Bioelectrochemical Remediation for the Removal of Petroleum Hydrocarbon Contaminants in Soil
Abstract
:1. Introduction
Soil Type | BES Type | Anode | Experiment Days | Microbial Communities | Petroleum Hydrocarbon (PH) | Power/Current Generation | Degradation Efficiency | Ref |
---|---|---|---|---|---|---|---|---|
Saline soil | U-tube | Carbon mesh | 25 | Desulfobulbuss, Geobacteraceae, and uncultured Archaea | PAHs | 125 ± 7 C, 0.85 ± 0.05 mW m−2 | 15.2 ± 0.6% | [33] |
Diesel and engine oil | Tubular | Carbon cloth | 64 | Comamonas testosteroni, Pseudomonas putida, and Ochrobactrum anthropi | TPH | 86 ± 0.1 mA | 78.7% | [13] |
Contaminated soil | Two columns | Graphite granules | 120 | - | n-alkanes | 70.4 ± 0.2 mA m−2 (8.8 ± 0.3 mW m−2) | 89.7% | [12] |
Peat moss and soil | Rectangular cuboid | Electroactive biofilm | 7 | - | Sulfate | 286.7 mW m−2 | 46.15% | [21] |
Soil from oil recovery machine | Cylindrical | Carbon cloth and activated carbon | 182 | Alcanivorax, Marinobacter, Pontibacillus, Sediminimonas, Georgenia | TPHs, alkanes, and aromatics | 46 C d−1 & 8283 C | 52%, 38%, and 136% | [39] |
PHC-contaminated soil oil production | Graphite rod and activated carbon | 150 | - | TPHs | 120.5 mA m−2, 17.3 mW m−2, and 5398 C | 55 ± 2% | [40] | |
Sediment from lake | Columnar glass reactor | Graphite felt | 110 | Proteobacteria, Chloroflexi, Acidobacteria, Actinobacteria, Bacteroidetes, Planctomycetes, and Firmicutes | Polycyclic aromatic hydrocarbons (phenanthrene and pyrene) | 43.74 ± 1.2, 53.90 ± 6.0, 48.30 ± 2.4, 56.71± 8.6 mV and 0.98 ± 0.14, 0.87 ± 0.04, 0.57 ± 0.06, 0.49± 0.07 kJ | 64.5, 73.4, 78.3, and 80.8% | [41] |
Aged soil | Horizontal or vertical | Carbon mesh and activated carbon | 135 | α-, β-, and γ-Proteobacteria and Escherichia sp. | PHC | - | 21% | [33] |
Sandy sediment | Three columns | Carbon cloth and carbon brush | 66 | - | TPH | 190 mV (2162 mW m−3) | 2% and 24% | [42] |
Alluvial plain soil | Multichamber | Graphite felt and graphite felt | 25 | - | Dibenzothiophene | 20 mA m−2 | 50% | [43] |
Petroleum-hydrocarbon-contaminated soils | Carbon mesh and activated carbon | 223 | Proteobacteria, Actinobacteria, Chloroflexi, Verrucomicrobia, Verrucomicrobia, Nitrospirae, and Firmicutes | TPHs, alkanes, aromatics, polar material, asphaltene, high-molecular hydrocarbons and nonmetallic derivatives, and 16 PAHs | 12.9 ± 0.2 mV and 207.2 ± 6.9 mV | 68–78%, 49–79%, 26–44%, and 32–57% | [44] | |
Saline–alkali soil | Two-layered | Carbon mesh and activated carbon | 65 | δ-Proteobacteria (Proteobacteria), Flavobacteriia (Bacteroidetes), or Clostridia (Firmicutes) | TPH, n-alkanes, and 16 PAHs | 81 to 304 mA m−2 | 59–92% | [45] |
Aged soil | Three-layered | Carbon mesh and activated carbon | 135 | Alcanivorax, Geobacteraceae sp., Proteobacteria, Gammaproteobacteria, and Escherichia sp. | TPH and n-alkanes | 2.56 ± 0.13 10−4 mW m−2 g−1 | 54 ± 7.5% | [35] |
Soil-contaminated (aged PHC) | Three-layered | Carbon mesh and activated carbon | 182 | Proteobacteria, Firmicutes, Bacteroidetes, Actinobacteria, Chloroflexi, Planctomycetes, and Acidobacteria | Long-chain alkane fatty acids | 61.5 ± 0.8 mA m−2 and 0.321 C d−1 g−1 | >90% | [12] |
Raw contaminated soil | Tubular | Carbon cloth and carbon felt | 110 | - | TPH | 80 ± 5 mA m−2 | 21–37% | [46] |
Crude-oil-contaminated soil | Bottle-type dual-chamber | Carbon fiber brush | 137 | - | n-alkane and (C10–C20) alkanes | 322 ± 6 mA cm−3 | n-alkane: 27–45%; (C10–C20) alkanes: 60–75% | [47] |
Saturated soil | Column-type | Graphite felt | 50 | Gammaproteobacteria, Vibrionaceae, and Clostridia | Benzo[a]pyrene | 3766.15 ± 120.37 C and 0.36 ± 0.08 kJ | 52.52 ± 4.23 | [48] |
Aged saline soil | Three-layered | Carbon mesh | 180 | γ-Proteobacteria, Alcanivorax sp., Firmicutes, Geobacteraceae sp., and Escherichia sp. | PAHs and total n-alkanes (C8–C40) | 37 mW m−2 | 18, 36, and 29 | [49] |
Petroleum-contaminated soil | Horizontal or Vertical | Carbon mesh | 135 | - | TPH, alkenes, and PAHs | 0.282 ± 0.015 and 0.285 ± 0.025 V | 12.5 ± 0.6% and 8.3% | [13] |
Waterlogged paddy soil | Single chamber | Carbon felt | 14 | - | Phenol | 29.45 mW m−2 | 90.1% | [50] |
Sandy soil, clay soil | Tubular | carbon felt/carbon cloth | 248 | Acidobacteria, Actinobacteria, Bacteroidetes, Chloroflexi, Firmicutes, and Proteobacteria | TPH | 55–58 mA cm−2, 120 mW m−2 | 48–59% and 42–45% | [23] |
Sandy soil, clayey soil | Column-type | carbon felt/carbon cloth | 230 | - | Diesel | - | 41% and 39% | [21] |
Sandy soil | Multichamber | Graphite plate/graphite felt | 63 | Deltaproteobacteria, Geobacter, Pseudomonas | Atrazine | 0.30 to 0.17 mA | 1.38 ± 0.33 a mg/(kg day) and 91.69 ± 2.70 a | [51] |
Paddy soil | Vertical | Graphite plate/graphite felt | 14 | P. subcapitata and Salmonella typhimurium | Atrazine | 66 mA m−2 | 83% | [50] |
Paddy soil | Horizontal | Carbon cloth/carbon cloth | 25 | Desulfitobacterium and Geobacter | Pentachlorophenol (PCP) | - | 35.2% and 60.7% | [52] |
Paddy soil | Two-chamber | Carbon felt/carbon felt | 10 | Geobacter, Shewanella, and Dehalobacter | PCP | - | - | [53] |
Saline soil (refractory organic pesticide) | Vertical | Carbon cloth and granular activated carbon | 60 | - | Hexachlorobenzene (HCB) | 70.8 mW m−2 | 71.14% | [12] |
Refractory organic pesticide | Vertical | Carbon cloth and granular activated carbon | 60 | Geobacter sulfurreducens, Beta Proteobacteria | HCB | 77.5 mW m−2 | 39.33% and 0.543 mg/(kg d) | [47] |
Black, chao, yellow, brown, and red soil | Cylindrical | Graphite rod/Activated carbon | 53 | - | Tetracycline | CS (946 ± 307 C) BS (340 ± 43 C) YBS (134 ± 34 C) RS (50 ± 46 C) | BS (75 ± 2%) RS (65 ± 5%), YBS (61 ± 7%), CS (52 ± 10%) | [54] |
