Decarbonizing the International Shipping and Aviation Sectors
Abstract
:1. Introduction
2. The Landscape of the International Maritime and Aviation Sector
2.1. International Maritime
2.2. International Aviation
3. Materials and Methods
3.1. The PROMETHEUS Energy System Model
3.2. Model Improvements Related to International Transport
3.3. Scenario Design
4. Results
4.1. Transformation of Aviation
4.2. Transformation of the International Shipping Sector
5. Discussion
6. Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- UNFCCC. Paris Agreement. Decision 1/CP.17. 2015. Available online: http://unfccc.int/rsource/docs/2015/cop21/eng/l09r01.pdf (accessed on 15 September 2022).
- Sims, R.; Schaeffer, R.; Creutzig, F.; Cruz-Núñez, X.; D’Agosto, M.; Dimitriu, D.; Meza, M.J.F.; Fulton, L.; Kobayashi, S.; Lah, O.; et al. Transport. In Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovern-Mental Panel on Climate Change; Edenhofer, O., Pichs-Madruga, R., Sokona, Y., Farahani, E., Kadner, S., Seyboth, K., Adler, A., Baum, I., Brunner, S., Eicke-meier, P., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2014. [Google Scholar]
- Gössling, S.; Lyle, C. Transition policies for climatically sustainable aviation. Transp. Rev. 2021, 41, 643–658. [Google Scholar] [CrossRef]
- Dray, L.; Schäfer, A.W.; Grobler, C.; Falter, C.; Allroggen, F.; Stettler, M.E.J.; Barrett, S.R.H. Cost and emissions pathways towards net-zero climate impacts in aviation. Nat. Clim. Chang. 2022, 12, 956–962. [Google Scholar] [CrossRef]
- Bouman, E.A.; Lindstad, E.; Rialland, A.I.; Strømman, A.H. State-of-the-art technologies, measures, and potential for reducing GHG emissions from shipping—A review. Transp. Res. D Transp. Environ. 2017, 52, 408–421. [Google Scholar] [CrossRef]
- Rantanen, A.; Berg, N.; Kanto, E. Digitalization as a Tool to Reduce GHG Emissions in Maritime Transport; No. 28/2019; Finnish Transport and Communications Agency: Helsinki, Finland, 2019; ISBN 978-952-311-361-9. [Google Scholar]
- Rehmatulla, N.; Parker, S.; Smith, T.; Stulgis, V. Wind technologies: Opportunities and barriers to a low carbon shipping industry. Mar. Policy 2017, 75, 217–226. [Google Scholar] [CrossRef]
- Sharmina, M.; Edelenbosch, O.Y.; Wilson, C.; Freeman, R.; Gernaat, D.E.H.J.; Gilbert, P.; Larkin, A.; Littleton, E.W.; Traut, M.; van Vuuren, D.P.; et al. Decarbonising the critical sectors of aviation, shipping, road freight and industry to limit warming to 1.5–2 °C. Clim. Policy 2021, 21, 455–474. [Google Scholar] [CrossRef]
- Balcombe, P.; Brierley, J.; Lewis, C.; Skatvedt, L.; Speirs, J.; Hawkes, A.; Staffell, I. How to decarbonise international shipping: Options for fuels, technologies and policies. Energy Convers. Manag. 2019, 182, 72–88. [Google Scholar] [CrossRef]
- Lloyd’s Register and UMAS. Techno-Economic Assessment of Zero-Carbon Fuels; Lloyds Regist., no. March, 2020. 2020. Available online: https://www.methanol.org/techno-economic-assessment-of-zero-carbon-fuels (accessed on 12 October 2022).
- DNV GL. Maritime Forecast to 2050. 2020. Available online: https://www.dnv.com/maritime/publications/maritime-forecast-2022/download-the-report.html (accessed on 10 October 2022).
