CO2-Water-Rock Interaction and Pore Structure Evolution of the Tight Sandstones of the Quantou Formation, Songliao Basin
Abstract
:1. Introduction
2. Geological Background and Research Methods
2.1. Sample Information
2.2. Experimental Device and Design
2.3. Experimental Method
2.3.1. Analysis of Physical Properties
2.3.2. X-ray Diffraction Mineral Analysis
2.3.3. High-Resolution Field Emission Scanning Electron Microscope (FE-SEM) and QEMSCAN Analysis
2.3.4. Ion Analysis
2.3.5. Micron CT
3. Results
3.1. Differential Evolution Characteristics of Minerals
3.2. Ion Evolution
3.3. SEM Results
3.4. Three-Dimensional Characterization of the Pore Structures
3.5. Changes in the Reservoir Physical Properties
4. Discussion
4.1. CO2 Water-Rock Interaction in Tight Sandstone
4.2. Physical Property Changes
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wu, S.; Zou, C.; Ma, D.; Zhai, X.; Yu, H.; Yu, Z. Reservoir property changes during CO2–brine flow-through experiments in tight sandstone: Implications for CO2 enhanced oil recovery in the Triassic Chang 7 Member tight sandstone, Ordos Basin, China. J. Asian Earth Sci. 2019, 179, 200–210. [Google Scholar] [CrossRef]
- Moodiea, N.; Ampomahb, W.; Jia, W.; Heathc, J.; Phersona, B. Assignment and calibration of relative permeability by hydrostratigraphic units for multiphase flow analysis, case study: CO2-EOR operations at the Farnsworth Unit, Texas. Int. J. Greenh. Gas Control 2019, 81, 103–114. [Google Scholar] [CrossRef]
- Ma, B.; Cao, Y.; Zhang, Y.; Eriksson, K. Role of CO2-water-rock interactions and implications for CO2 sequestration in Eocene deeply buried sandstones in the Bonan Sag, eastern Bohai Bay Basin, China. Chem. Geol. 2019, 541, 119585. [Google Scholar] [CrossRef]
- Jiang, K.; Ashworth, P. The development of Carbon Capture Utilization and Storage (CCUS) research in China: A bibliometric perspective. Renew. Sustain. Energy Rev. 2021, 138, 110521. [Google Scholar] [CrossRef]
- Sun, Y.; Li, Q.; Yang, D.; Liu, X. Laboratory core flooding experimental systems for CO2 geosequestration: An updated review over the past decade. J. Rock Mech. Geotech. Eng. 2011, 8, 113–126. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Zan, N.; Cao, X.; Cao, Y.; Yuan, G.; Jonathan, G.; Lin, M. Geologic CO2 storage in arkosic sandstones with CaCl2-rich formation water. Chem. Geol. 2020, 558, 119867. [Google Scholar]
- Hamza, A.; Hussein, I.A.; Al-Marri, M.J.; Mahmoud, M.; Shawabkeh, R.; Aparicio, S. CO2 enhanced gas recovery and sequestration in depleted gas reservoirs: A review. J. Pet. Sci. Eng 2020, 196, 107685. [Google Scholar] [CrossRef]
- Yu, Z.; Liu, L.; Yang, S.; Li, S.; Yang, Y. An experimental study of CO2–brine–rock interaction at in situ pressure–temperature reservoir conditions. Chem. Geol. 2012, 326–327, 88–101. [Google Scholar] [CrossRef]
- Hua, G.; Wu, S.; Jing, Z.; Yu, X.; Xu, K.; Shi, W.; Guan, M. Rock physical and chemical alterations during the in-situ interaction between fracturing fluid and Silurian organic-rich shales in China. J. Nat. Gas Sci. Eng. 2021, 94, 104075. [Google Scholar] [CrossRef]
- Dávila, G.; Cama, J.; Luquot, L.; Soler, J.; Ayora, C. Experimental and modeling study of the interaction between a crushed marl caprock and CO2-rich solutions under different pressure and temperature conditions. Appl. Geochem. 2017, 448, 26–42. [Google Scholar] [CrossRef]
