRef]
- Barcena, R.; Acosta, T.; Etxebarria, A.; Kortabarria, I. Wind Turbine Structural Load Reduction by Linear Single Model Predictive Control. IEEE Access 2020, 8, 98395–98409. [Google Scholar] [CrossRef]
- de Corcuera, A.D.; Pujana-Arrese, A.; Ezquerra, J.M.; Segurola, E.; Landaluze, J. H∞ Based Control for Load Mitigation in Wind Turbines. Energies 2012, 5, 938–967. [Google Scholar] [CrossRef] [Green Version]
- Ruz, M.L.; Garrido, J.; Fragoso, S.; Vazquez, F. Improvement of Small Wind turbine Control in the Transition Region. Energies 2020, 8, 244. [Google Scholar] [CrossRef] [Green Version]
- Zalkind, D.S.; Nicotra, M.M.; Pao, L.Y. Constrained power reference control for wind turbines. Wind Energy 2022, 25, 914–934. [Google Scholar] [CrossRef]
- Pao, L.; Johnson, K. A Tutorial on the Dynamics and Control of Wind turbines and Wind Farms. In Proceedings of the American Control Conference, Boulder, CO, USA, 10–12 June 2009; pp. 2076–2089. [Google Scholar]
- Kim, K.; Kim, H.-G.; Song, Y.; Paek, I. Design and Simulation of an LQR-PI Control Algorithm for Medium Wind Turbine. Energies 2019, 12, 2248. [Google Scholar] [CrossRef] [Green Version]
- Abbas, N.J.; Zalkind, D.S.; Pao, L.; Wright, A. A reference open-source controller for fixed and floating offshore wind turbines. Wind Energy Sci. 2022, 7, 53–73. [Google Scholar] [CrossRef]
- Zalkind, D.S.; Pao, L.Y. Constrained for wind turbine power control. In Proceedings of the American Control Conference, Philadelphia, PA, USA, 10–12 July 2019; pp. 3494–3499. [Google Scholar]
- Jonkman, J.; Butterfield, S.; Musial, W.; Scott, G. Definition of a 5-MW Reference Wind Turbine for Offshore System Development; NREL/TP-500-38060; National Renewable Energy Lab. (NREL): Golden, CO, USA, 2009. [Google Scholar]
- DNV. Bladed Hardware Test Module User Manual; Version 3.0; Garrad Hassan & Partners Ltd.: Bristol, UK, 2021. [Google Scholar]
- International Electrotechnical Commission. IEC 61400-1 Wind Energy Generation Systems—Part 1: Design Requirements, 4th ed.; International Electrotechnical Commission: Geneva, Switzerland, 2019. [Google Scholar]
- Campagnolo, F.; Petrovic, V.; Nanos, E.M.; Tan, C.W.; Bottasso, C.L.; Paek, I.; Kim, H.; Kim, K. Wind tunnel testing of power maximization control strategies applied to a multi-turbine floating wind power platform. In Proceedings of the 26th International Ocean and Polar Engineering Conference, ISOPE-I-16-307, Rhodes, Greece, 26 June–1 July 2016. [Google Scholar]
Parameter | Unit | Value |
---|---|---|
Rating | MW | 5 |
Rated Rotor Speed | rpm | 12.1 |
Rated Generator Torque | kNm | 43.1 |
Gear Ratio | - | 97 |
Wind Turbine Site Class | - | Class 1A |
Rotor Diameter | m | 126 |
Hub Height | m | 90 |
Cut-in/Rated/Cut-out Wind Speed | m/s | 3/11.4/25 |
Operating Region | Hardware in the Loop Simulator | Control Performance for NREL 5MW Wind Turbine | ||||
---|---|---|---|---|---|---|
Mean | Std. Dev. | DEL | ||||
Transition Region | Baseline PI (A) | 12.080 | 4.923 | 0.180 | 0.300 | 0.893 |
RBC PI (B) | 12.091 | 4.915 | 0.144 | 0.291 | 0.762 | |