2. Petroleum Hydrocarbons (PHs): Contamination Hazard in the Environment and Current Bioremediation Technologies
3. Bioelectrochemical Systems for PH-Contaminated Soil Treatment
3.1. Microbial Interaction with Electrodes While PH Degradation and Strategies for Improvements
3.2. Characteristics of the Soil and Physical Amendments
3.3. Reactor Design and Electrode Materials
3.4. Effects of Operating Conditions on PH Treatment by BES
4. Current Challenges and Future Perspectives
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Noori, M.T.; Ganta, A.; Tiwari, B.R. Recent Advances in the Design and Architecture of Bioelectrochemical Systems to Treat Wastewater and to Produce Choice-Based Byproducts. J. Hazard. Toxic Radioact. Waste 2020, 24, 04020023. [Google Scholar] [CrossRef]
- Muddasar, M.; Liaquat, R.; Aslam, A.; Ur Rahman, M.Z.; Abdullah, A.; Khoja, A.H.; Latif, K.; Bahadar, A. Performance efficiency comparison of microbial electrolysis cells for sustainable production of biohydrogen—A comprehensive review. Int. J. Energy Res. 2022, 46, 5625–5645. [Google Scholar] [CrossRef]
- Noori, M.T.; Min, B. Fundamentals and recent progress in bioelectrochemical system assisted biohythane production. Bioresour. Technol. 2022, 361, 127641. [Google Scholar] [CrossRef] [PubMed]
- Noori, M.T.; Mohan, S.V.; Min, B. Microbial electrosynthesis of multi-carbon volatile fatty acids under the influence of different imposed potentials. Sustain. Energy Technol. Assess. 2021, 45, 101118. [Google Scholar] [CrossRef]
- Gupta, P.; Noori, M.T.; Núñez, A.E.; Verma, N. An insight into the bioelectrochemical photoreduction of CO2 to value-added chemicals. iScience 2021, 24, 102294. [Google Scholar] [CrossRef]
- Singh, S.; Noori, M.T.; Verma, N. Efficient bio-electroreduction of CO2 to formate on a iron phthalocyanine-dispersed CDC in microbial electrolysis system. Electrochim. Acta 2020, 338, 135887. [Google Scholar] [CrossRef]
- Noori, M.T. Low-Cost Cathode Catalyst and Biofouling Control in Microbial Fuel Cells to Enhance Electricity Recovery for Onsite Use While Treating Wastewater. Ph.D. Thesis, Indian Institute of Technology Kharagpur, Kharagpur, India, 2018. [Google Scholar]
- Noori, M.T.; Núñez, A.E. Ceramic Separators for Application in Microbial Fuel Cells: A New Class of Low-Cost Cation Exchange Membrane. In Advanced Ceramic Materials for Versatile Interdisciplinary Applications; Singh, S., Kumar, P., Mondal, D.P.B.T.-A.C., Eds.; (Elsevier Series); Elsevier: Amsterdam, The Netherlands, 2022; Chapter 11; pp. 231–249. ISBN 978-0-323-89952-9. [Google Scholar]
- Anusha, G.; Noori, M.T.T.; Ghangrekar, M.M.M. Application of silver-tin dioxide composite cathode catalyst for enhancing performance of microbial desalination cell. Mater. Sci. Energy Technol. 2018, 1, 188–195. [Google Scholar] [CrossRef]
- Bhande, R.; Noori, M.T.; Ghangrekar, M.M. Performance improvement of sediment microbial fuel cell by enriching the sediment with cellulose: Kinetics of cellulose degradation. Environ. Technol. Innov. 2018, 13, 189–196. [Google Scholar] [CrossRef]
- Rozendal, R.A.; Hamelers, H.V.M.; Rabaey, K.; Keller, J.; Buisman, C.J.N. Towards practical implementation of bioelectrochemical wastewater treatment. Trends Biotechnol. 2008, 26, 450–459. [Google Scholar] [CrossRef]
- Lu, L.; Yazdi, H.; Jin, S.; Zuo, Y.; Fallgren, P.H.; Ren, Z.J. Enhanced bioremediation of hydrocarbon-contaminated soil using pilot-scale bioelectrochemical systems. J. Hazard. Mater. 2014, 274, 8–15. [Google Scholar] [CrossRef]
- Lu, L.; Huggins, T.; Jin, S.; Zuo, Y.; Ren, Z.J. Microbial metabolism and community structure in response to bioelectrochemically enhanced remediation of petroleum hydrocarbon-contaminated soil. Environ. Sci. Technol. 2014, 48, 4021–4029. [Google Scholar] [CrossRef] [PubMed]
- Cruz Viggi, C.; Presta, E.; Bellagamba, M.; Kaciulis, S.; Balijepalli, S.K.; Zanaroli, G.; Petrangeli Papini, M.; Rossetti, S.; Aulenta, F. The “Oil-Spill Snorkel”: An innovative bioelectrochemical approach to accelerate hydrocarbons biodegradation in marine sediments. Front. Microbiol. 2015, 6, 881. [Google Scholar] [CrossRef] [PubMed]
- Aulenta, F.; Palma, E.; Marzocchi, U.; Cruz Viggi, C.; Rossetti, S.; Scoma, A. Enhanced hydrocarbons biodegradation at deep-sea hydrostatic pressure with microbial electrochemical snorkels. Catalysts 2021, 11, 263. [Google Scholar]
- Hoareau, M.; Erable, B.; Bergel, A. Microbial electrochemical snorkels (MESs): A budding technology for multiple applications. A mini review. Electrochem. Commun. 2019, 104, 106473. [Google Scholar]
- Lv, H.; Su, X.; Wang, Y.; Dai, Z.; Liu, M. Effectiveness and mechanism of natural attenuation at a petroleum-hydrocarbon contaminated site. Chemosphere 2018, 206, 293–301. [Google Scholar] [CrossRef]
- Bisht, S.; Pandey, P.; Bhargava, B.; Sharma, S.; Kumar, V.; Sharma, K.D. Bioremediation of polyaromatic hydrocarbons (PAHs) using rhizosphere technology. Braz. J. Microbiol. 2015, 46, 7–21. [Google Scholar]
- Zhang, F.; Tian, L.; He, Z. Powering a wireless temperature sensor using sediment microbial fuel cells with vertical arrangement of electrodes. J. Power Sources 2011, 196, 9568–9573. [Google Scholar] [CrossRef]
- Hao, D.-C.; Li, X.-J.; Xiao, P.-G.; Wang, L.-F. The utility of electrochemical systems in microbial degradation of polycyclic aromatic hydrocarbons: Discourse, diversity and design. Front. Microbiol. 2020, 11, 557400. [Google Scholar] [CrossRef]
- Li, X.; Wang, X.; Ren, Z.J.; Zhang, Y.; Li, N.; Zhou, Q. Sand amendment enhances bioelectrochemical remediation of petroleum hydrocarbon contaminated soil. Chemosphere 2015, 141, 62–70. [Google Scholar]