- Foroutan, M.; Ghazanfari, E.; Amirlatifi, A.; Perdrial, N. Variation of pore-network, mechanical and hydrological characteristics of sandstone specimens through CO2-enriched brine injection. Geomech. Energy Environ. 2021, 26, 100217. [Google Scholar] [CrossRef]
- Liu, N. Mineral Trapping Capacity Estimation of CO2 in Sandstones: Constraints from the Dawsonite-Bearing Sandstones in Honggang, Southern Part of Songliao Basin. Ph.D. Thesis, Jilin University, Changchun, China, 2011. [Google Scholar]
- Yu, Z.; Liu, L.; Liu, K.; Yang, S.; Yang, Y. Petrological characterization and reactive transport simulation of a high-water-cut oil reservoir in the Southern Songliao Basin, Eastern China for CO2 sequestration. Int. J. Greenh. Gas Control 2015, 37, 191–212. [Google Scholar] [CrossRef]
- Park, J. Porosity changes due to analcime in a basaltic tuff from the Janggi Basin, Korea: Experimental and geochemical modeling study of CO2–water–rock interactions. Environ. Earth Sci. 2021, 80, 81. [Google Scholar] [CrossRef]
- Yu, Z. An Experiment Study on Water-Rock Interaction during Water Flooding in Formations Saturated with CO2-Example from Southern Songliao Basin. Ph.D. Thesis, Jilin University, Changchun, China, 2013. [Google Scholar]
- Bai, B.; Zhu, R.; Wu, S.; Yang, W.; Gelb, J.; Gu, A.; Zhang, X.; Su, L. Multi-scale method of Nano(Micro)-CT study on microscopic pore structure of tight sandstone of Yanchang Formation, Ordos Basin. Pet. Explor. Dev. 2013, 40, 329–333. [Google Scholar] [CrossRef]
- Du, X.; Xie, X.; Lu, Y.; Ren, J.; Zhang, S.; Lang, P.; Cheng, T.; Su, M.; Zhang, C. Distribution of continental red paleosols and their forming mechanisms in the Late Cretaceous Yaojia Formation of the Songliao Basin, NE China. Cretac. Res. 2011, 32, 244–257. [Google Scholar] [CrossRef]
- Fischer, S.; Liebscher, A.; Wandrey, M. CO2–brine–rock interaction—First results of long-term exposure experiments at in situ P–T conditions of the Ketzin CO2 reservoir. Geochemistry 2010, 70, 155–164. [Google Scholar] [CrossRef] [Green Version]
- Hamza, A.; Hussein, I.; Marri, M.; Mahmoud, M.; Shawabkeh, R. Impact of clays on CO2 adsorption and enhanced gas recovery in sandstone reservoirs. Int. J. Greenh. Gas Control 2021, 106, 103286. [Google Scholar] [CrossRef]
- Wang, F.; Ping, S.; Yuan, Y.; Sun, Z.; Tian, H.; Yang, Z. Effects of the mechanical response of low-permeability sandstone reservoirs on CO2 geological storage based on laboratory experiments and numerical simulations. Sci. Total Environ. 2021, 796, 149066. [Google Scholar] [CrossRef]
- Ketzer, J.; Iglesias, R.; Einloft, S.; Dullius, J.; Ligabue, R.; Lima, V. Water–rock–CO2 interactions in saline aquifers aimed for carbon dioxide storage: Experimental and numerical modeling studies of the Rio Bonito Formation (Permian), southern Brazil. Appl. Geochem. 2009, 24, 760–767. [Google Scholar] [CrossRef]
- Liu, F.; Lu, P.; Zhu, C.; Xiao, Y. Coupled reactive flow and transport modeling of CO2 sequestration in the Mt. Simon sandstone formation, Midwest U.S.A. Int. J. Greenh. Gas Control 2011, 5, 294–307. [Google Scholar] [CrossRef]
- Wilke, F.; Vásquez, M.; Wiersberg, T.; Naumann, R.; Erzinger, J. On the interaction of pure and impure supercritical CO2 with rock forming minerals in saline aquifers: An experimental geochemical approach. Appl. Geochem. 2012, 27, 1615–1622. [Google Scholar] [CrossRef]
- Dávila, G.; Luquot, L.; Soler, J.; Cama, J. Interaction between a fractured marl caprock and CO2-rich sulfate solution under supercritical CO2 conditions. Int. J. Greenh. Gas Control 2016, 48, 105–119. [Google Scholar] [CrossRef] [Green Version]