- Traut, M.; Larkin, A.; Anderson, K.; McGlade, C.; Sharmina, M.; Smith, T. CO2 abatement goals for international shipping. Clim. Policy 2018, 18, 1066–1075. [Google Scholar] [CrossRef] [Green Version]
- Rogelj, J.; Popp, A.; Calvin, K.V.; Luderer, G.; Emmerling, J.; Gernaat, D.; Fujimori, S.; Strefler, J.; Hasegawa, T.; Marangoni, G.; et al. Scenarios towards limiting global mean temperature increase below 1.5 °C. Nat. Clim Chang. 2018, 8, 325–332. [Google Scholar] [CrossRef] [Green Version]
- Müller-Casseres, E.; Carvalho, F.; Nogueira, T.; Fonte, C.; Império, M.; Poggio, M.; Wei, H.K.; Portugal-Pereira, J.; Rochedo, P.R.R.; Szklo, A.; et al. Production of alternative marine fuels in Brazil: An integrated assessment perspective. Energy 2020, 219, 119444. [Google Scholar] [CrossRef]
- IPCC. Global Warming of 1.5 °C. An IPCC Special Report on the Impacts of Global Warming of 1.5 °C above Pre-Industrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Response to the Threat of Climate Change, Sustainable Development, and Efforts to Eradicate Poverty; Masson-Delmotte, V., Zhai, P., Pörtner, H.-O., Roberts, D., Skea, J., Shukla, P.R., Pirani, A., Moufouma-Okia, W., Péan, C., Pidcock, R., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2018; p. 616. [Google Scholar] [CrossRef]
- Gambhir, A.; Butnar, I.; Li, P.; Smith, P.; Strachan, N. A Review of Criticisms of Integrated Assessment Models and Proposed Approaches to Address These, through the Lens of BECCS. Energies 2019, 12, 1747. [Google Scholar] [CrossRef] [Green Version]
- Keppo, I.; Butnar, I.; Bauer, N.; Caspani, M.; Edelenbosch, O.; Emmerling, J.; Fragkos, P.; Guivarch, C.; Harmsen, M.; Lefevre, J.; et al. Exploring the possibility space: Taking stock of the diverse capabilities and gaps in integrated assessment models. Environ. Res. Lett. 2021, 16, 053006. [Google Scholar] [CrossRef]
- Esmeijer, K.; den Elzen, M.; van Soest, H. Analysing International Shipping and Aviation Emission Projections; PBL Publication Number: 4076; PBL Netherlands Environmental Assessment Agency: Hague, The Netherlands, 2020. [Google Scholar]
- IRENA. A Pathway to Decarbonise the Shipping Sector by 2050, Abu Dhabi, 118p, ISBN 978-92-9260-330-4. 2021. Available online: https://www.irena.org/publications/2021/Oct/A-Pathway-to-Decarbonise-the-Shipping-Sector-by-2050 (accessed on 9 September 2022).
- Pons, A.; Martin, C.; Andrew, E.; Finney, H.; Kwon, H.; Millard, K.; Budaragina, M.; Scarbrough, T.; Siskos, P.; De Vita, A.; et al. Study on EU ETS for Maritime Transport and Possible Alternative Options of Combinations to Reduce Greenhouse Gas Emissions: Final Report; Publications Office of the European Union: Luxembourg, 2021. [Google Scholar] [CrossRef]
- Singh, J.; Sharma, S.K.; Srivastava, R. Managing Fuel Efficiency in the Aviation Sector: Challenges, Accomplish-ments and Opportunities. FIIB Bus. Rev. 2018, 7, 244–251. [Google Scholar] [CrossRef]
- Müller-Casseres, E.; Edelenbosch, O.Y.; Szklo, A.; Schaeffer, R.; van Vuuren, D.P. Global futures of trade impact-ing the challenge to decarbonize the international shipping sector. Energy 2021, 237, 121547. [Google Scholar] [CrossRef]
- Marcucci, A.; Panos, E.; Kypreos, S.; Fragkos, P. Probabilistic assessment of realizing the 1.5 °C climate target. Appl. Energy 2019, 239, 239–251. [Google Scholar] [CrossRef]