- Tucci, M.; Viggi, C.C.; Nunez, A.E.; Schievano, A.; Rabaey, K.; Aulenta, F. Empowering electroactive microorganisms for soil remediation: Challenges in the bioelectrochemical removal of petroleum hydrocarbons. Chem. Eng. J. 2021, 419, 130008. [Google Scholar]
- Li, X.; Wang, X.; Zhang, Y.; Zhao, Q.; Yu, B.; Li, Y.; Zhou, Q. Salinity and conductivity amendment of soil enhanced the bioelectrochemical degradation of petroleum hydrocarbons. Sci. Rep. 2016, 6, 32861. [Google Scholar] [PubMed] [Green Version]
- Rajesh, P.P.; Noori, M.T.; Ghangrekar, M.M. Improving Performance of Microbial Fuel Cell by Using Polyaniline-Coated Carbon–Felt Anode. J. Hazard. Toxic Radioact. Waste 2020, 24, 04020024. [Google Scholar] [CrossRef]
- Rajesh, P.P.; Noori, M.T.; Ghangrekar, M.M. Graphene Oxide/Polytetrafluoroethylene Composite Anode and Chaetoceros pre-Treated Anodic Inoculum Enhancing Performance of Microbial Fuel Cell. J. Clean Energy Technol. 2018, 6, 236–241. [Google Scholar] [CrossRef] [Green Version]
- Noori, M.T.; Ghangrekar, M.M.; Mukherjee, C.K. V2O5 microflower decorated cathode for enhancing power generation in air-cathode microbial fuel cell treating fish market wastewater. Int. J. Hydrogen Energy 2016, 41, 3638–3645. [Google Scholar] [CrossRef]
- Noori, M.T.; Ghangrekar, M.M.; Mitra, A.; Mukherjee, C.K. Enhanced Power Generation in Microbial Fuel Cell Using MnO2-Catalyzed Cathode Treating Fish Market Wastewater. In Proceedings of the First International Conference on Recent Advances in Bioenergy Research; Springer: New Delhi, India, 2016; pp. 285–294. [Google Scholar]
- Noori, M.T.; Bhowmick, G.D.; Tiwari, B.R.; Ghangrekar, M.M.; Mukhrejee, C.K. Application of Low-Cost Cu-Sn Bimetal Alloy as Oxygen Reduction Reaction Catalyst for Improving Performance of the Microbial Fuel Cell. MRS Adv. 2018, 3, 663–668. [Google Scholar]
- Das, I.; Noori, M.T.; Bhowmick, G.D.; Ghangrekar, M.M. Application of Low-Cost Transition Metal Based Co0.5Zn0.5Fe2O4 as Oxygen Reduction Reaction Catalyst for Improving Performance of Microbial Fuel Cell. MRS Adv. Mater. Res. Soc. 2018, 3, 2–6. [Google Scholar] [CrossRef]
- Noori, M.T.; Ezugwu, C.I.; Wang, Y.; Min, B. Robust bimetallic metal-organic framework cathode catalyst to boost oxygen reduction reaction in microbial fuel cell. J. Power Sources 2022, 547, 231947. [Google Scholar] [CrossRef]
- You, K.; Zhou, Z.; Gao, C.; Yang, Q. One-Step Preparation of Biochar Electrodes and Their Applications in Sediment Microbial Electrochemical Systems. Catalysts 2021, 11, 508. [Google Scholar]
- Patwardhan, S.B.; Pandit, S.; Gupta, P.K.; Jha, N.K.; Rawat, J.; Joshi, H.C.; Priya, K.; Gupta, M.; Lahiri, D.; Nag, M. Recent advances in the application of biochar in microbial electrochemical cells. Fuel 2021, 311, 122501. [Google Scholar]
- Wang, X.; Cai, Z.; Zhou, Q.; Zhang, Z.; Chen, C. Bioelectrochemical stimulation of petroleum hydrocarbon degradation in saline soil using U-tube microbial fuel cells. Biotechnol. Bioeng. 2012, 109, 426–433. [Google Scholar] [CrossRef]
- Adelaja, O.; Keshavarz, T.; Kyazze, G. The effect of salinity, redox mediators and temperature on anaerobic biodegradation of petroleum hydrocarbons in microbial fuel cells. J. Hazard. Mater. 2015, 283, 211–217. [Google Scholar] [CrossRef] [PubMed]
- Morris, J.M.; Jin, S. Enhanced biodegradation of hydrocarbon-contaminated sediments using microbial fuel cells. J. Hazard. Mater. 2012, 213, 474–477. [Google Scholar] [CrossRef] [PubMed]
- Akbari, A.; Ghoshal, S. Pilot-scale bioremediation of a petroleum hydrocarbon-contaminated clayey soil from a sub-Arctic site. J. Hazard. Mater. 2014, 280, 595–602. [Google Scholar] [CrossRef] [PubMed]
- Jin, S.; Fallgren, P.H. Feasibility of Using Bioelectrochemical Systems for Bioremediation. In Microbial Biodegradation and Bioremediation; Elsevier: Amsterdam, The Netherlands, 2022; pp. 493–507. [Google Scholar]
- Ambaye, T.G.; Vaccari, M.; Franzetti, A.; Prasad, S.; Formicola, F.; Rosatelli, A.; Hassani, A.; Aminabhavi, T.M.; Rtimi, S. Microbial electrochemical bioremediation of petroleum hydrocarbons (PHCs) pollution: Recent advances and outlook. Chem. Eng. J. 2022, 452, 139372. [Google Scholar] [CrossRef]
- Lai, A.; Verdini, R.; Aulenta, F.; Majone, M. Influence of nitrate and sulfate reduction in the bioelectrochemically assisted dechlorination of cis-DCE. Chemosphere 2015, 125, 147–154. [Google Scholar] [CrossRef]
- Mohanakrishna, G.; Al-Raoush, R.I.; Abu-Reesh, I.M.; Pant, D. A microbial fuel cell configured for the remediation of recalcitrant pollutants in soil environment. RSC Adv. 2019, 9, 41409–41418. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Li, X.; Zhao, X.; Chen, X.; Zhou, B.; Weng, L.; Li, Y. Bioelectric field accelerates the conversion of carbon and nitrogen in soil bioelectrochemical systems. J. Hazard. Mater. 2020, 388, 121790. [Google Scholar] [CrossRef]
- Li, X.; Wang, X.; Zhao, Q.; Wan, L.; Li, Y.; Zhou, Q. Carbon fiber enhanced bioelectricity generation in soil microbial fuel cells. Biosens. Bioelectron. 2016, 85, 135–141. [Google Scholar] [CrossRef]
- Liang, Y.; Zhai, H.; Liu, B.; Ji, M.; Li, J. Carbon nanomaterial-modified graphite felt as an anode enhanced the power production and polycyclic aromatic hydrocarbon removal in sediment microbial fuel cells. Sci. Total Environ. 2020, 713, 136483. [Google Scholar] [CrossRef]
- Wang, H.; Lu, L.; Mao, D.; Huang, Z.; Cui, Y.; Jin, S.; Zuo, Y.; Ren, Z.J. Dominance of electroactive microbiomes in bioelectrochemical remediation of hydrocarbon-contaminated soils with different textures. Chemosphere 2019, 235, 776–784. [Google Scholar] [CrossRef]