- Legros, H.; Sanchez, P.; Elongo, V.; Laurent, O.; Falck, H.; Adlakha, E.; Michou, C. Fluid evolution of the Cantung tungsten skarn, Northwest Territories, Canada: Differentiation and fluid-rock interaction. Ore Geol. Rev. 2020, 127, 103866. [Google Scholar] [CrossRef]
- Perrin, J.; Krause, M.; Kuo, C.; Miljkovic, L.; Charoba, E.; Benson, S. Core-scale experimental study of relative permeability properties of CO2 and brine in reservoir rocks. Energy Procedia 2009, 1, 3515–3552. [Google Scholar] [CrossRef] [Green Version]
- Ajayi, T.; Gomes, G.; Bera, A. A review of CO2 storage in geological formations emphasizing modeling, monitoring and capacity estimation approaches. Pet. Sci. 2019, 16, 1028–1063. [Google Scholar] [CrossRef]
Sample ID | Stages | Porosity | Permeability | Mineral Content (%) | Ion Composition (mg/L) | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
% | mD | Quartz | K-Feldspar | Albite | Ankerite | Clay | Ca2+ | Mg2+ | Si4+ | ||
A-130 | Initial | 7.911 | 0.324 | 50.8 | 1.6 | 27.6 | 7.5 | 10.3 | 4.5 | 13.6 | 0.3 |
24 h | 8.902 | 0.455 | 52.9 | 3.2 | 27.4 | 6.1 | 9.2 | 292.0 | 81.8 | 19.5 | |
72 h | 9.321 | 0.531 | 56.5 | 1.9 | 19.7 | 4.5 | 7.4 | 449.3 | 272.5 | 54.0 | |
192 h | 9.127 | 0.504 | 64.5 | 2.3 | 16.7 | 7.4 | 8.3 | 521.5 | 170.3 | 40.7 | |
432 h | 9.597 | 0.551 | 58.0 | 2.6 | 19.8 | 6.7 | 11.3 | 943.5 | 163.5 | 51.0 | |
Q-147 | Initial | 14.741 | 18.002 | 78.6 | 9.9 | 6.0 | / | 5.5 | |||
24 h | 15.175 | 21.161 | 82.8 | 5.3 | 5.2 | / | 6.7 | ||||
72 h | 15.454 | 21.556 | 84.6 | 4.7 | 3.3 | 1.1 | 6.3 | ||||
192 h | 15.595 | 21.464 | 78.4 | 13.0 | 4.8 | / | 3.8 | ||||
432 h | 15.341 | 23.829 | 81.0 | 5.6 | 5.6 | / | 7.8 | ||||
Ion composition(mg/L) | |||||||||||
K+ | Na+ | So42− | |||||||||
Q-148 | Initial | 9.701 | 0.37 | 55.6 | 1.9 | 28.9 | 6.3 | 7.3 | 146.7 | 6437.0 | 2570.0 |
24 h | 9.983 | 0.325 | 54.7 | 2.7 | 24.0 | 6.9 | 11.7 | 136.7 | 5115.4 | 2760.0 | |
72 h | 10.46 | 0.358 | 51.5 | 2.3 | 25.1 | / | 12.3 | 325.8 | 9507.8 | 5440.0 | |
192 h | 10.315 | 0.351 | 53.7 | 1.8 | 24.6 | / | 12.1 | 143.7 | 3829.9 | 2785.7 | |
432 h | 10.346 | 0.381 | 51.1 | 3.6 | 24.9 | / | 12.9 | 199.4 | 7225.4 | 3140.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, Y.; Wu, S.; Chen, Y.; Yu, C.; Yu, Z.; Hua, G.; Guan, M.; Lin, M.; Yu, X. CO2-Water-Rock Interaction and Pore Structure Evolution of the Tight Sandstones of the Quantou Formation, Songliao Basin. Energies 2022, 15, 9268. https://doi.org/10.3390/en15249268
Zhao Y, Wu S, Chen Y, Yu C, Yu Z, Hua G, Guan M, Lin M, Yu X. CO2-Water-Rock Interaction and Pore Structure Evolution of the Tight Sandstones of the Quantou Formation, Songliao Basin. Energies. 2022; 15(24):9268. https://doi.org/10.3390/en15249268
Chicago/Turabian StyleZhao, Yue, Songtao Wu, Yongjin Chen, Cong Yu, Zhichao Yu, Ganlin Hua, Modi Guan, Minjie Lin, and Xiaobo Yu. 2022. "CO2-Water-Rock Interaction and Pore Structure Evolution of the Tight Sandstones of the Quantou Formation, Songliao Basin" Energies 15, no. 24: 9268. https://doi.org/10.3390/en15249268
APA StyleZhao, Y., Wu, S., Chen, Y., Yu, C., Yu, Z., Hua, G., Guan, M., Lin, M., & Yu, X. (2022). CO2-Water-Rock Interaction and Pore Structure Evolution of the Tight Sandstones of the Quantou Formation, Songliao Basin. Energies, 15(24), 9268. https://doi.org/10.3390/en15249268