(B-A)/A (%) | 0.094 | −0.168 | −19.716 | −2.861 | −14.737 | |
Rated Power Region | Baseline PI (C) | 12.103 | 5.001 | 0.181 | 0.076 | 1.344 |
RBC PI (D) | 12.101 | 5.003 | 0.140 | 0.060 | 1.312 | |
(D-C)/C (%) | −0.021 | 0.030 | −22.402 | −21.351 | −2.342 |
Operating Region | Wind Tunnel Testing | Control Performance for Scaled Wind Turbine Model | ||||
---|---|---|---|---|---|---|
Mean | Std. Dev. | DEL | ||||
Transition Region | Baseline PI (A) | 680.333 | 39.765 | 19.539 | 1.398 | 2.171 |
RBC PI (B) | 681.669 | 39.643 | 14.942 | 1.241 | 1.567 | |
(B-A)/A (%) | 0.196 | −0.307 | −23.527 | −11.230 | −27.803 | |
Rated Power Region | Baseline PI (C) | 677.813 | 39.722 | 24.186 | 1.436 | 0.000 |
RBC PI (D) | 681.690 | 39.753 | 16.953 | 1.017 | 0.000 | |
(D-C)/C (%) | 0.572 | 0.078 | −29.906 | −29.178 | 0.000 |
Operating Region | HILS Testing | Control Performance for Scaled Wind Turbine Model | ||||
---|---|---|---|---|---|---|
Mean | Std. Dev. | DEL | ||||
Transition Region | Baseline PI (A) | 680.492 | 39.583 | 30.846 | 2.340 | 3.312 |
RBC PI (B) | 676.270 | 39.027 | 19.498 | 2.008 | 2.127 | |
(B-A)/A (%) | −0.620 | −1.405 | −36.789 | −14.188 | −35.779 | |
Rated Power Region | Baseline PI (C) | 677.152 | 39.663 | 34.164 | 2.001 | 0.000 |
RBC PI (D) | 677.307 | 39.665 | 23.900 | 1.407 | 0.000 | |
(D-C)/C (%) | 0.023 | 0.005 | −30.043 | −29.685 | 0.000 |
Operating Region | HILS Testing | Control Performance for NREL 5 MW Wind Turbine | ||||
---|---|---|---|---|---|---|
Mean | Std. Dev. | DEL | ||||
Transition Region | Baseline PI (A) | 12.024 | 4.785 | 0.201 | 0.511 | 1.231 |
SPS PI (B) | 12.595 | 4.753 | 0.195 | 0.510 | 0.989 | |
RBC PI (C) | 12.430 | 4.774 | 0.169 | 0.488 | 0.987 | |
(B-A)/A [%] | 4.750 | −0.673 | −2.972 | −0.088 | −19.645 | |
(C-A)/A [%] | 3.373 | −0.234 | −15.851 | −4.489 | −19.817 | |
Rated Power Region | Baseline PI (D) | 12.071 | 4.988 | 0.195 | 0.082 | 1.138 |
SPS PI (E) | 12.072 | 4.988 | 0.195 | 0.081 | 1.108 | |
RBC PI (F) | 12.078 | 4.991 | 0.144 | 0.061 | 1.107 | |
(E-D)/D [%] | 0.010 | 0.010 | 0.361 | −0.093 | −2.634 | |
(F-D)/D [%] | 0.060 | 0.059 | −26.248 | −25.477 | −2.722 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jeon, T.; Kim, D.; Paek, I. Improvements to and Experimental Validation of PI Controllers Using a Reference Bias Control Algorithm for Wind Turbines. Energies 2022, 15, 8298. https://doi.org/10.3390/en15218298
Jeon T, Kim D, Paek I. Improvements to and Experimental Validation of PI Controllers Using a Reference Bias Control Algorithm for Wind Turbines. Energies. 2022; 15(21):8298. https://doi.org/10.3390/en15218298
Chicago/Turabian StyleJeon, Taesu, Dongmyoung Kim, and Insu Paek. 2022. "Improvements to and Experimental Validation of PI Controllers Using a Reference Bias Control Algorithm for Wind Turbines" Energies 15, no. 21: 8298. https://doi.org/10.3390/en15218298
APA StyleJeon, T., Kim, D., & Paek, I. (2022). Improvements to and Experimental Validation of PI Controllers Using a Reference Bias Control Algorithm for Wind Turbines. Energies, 15(21), 8298. https://doi.org/10.3390/en15218298