- Li, X.; Wang, X.; Wan, L.; Zhang, Y.; Li, N.; Li, D.; Zhou, Q. Enhanced biodegradation of aged petroleum hydrocarbons in soils by glucose addition in microbial fuel cells. J. Chem. Technol. Biotechnol. 2016, 91, 267–275. [Google Scholar] [CrossRef]
- Rodrigo, J.; Boltes, K.; Esteve-Nuñez, A. Microbial-electrochemical bioremediation and detoxification of dibenzothiophene-polluted soil. Chemosphere 2014, 101, 61–65. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Wang, X.; Zhang, Y.; Cheng, L.; Liu, J.; Li, F.; Gao, B.; Zhou, Q. Extended petroleum hydrocarbon bioremediation in saline soil using Pt-free multianodes microbial fuel cells. RSC Adv. 2014, 4, 59803–59808. [Google Scholar] [CrossRef]
- Mao, D.; Lu, L.; Revil, A.; Zuo, Y.; Hinton, J.; Ren, Z.J. Geophysical monitoring of hydrocarbon-contaminated soils remediated with a bioelectrochemical system. Environ. Sci. Technol. 2016, 50, 8205–8213. [Google Scholar] [CrossRef]
- Li, X.; Li, Y.; Zhang, X.; Zhao, X.; Sun, Y.; Weng, L.; Li, Y. Long-term effect of biochar amendment on the biodegradation of petroleum hydrocarbons in soil microbial fuel cells. Sci. Total Environ. 2019, 651, 796–806. [Google Scholar] [CrossRef]
- Wang, H.; Cui, Y.; Lu, L.; Jin, S.; Zuo, Y.; Ge, Z.; Ren, Z.J. Moisture retention extended enhanced bioelectrochemical remediation of unsaturated soil. Sci. Total Environ. 2020, 724, 138169. [Google Scholar] [CrossRef]
- Li, X.; Zhao, Q.; Wang, X.; Li, Y.; Zhou, Q. Surfactants selectively reallocated the bacterial distribution in soil bioelectrochemical remediation of petroleum hydrocarbons. J. Hazard. Mater. 2018, 344, 23–32. [Google Scholar] [CrossRef]
- Wang, H.; Lu, L.; Chen, H.; McKenna, A.M.; Lu, J.; Jin, S.; Zuo, Y.; Rosario-Ortiz, F.L.; Ren, Z.J. Molecular transformation of crude oil contaminated soil after bioelectrochemical degradation revealed by FT-ICR mass spectrometry. Environ. Sci. Technol. 2020, 54, 2500–2509. [Google Scholar] [CrossRef]
- Liang, Y.; Ji, M.; Zhai, H.; Wang, R. Removal of benzo [a] pyrene from soil in a novel permeable electroactive well system: Optimal integration of filtration, adsorption and bioelectrochemical degradation. Sep. Purif. Technol. 2020, 252, 117458. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, X.; Li, X.; Cheng, L.; Wan, L.; Zhou, Q. Horizontal arrangement of anodes of microbial fuel cells enhances remediation of petroleum hydrocarbon-contaminated soil. Environ. Sci. Pollut. Res. 2015, 22, 2335–2341. [Google Scholar]
- Speight, J.G.; Arjoon, K.K. Bioremediation of Petroleum and Petroleum Products; John Wiley & Sons: Hoboken, NJ, USA, 2012; ISBN 1118528328. [Google Scholar]
- Moran, M.J.; Zogorski, J.S.; Squillace, P.J. Chlorinated solvents in groundwater of the United States. Environ. Sci. Technol. 2007, 41, 74–81. [Google Scholar] [CrossRef] [PubMed]
- Badawi, A.F.; Cavalieri, E.L.; Rogan, E.G. Effect of chlorinated hydrocarbons on expression of cytochrome P450 1A1, 1A2 and 1B1 and 2-and 4-hydroxylation of 17β-estradiol in female Sprague–Dawley rats. Carcinogenesis 2000, 21, 1593–1599. [Google Scholar] [CrossRef] [PubMed]
- Ghosal, D.; Ghosh, S.; Dutta, T.K.; Ahn, Y. Current state of knowledge in microbial degradation of polycyclic aromatic hydrocarbons (PAHs): A review. Front. Microbiol. 2016, 7, 1369. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Durmusoglu, E.; Taspinar, F.; Karademir, A. Health risk assessment of BTEX emissions in the landfill environment. J. Hazard. Mater. 2010, 176, 870–877. [Google Scholar] [CrossRef] [PubMed]
- Panagos, P.; Van Liedekerke, M.; Yigini, Y.; Montanarella, L. Contaminated sites in Europe: Review of the current situation based on data collected through a European network. J. Environ. Public Health 2013, 2013, 158764. [Google Scholar] [CrossRef]
- Befkadu, A.A.; Quanyuan, C. Surfactant-enhanced soil washing for removal of petroleum hydrocarbons from contaminated soils: A review. Pedosphere 2018, 28, 383–410. [Google Scholar] [CrossRef]
- Wu, M.; Li, W.; Dick, W.A.; Ye, X.; Chen, K.; Kost, D.; Chen, L. Bioremediation of hydrocarbon degradation in a petroleum-contaminated soil and microbial population and activity determination. Chemosphere 2017, 169, 124–130. [Google Scholar] [CrossRef]
- Logeshwaran, P.; Megharaj, M.; Chadalavada, S.; Bowman, M.; Naidu, R. Petroleum hydrocarbons (PH) in groundwater aquifers: An overview of environmental fate, toxicity, microbial degradation and risk-based remediation approaches. Environ. Technol. Innov. 2018, 10, 175–193. [Google Scholar] [CrossRef]
- Riser-Roberts, E. Remediation of Petroleum Contaminated Soils: Biological, Physical, and Chemical Processes; CRC press: Boca Raton, FL, USA, 2020; ISBN 1420050575. [Google Scholar]
- Streche, C.; Cocârţă, D.M.; Istrate, I.-A.; Badea, A.A. Decontamination of petroleum-contaminated soils using the electrochemical technique: Remediation degree and energy consumption. Sci. Rep. 2018, 8, 3272. [Google Scholar] [CrossRef]
- Cho, K.; Myung, E.; Kim, H.; Purev, O.; Park, C.; Choi, N. Removal of total petroleum hydrocarbons from contaminated soil through microwave irradiation. Int. J. Environ. Res. Public Health 2020, 17, 5952. [Google Scholar] [CrossRef]
- Alvarez, P.J.; Illman, W.A. Bioremediation and Natural Attenuation: Process Fundamentals and Mathematical Models; John Wiley & Sons: Hoboken, NJ, USA, 2005; ISBN 0471738611. [Google Scholar]
- Daghio, M.; Aulenta, F.; Vaiopoulou, E.; Franzetti, A.; Arends, J.B.A.; Sherry, A.; Suárez-Suárez, A.; Head, I.M.; Bestetti, G.; Rabaey, K. Electrobioremediation of oil spills. Water Res. 2017, 114, 351–370. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Trombly, J. Electrochemical remediation takes to the field. Environ. Sci. Technol. 1994, 28, 289A–291A. [Google Scholar] [CrossRef]
- Juhasz, A.L.; Naidu, R. Bioremediation of high molecular weight polycyclic aromatic hydrocarbons: A review of the microbial degradation of benzo [a] pyrene. Int. Biodeterior. Biodegrad. 2000, 45, 57–88. [Google Scholar] [CrossRef]
- Megharaj, M.; Singleton, I.; McClure, N.C.; Naidu, R. Influence of petroleum hydrocarbon contamination on microalgae and microbial activities in a long-term contaminated soil. Arch. Environ. Contam. Toxicol. 2000, 38, 439–445. [Google Scholar] [CrossRef]
- Atlas, R.M. Petroleum biodegradation and oil spill bioremediation. Mar. Pollut. Bull. 1995, 31, 178–182. [Google Scholar] [CrossRef]
- Rabus, R.; Boll, M.; Heider, J.; Meckenstock, R.U.; Buckel, W.; Einsle, O.; Ermler, U.; Golding, B.T.; Gunsalus, R.P.; Kroneck, P.M.H. Anaerobic microbial degradation of hydrocarbons: From enzymatic reactions to the environment. Microb. Physiol. 2016, 26, 5–28. [Google Scholar] [CrossRef] [Green Version]
- Widdel, F.; Knittel, K.; Galushko, A. Anaerobic hydrocarbon-degrading microorganisms: An overview. In Handbook of Hydrocarbon and Lipid Microbiology; Springer: Berlin/Heidelberg, Germany, 2010; pp. 1998–2022. [Google Scholar]
- Wang, A.-J.; Cheng, H.-Y.; Liang, B.; Ren, N.-Q.; Cui, D.; Lin, N.; Kim, B.H.; Rabaey, K. Efficient reduction of nitrobenzene to aniline with a biocatalyzed cathode. Environ. Sci. Technol. 2011, 45, 10186–10193. [Google Scholar] [CrossRef]
- Mu, Y.; Rabaey, K.; Rozendal, R.A.; Yuan, Z.; Keller, J. Decolorization of azo dyes in bioelectrochemical systems. Environ. Sci. Technol. 2009, 43, 5137–5143. [Google Scholar] [CrossRef]
- Espinoza-Tofalos, A.; Alviz-Gazitua, P.; Franzetti, A.; Seeger, M. Bio-Electrochemical Remediation of Petroleum Hydrocarbons. In Bioelectrochemical Systems; Springer: Berlin/Heidelberg, Germany, 2020; pp. 269–285. [Google Scholar]
- Zhang, T.; Gannon, S.M.; Nevin, K.P.; Franks, A.E.; Lovley, D.R. Stimulating the anaerobic degradation of aromatic hydrocarbons in contaminated sediments by providing an electrode as the electron acceptor. Environ. Microbiol. 2010, 12, 1011–1020. [Google Scholar] [CrossRef]
- Paul, D.; Noori, M.T.; Rajesh, P.P.; Ghangrekar, M.M.; Mitra, A. Modification of carbon felt anode with graphene oxide-zeolite composite for enhancing the performance of microbial fuel cell. Sustain. Energy Technol. Assess. 2018, 26, 77–82. [Google Scholar] [CrossRef]
- Lovley, D.R.; Holmes, D.E. Protein nanowires: The electrification of the microbial world and maybe our own. J. Bacteriol. 2020, 202, e00331-20. [Google Scholar] [CrossRef] [PubMed]
- Yalcin, S.E.; Malvankar, N.S. The blind men and the filament: Understanding structures and functions of microbial nanowires. Curr. Opin. Chem. Biol. 2020, 59, 193–201. [Google Scholar] [CrossRef] [PubMed]
- Aiyer, K.S. How does electron transfer occur in microbial fuel cells? World J. Microbiol. Biotechnol. 2020, 36, 19. [Google Scholar] [CrossRef]
- Harnisch, F.; Aulenta, F.; Schröder, U. 6.49-Microbial fuel cells and bioelectrochemical systems: Industrial and environmental biotechnologies based on extracellular electron transfer. In Comprehensive Biotechnology; Academic Press: Burlington, NC, USA, 2011; pp. 643–659. [Google Scholar]
- Zhang, T.; Tremblay, P.-L.; Chaurasia, A.K.; Smith, J.A.; Bain, T.S.; Lovley, D.R. Anaerobic benzene oxidation via phenol in Geobacter metallireducens. Appl. Environ. Microbiol. 2013, 79, 7800–7806. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Palma, E.; Daghio, M.; Franzetti, A.; Petrangeli Papini, M.; Aulenta, F. The bioelectric well: A novel approach for in situ treatment of hydrocarbon-contaminated groundwater. Microb. Biotechnol. 2018, 11, 112–118. [Google Scholar] [CrossRef]
- Palma, E.; Daghio, M.; Tofalos, A.E.; Franzetti, A.; Viggi, C.C.; Fazi, S.; Papini, M.P.; Aulenta, F. Anaerobic electrogenic oxidation of toluene in a continuous-flow bioelectrochemical reactor: Process performance, microbial community analysis, and biodegradation pathways. Environ. Sci. Water Res. Technol. 2018, 4, 2136–2145. [Google Scholar] [CrossRef]
- Palma, E.; Tofalos, A.E.; Daghio, M.; Franzetti, A.; Tsiota, P.; Viggi, C.C.; Papini, M.P.; Aulenta, F. Bioelectrochemical treatment of groundwater containing BTEX in a continuous-flow system: Substrate interactions, microbial community analysis, and impact of sulfate as a co-contaminant. New Biotechnol. 2019, 53, 41–48. [Google Scholar] [CrossRef]
- Espinoza-Tofalos, A.; Daghio, M.; Palma, E.; Aulenta, F.; Franzetti, A. Structure and functions of hydrocarbon-degrading microbial communities in bioelectrochemical systems. Water 2020, 12, 343. [Google Scholar] [CrossRef] [Green Version]
- Paquete, C.M.; Rosenbaum, M.A.; Bañeras, L.; Rotaru, A.-E.; Puig, S. Let′s chat: Communication between electroactive microorganisms. Bioresour. Technol. 2022, 347, 126705. [Google Scholar] [CrossRef]
- Xu, X.; Liu, W.; Tian, S.; Wang, W.; Qi, Q.; Jiang, P.; Gao, X.; Li, F.; Li, H.; Yu, H. Petroleum hydrocarbon-degrading bacteria for the remediation of oil pollution under aerobic conditions: A perspective analysis. Front. Microbiol. 2018, 9, 2885. [Google Scholar] [CrossRef]
- Heider, J. Adding handles to unhandy substrates: Anaerobic hydrocarbon activation mechanisms. Curr. Opin. Chem. Biol. 2007, 11, 188–194. [Google Scholar] [PubMed]
- Meckenstock, R.U.; Mouttaki, H. Anaerobic degradation of non-substituted aromatic hydrocarbons. Curr. Opin. Biotechnol. 2011, 22, 406–414. [Google Scholar] [CrossRef] [PubMed]
- Gieg, L.M.; Fowler, S.J.; Berdugo-Clavijo, C. Syntrophic biodegradation of hydrocarbon contaminants. Curr. Opin. Biotechnol. 2014, 27, 21–29. [Google Scholar] [CrossRef] [PubMed]
- Aulenta, F.; Tucci, M.; Cruz Viggi, C.; Dolfing, J.; Head, I.M.; Rotaru, A. An underappreciated DIET for anaerobic petroleum hydrocarbon-degrading microbial communities. Microb. Biotechnol. 2021, 14, 2–7. [Google Scholar] [CrossRef] [PubMed]
- Tejedor-Sanz, S.; Fernández-Labrador, P.; Hart, S.; Torres, C.I.; Esteve-Núñez, A. Geobacter dominates the inner layers of a stratified biofilm on a fluidized anode during brewery wastewater treatment. Front. Microbiol. 2018, 9, 378. [Google Scholar] [CrossRef] [Green Version]
- Pfeffer, C.; Larsen, S.; Song, J.; Dong, M.; Besenbacher, F.; Meyer, R.L.; Kjeldsen, K.U.; Schreiber, L.; Gorby, Y.A.; El-Naggar, M.Y. Filamentous bacteria transport electrons over centimetre distances. Nature 2012, 491, 218–221. [Google Scholar] [CrossRef]
- Müller, H.; Bosch, J.; Griebler, C.; Damgaard, L.R.; Nielsen, L.P.; Lueders, T.; Meckenstock, R.U. Long-distance electron transfer by cable bacteria in aquifer sediments. ISME J. 2016, 10, 2010–2019. [Google Scholar]
- Meysman, F.J.R.; Cornelissen, R.; Trashin, S.; Bonné, R.; Martinez, S.H.; van der Veen, J.; Blom, C.J.; Karman, C.; Hou, J.-L.; Eachambadi, R.T. A highly conductive fibre network enables centimetre-scale electron transport in multicellular cable bacteria. Nat. Commun. 2019, 10, 4120. [Google Scholar] [CrossRef] [Green Version]
- Kleikemper, J.; Schroth, M.H.; Sigler, W.V.; Schmucki, M.; Bernasconi, S.M.; Zeyer, J. Activity and diversity of sulfate-reducing bacteria in a petroleum hydrocarbon-contaminated aquifer. Appl. Environ. Microbiol. 2002, 68, 1516–1523. [Google Scholar] [CrossRef] [Green Version]
- Edgcomb, V.P.; Teske, A.P.; Mara, P. Microbial Hydrocarbon Degradation in Guaymas Basin-Exploring the Roles and Potential Interactions of Fungi and Sulfate-Reducing Bacteria. Front. Microbiol. 2022, 13, 831828. [Google Scholar] [CrossRef]
- Marzocchi, U.; Palma, E.; Rossetti, S.; Aulenta, F.; Scoma, A. Parallel artificial and biological electric circuits power petroleum decontamination: The case of snorkel and cable bacteria. Water Res. 2020, 173, 115520. [Google Scholar] [CrossRef] [PubMed]
- Venkidusamy, K.; Megharaj, M.; Marzorati, M.; Lockington, R.; Naidu, R. Enhanced removal of petroleum hydrocarbons using a bioelectrochemical remediation system with pre-cultured anodes. Sci. Total Environ. 2016, 539, 61–69. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, H.T.T.; Noori, M.T.; Min, B. Accelerating anaerobic digestion process with novel single chamber microbial electrochemical systems with baffle. Bioresour. Technol. 2022, 359, 127474. [Google Scholar] [CrossRef] [PubMed]
- Logan, B.E.; Rossi, R.; Ragab, A.; Saikaly, P.E. Electroactive microorganisms in bioelectrochemical systems. Nat. Rev. Microbiol. 2019, 17, 307–319. [Google Scholar] [CrossRef]
- Nielsen, L.P.; Risgaard-Petersen, N.; Fossing, H.; Christensen, P.B.; Sayama, M. Electric currents couple spatially separated biogeochemical processes in marine sediment. Nature 2010, 463, 1071–1074. [Google Scholar] [CrossRef]
- Kato, S. Biotechnological aspects of microbial extracellular electron transfer. Microbes Environ. 2015, 30, 133–139. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Qiao, Y.; Lu, Z.S.; Song, H.; Li, C.M. Enhance electron transfer and performance of microbial fuel cells by perforating the cell membrane. Electrochem. Commun. 2012, 15, 50–53. [Google Scholar] [CrossRef]
- Gomaa, O.M.; Selim, N.; Fathy, R.; Maghrawy, H.H.; Gamal, M.; Abd El Kareem, H.; Kyazze, G.; Keshavarz, T. Characterization of a biosurfactant producing electroactive Bacillus sp. for enhanced Microbial Fuel Cell dye decolourisation. Enzyme Microb. Technol. 2021, 147, 109767. [Google Scholar] [CrossRef]
- Davey, M.E.; Caiazza, N.C.; O’Toole, G.A. Rhamnolipid surfactant production affects biofilm architecture in Pseudomonas aeruginosa PAO1. J. Bacteriol. 2003, 185, 1027–1036. [Google Scholar] [CrossRef] [Green Version]
- Zheng, T.; Xu, Y.-S.; Yong, X.-Y.; Li, B.; Yin, D.; Cheng, Q.-W.; Yuan, H.-R.; Yong, Y.-C. Endogenously enhanced biosurfactant production promotes electricity generation from microbial fuel cells. Bioresour. Technol. 2015, 197, 416–421. [Google Scholar] [CrossRef]
- Wen, Q.; Kong, F.; Ren, Y.; Cao, D.; Wang, G.; Zheng, H. Improved performance of microbial fuel cell through addition of rhamnolipid. Electrochem. Commun. 2010, 12, 1710–1713. [Google Scholar] [CrossRef]
- Ambaye, T.G.; Formicola, F.; Sbaffoni, S.; Franzetti, A.; Vaccari, M. Insights into rhamnolipid amendment towards enhancing microbial electrochemical treatment of petroleum hydrocarbon contaminated soil. Chemosphere 2022, 307, 136126. [Google Scholar] [CrossRef] [PubMed]
- Kiely, P.D.; Regan, J.M.; Logan, B.E. The electric picnic: Synergistic requirements for exoelectrogenic microbial communities. Curr. Opin. Biotechnol. 2011, 22, 378–385. [Google Scholar] [CrossRef] [PubMed]
- Hou, N.; Zhang, N.; Jia, T.; Sun, Y.; Dai, Y.; Wang, Q.; Li, D.; Luo, Z.; Li, C. Biodegradation of phenanthrene by biodemulsifier-producing strain Achromobacter sp. LH-1 and the study on its metabolisms and fermentation kinetics. Ecotoxicol. Environ. Saf. 2018, 163, 205–214. [Google Scholar] [CrossRef]
- Cerniglia, C.E.; Freeman, J.P.; Althaus, J.R.; van Baalen, C. Metabolism and toxicity of 1-and 2-methylnaphthalene and their derivatives in cyanobacteria. Arch. Microbiol. 1983, 136, 177–183. [Google Scholar] [CrossRef]
- Faruque, M.J.; Mojid, M.A.; Delwar Hossain, A.S.M. Effects of soil texture and water on bulk soil electrical conductivity. J. Bangladesh Agric. Univ. 2006, 4, 381–389. [Google Scholar]
- Hong, S.W.; Chang, I.S.; Choi, Y.S.; Chung, T.H. Experimental evaluation of influential factors for electricity harvesting from sediment using microbial fuel cell. Bioresour. Technol. 2009, 100, 3029–3035. [Google Scholar] [CrossRef]
- Li, X.; Wang, X.; Weng, L.; Zhou, Q.; Li, Y. Microbial fuel cells for organic-contaminated soil remedial applications: A review. Energy Technol. 2017, 5, 1156–1164. [Google Scholar] [CrossRef]
- Wu, Y.; Jing, X.; Gao, C.; Huang, Q.; Cai, P. Recent advances in microbial electrochemical system for soil bioremediation. Chemosphere 2018, 211, 156–163. [Google Scholar] [CrossRef]
- Vu, M.T.; Noori, M.T.; Min, B. Conductive magnetite nanoparticles trigger syntrophic methane production in single chamber microbial electrochemical systems. Bioresour. Technol. 2020, 296, 122265. [Google Scholar] [CrossRef]
- Vu, M.T.; Noori, M.T.; Min, B. Magnetite/zeolite nanocomposite-modified cathode for enhancing methane generation in microbial electrochemical systems. Chem. Eng. J. 2020, 393, 124613. [Google Scholar] [CrossRef]
- Cai, X.; Yuan, Y.; Yu, L.; Zhang, B.; Li, J.; Liu, T.; Yu, Z.; Zhou, S. Biochar enhances bioelectrochemical remediation of pentachlorophenol-contaminated soils via long-distance electron transfer. J. Hazard. Mater. 2020, 391, 122213. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Li, R.; Wang, J.; Liao, C.; Zhou, L.; An, J.; Li, T.; Wang, X.; Zhou, Q. Construction of conductive network using magnetite to enhance microflora interaction and petroleum hydrocarbons removal in plant-rhizosphere microbial electrochemical system. Chem. Eng. J. 2022, 433, 133600. [Google Scholar]
- Huang, D.-Y.; Zhou, S.-G.; Chen, Q.; Zhao, B.; Yuan, Y.; Zhuang, L. Enhanced anaerobic degradation of organic pollutants in a soil microbial fuel cell. Chem. Eng. J. 2011, 172, 647–653. [Google Scholar]
- Noori, T.; Vu, M.T.; Ali, R.B.; Min, B. Recent advances in cathode materials and configurations for upgrading methane in bioelectrochemical systems integrated with anaerobic digestion. Chem. Eng. J. 2019, 392, 123689. [Google Scholar] [CrossRef]
- Haavisto, J.; Dessì, P.; Chatterjee, P.; Honkanen, M.; Noori, M.T.; Kokko, M.; Lakaniemi, A.M.; Lens, P.N.L.; Puhakka, J.A. Effects of anode materials on electricity production from xylose and treatability of TMP wastewater in an up-flow microbial fuel cell. Chem. Eng. J. 2019, 372, 141–150. [Google Scholar] [CrossRef]
- Park, S.-G.; Rajesh, P.P.; Sim, Y.-U.; Jadhav, D.A.; Noori, M.T.; Kim, D.-H.; Al-Qaradawi, S.Y.; Yang, E.; Jang, J.-K.; Chae, K.-J. Addressing scale-up challenges and enhancement in performance of hydrogen-producing microbial electrolysis cell through electrode modifications. Energy Rep. 2022, 8, 2726–2746. [Google Scholar]
- Noori, M.T.; Bhowmick, G.D.; Tiwari, B.R.; Das, I.; Ghangrekar, M.M.; Mukherjee, C.K. Utilisation of waste medicine wrappers as an efficient low-cost electrode material for microbial fuel cell. Environ. Technol. United Kingd. 2018, 41, 1209–1218. [Google Scholar] [CrossRef]
- Saito, T.; Mehanna, M.; Wang, X.; Cusick, R.D.; Feng, Y.; Hickner, M.A.; Logan, B.E. Effect of nitrogen addition on the performance of microbial fuel cell anodes. Bioresour. Technol. 2011, 102, 395–398. [Google Scholar] [CrossRef]
- Noori, M.T.; Ghangrekar, M.M.; Mukherjee, C.K. Sediment Microbial Fuel Cell and Constructed Wetland Assisted with It: Challenges and Future Prospects. In Microial Fuel Cell: A Bioelectrochemical System that Converts Waste to Watts; Springer: Cham, Switzerland, 2017; pp. 335–352. [Google Scholar] [CrossRef]
- Gong, Y.; Radachowsky, S.E.; Wolf, M.; Nielsen, M.E.; Girguis, P.R.; Reimers, C.E. Benthic microbial fuel cell as direct power source for an acoustic modem and seawater oxygen/temperature sensor system. Environ. Sci. Technol. 2011, 45, 5047–5053. [Google Scholar] [CrossRef]
- Geppert, F.; Liu, D.; van Eerten-Jansen, M.; Weidner, E.; Buisman, C.; ter Heijne, A. Bioelectrochemical Power-to-Gas: State of the Art and Future Perspectives. Trends Biotechnol. 2016, 34, 879–894. [Google Scholar] [CrossRef] [PubMed]
- Virdis, B.; Rabaey, K.; Yuan, Z.; Keller, J. Microbial fuel cells for simultaneous carbon and nitrogen removal. Water Res. 2008, 42, 3013–3024. [Google Scholar] [CrossRef] [PubMed]
- Zubrik, A.; Matik, M.; Hredzák, S.; Lovás, M.; Danková, Z.; Kováčová, M.; Briančin, J. Preparation of chemically activated carbon from waste biomass by single-stage and two-stage pyrolysis. J. Clean. Prod. 2017, 143, 643–653. [Google Scholar]
- Schievano, A.; Berenguer, R.; Goglio, A.; Bocchi, S.; Marzorati, S.; Rago, L.; Louro, R.O.; Paquete, C.M.; Esteve-Núñez, A. Electroactive Biochar for Large-Scale Environmental Applications of Microbial Electrochemistry. ACS Sustain. Chem. Eng. 2019, 7, 18198–18212. [Google Scholar] [CrossRef]
- Goglio, A.; Tucci, M.; Rizzi, B.; Colombo, A.; Cristiani, P.; Schievano, A. Microbial recycling cells (MRCs): A new platform of microbial electrochemical technologies based on biocompatible materials, aimed at cycling carbon and nutrients in agro-food systems. Sci. Total Environ. 2019, 649, 1349–1361. [Google Scholar] [CrossRef]
- Yuan, Y.; Bolan, N.; Prévoteau, A.; Vithanage, M.; Biswas, J.K.; Ok, Y.S.; Wang, H. Applications of biochar in redox-mediated reactions. Bioresour. Technol. 2017, 246, 271–281. [Google Scholar] [CrossRef]
- Prévoteau, A.; Ronsse, F.; Cid, I.; Boeckx, P.; Rabaey, K. The electron donating capacity of biochar is dramatically underestimated. Sci. Rep. 2016, 6, 32870. [Google Scholar] [CrossRef] [Green Version]
- Cruz Viggi, C.; Simonetti, S.; Palma, E.; Pagliaccia, P.; Braguglia, C.; Fazi, S.; Baronti, S.; Navarra, M.A.; Pettiti, I.; Koch, C. Enhancing methane production from food waste fermentate using biochar: The added value of electrochemical testing in pre-selecting the most effective type of biochar. Biotechnol. Biofuels 2017, 10, 303. [Google Scholar]
- Kronenberg, M.; Trably, E.; Bernet, N.; Patureau, D. Biodegradation of polycyclic aromatic hydrocarbons: Using microbial bioelectrochemical systems to overcome an impasse. Environ. Pollut. 2017, 231, 509–523. [Google Scholar] [CrossRef]
- Wilberforce, T.; Abdelkareem, M.A.; Elsaid, K.; Olabi, A.G.; Sayed, E.T. Role of carbon-based nanomaterials in improving the performance of microbial fuel cells. Energy 2022, 240, 122478. [Google Scholar] [CrossRef]
- Mohanakrishna, G.; Abu-Reesh, I.M.; Pant, D. Enhanced bioelectrochemical treatment of petroleum refinery wastewater with Labaneh whey as co-substrate. Sci. Rep. 2020, 10, 19665. [Google Scholar] [CrossRef] [PubMed]
- Levenspiel, O. Chemical Reaction Engineering; John Wiley & Sons: Hoboken, NJ, USA, 1998; ISBN 047125424X. [Google Scholar]
- Fogler, H.S.; Fogler, S.H. Elements of Chemical Reaction Engineering; Pearson Educacion: London, UK, 1999; ISBN 0135317088. [Google Scholar]
- Yang, Y.; Wang, Z.; Gan, C.; Klausen, L.H.; Bonné, R.; Kong, G.; Luo, D.; Meert, M.; Zhu, C.; Sun, G. Long-distance electron transfer in a filamentous Gram-positive bacterium. Nat. Commun. 2021, 12, 1709. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, R.; Kai, F.; Okamoto, A.; Hashimoto, K. Mechanisms of long-distance extracellular electron transfer of metal-reducing bacteria mediated by nanocolloidal semiconductive iron oxides. J. Mater. Chem. A 2013, 1, 5148–5157. [Google Scholar] [CrossRef]
- Nath, D.; Ghangrekar, M.M. Plant secondary metabolites induced electron flux in microbial fuel cell: Investigation from laboratory-to-field scale. Sci. Rep. 2020, 10, 17185. [Google Scholar] [CrossRef]
- Chen, B.-Y.; Liao, J.-H.; Hsueh, C.-C.; Qu, Z.; Hsu, A.-W.; Chang, C.-T.; Zhang, S. Deciphering biostimulation strategy of using medicinal herbs and tea extracts for bioelectricity generation in microbial fuel cells. Energy 2018, 161, 1042–1054. [Google Scholar] [CrossRef]
- Chen, B.-Y.; Liao, J.-H.; Hsu, A.-W.; Tsai, P.-W.; Hsueh, C.-C. Exploring optimal supplement strategy of medicinal herbs and tea extracts for bioelectricity generation in microbial fuel cells. Bioresour. Technol. 2018, 256, 95–101. [Google Scholar] [CrossRef]
- Noori, M.T.; Tiwari, B.R.; Ghangrekar, M.M.; Min, B. Azadirachta indica leaf-extract-assisted synthesis of CoO–NiO mixed metal oxide for application in a microbial fuel cell as a cathode catalyst. Sustain. Energy Fuels 2019, 3, 3430–3440. [Google Scholar] [CrossRef]
- Li, S.; Ho, S.-H.; Hua, T.; Zhou, Q.; Li, F.; Tang, J. Sustainable biochar as an electrocatalysts for the oxygen reduction reaction in microbial fuel cells. Green Energy Environ. 2021, 6, 644–659. [Google Scholar] [CrossRef]
- Costa de Oliveira, M.A.; D’Epifanio, A.; Ohnuki, H.; Mecheri, B. Platinum group metal-free catalysts for oxygen reduction reaction: Applications in microbial fuel cells. Catalysts 2020, 10, 475. [Google Scholar] [CrossRef]
- Das, I.; Noori, M.T.; Bhowmick, G.D.; Ghangrekar, M.M. Synthesis of tungstate oxide/bismuth tungstate composite and application in microbial fuel cell as superior low-cost cathode catalyst than platinum. J. Electrochem. Soc. 2018, 165, G146. [Google Scholar] [CrossRef]
- Das, I.; Noori, M.T.; Shaikh, M.; Ghangrekar, M.M.; Ananthakrishnan, R. Synthesis and Application of Zirconium Metal-Organic Framework in Microbial Fuel Cells as a Cost-Effective Oxygen Reduction Catalyst with Competitive Performance. ACS Appl. Energy Mater. 2020, 3, 3512–3520. [Google Scholar] [CrossRef]
- Kim, H.J.; Kim, J.H.; Jeon, Y.; Kim, S. Co-substrate-fed microbial fuel cell for enhanced power generation and removal of groundwater contaminants. Bull. Korean Chem. Soc. 2022, 43, 1052–1056. [Google Scholar] [CrossRef]
- Liu, X.-W.; Sun, X.-F.; Li, D.-B.; Li, W.-W.; Huang, Y.-X.; Sheng, G.-P.; Yu, H.-Q. Anodic Fenton process assisted by a microbial fuel cell for enhanced degradation of organic pollutants. Water Res. 2012, 46, 4371–4378. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Zhou, K.; He, H.; Cao, J.; Zhou, S. Adding zero-valent iron to enhance electricity generation during MFC start-up. Int. J. Environ. Res. Public Health 2020, 17, 806. [Google Scholar] [CrossRef] [Green Version]
- Oktavitri, N.I.; Nakashita, S.; Hibino, T.; Van Tran, T.; Jeong, I.; Oh, T.-G.; Kim, K. Enhancing pollutant removal and electricity generation in Sediment Microbial Fuel Cell with nano zero-valent iron. Environ. Technol. Innov. 2021, 24, 101968. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Noori, M.T.; Thatikayala, D.; Min, B. Bioelectrochemical Remediation for the Removal of Petroleum Hydrocarbon Contaminants in Soil. Energies 2022, 15, 8457. https://doi.org/10.3390/en15228457
Noori MT, Thatikayala D, Min B. Bioelectrochemical Remediation for the Removal of Petroleum Hydrocarbon Contaminants in Soil. Energies. 2022; 15(22):8457. https://doi.org/10.3390/en15228457
Chicago/Turabian StyleNoori, Md Tabish, Dayakar Thatikayala, and Booki Min. 2022. "Bioelectrochemical Remediation for the Removal of Petroleum Hydrocarbon Contaminants in Soil" Energies 15, no. 22: 8457. https://doi.org/10.3390/en15228457
APA StyleNoori, M. T., Thatikayala, D., & Min, B. (2022). Bioelectrochemical Remediation for the Removal of Petroleum Hydrocarbon Contaminants in Soil. Energies, 15(22), 8457. https://doi.org/10.3390/en15228457