- Fragkos, P.; Kouvaritakis, N. Model-based analysis of Intended Nationally Determined Contributions and 2 °C pathways for major economies. Energy 2018, 160, 965–997. [Google Scholar] [CrossRef]
- Fragkos, P.; Kouvaritakis, N.; Capros, P. Incorporating uncertainty into world energy modelling: The PROMETHEUS Model. Environ. Model. Assess. 2015, 20, 549–569. [Google Scholar] [CrossRef]
- Rochedo, P.R.R.; Fragkos, P.; Garaffa, R.; Couto, L.C.; Baptista, L.B.; Cunha, B.S.L.; Schaeffer, R.; Szklo, A. Is green recovery enough? Analysing the impacts of post-COVID-19 economic packages. Energies 2021, 14, 5567. [Google Scholar] [CrossRef]
- Fragkos, P. Global Energy System Transformations to 1.5 °C: The Impact of Revised Intergovernmental Panel on Climate Change Carbon Budgets. Energy Technol. 2021, 8, 2000395. [Google Scholar] [CrossRef]
- Dalla Longa, F.; Fragkos, P.; Nogueira, L.P.; van der Zwaan, B. System-level effects of increased energy efficiency in global low-carbon scenarios: A model comparison. Comput. Ind. Eng. 2022, 167, 108029. [Google Scholar] [CrossRef]
- IEA. International Shipping; IEA: Paris, France, 2022; Available online: https://www.iea.org/reports/international-shipping (accessed on 10 October 2022).
- Faber, J.; Hanayama, S.; Zhang, S.; Pereda, P.; Comer, B.; Hauerhof, E.; van der Loeff, W.S.; Smith, T.; Zhang, Y.; Kosaka, H.; et al. Fourth IMO GHG Report, London, UK, 524p. 2021. Available online: https://www.imo.org/en/OurWork/Environment/Pages/Fourth-IMO-Greenhouse-Gas-Study-2020.aspx (accessed on 29 October 2022).
- UNCTAD. Review of Maritime Transport 2021, New York, 177p. 2021. Available online: https://unctad.org/system/files/official-document/rmt2021summary_en.pdf (accessed on 9 September 2022).
- MO. UN Body Adopts Climate Change Strategy for Shipping. 2018. Available online: Imo.org (accessed on 9 October 2022).
- IMO. Initial IMO GHG Strategy. 2019. Available online: https://www.imo.org/en/MediaCentre/HotTopics/Pages/Reducing-greenhouse-gas-emissions-from-ships.aspx (accessed on 21 January 2022).
- IEA. World Energy Outlook 2021; IEA: Paris, France, 2021; License: CC BY 4.0; Available online: https://www.iea.org/reports/world-energy-outlook-2021 (accessed on 7 September 2022).
- Kilemo, H.; Montgomery, R.; Leitão, A.M. Mapping of Zero Emissions Pilots and Demonstration Projects, 3rd ed.; Global Maritime Forum/World Economic Forum: Copenhagen, Denmark, 2022. [Google Scholar]
- 117th Congress 2d Session, H.R.8336, Clean Air Act. 12 July 2022. Available online: https://www.congress.gov/bill/117th-congress/house-bill/8336/text?r=3&s=1 (accessed on 12 September 2022).
- Department for Transport. COP 26: Clydebank Declaration for Green Shipping Corridors. Available online: www.gov.uk (accessed on 14 November 2022).
- UN Climate Change Conference 2021 (COP26)—Glasgow—1 November 2021, Declaration on Zero Emission Shipping by 2050. Available online: https://em.dk/media/14312/declaration-on-zero-emission-shipping-by-2050-cop26-glasgow-1-november-2021.pdf (accessed on 9 September 2022).
- IEA. Aviation; IEA: Paris, France, 2022; Available online: https://www.iea.org/reports/aviation (accessed on 5 September 2022).
- Pidcock, R.; Yeo, S. Analysis: Aviation Could Consumer a Quarter of 1.5 °C Carbon Budget by 2050. Carbon Brief. 2016. Available online: https://www.carbonbrief.org/aviation-consume-quarter-carbon-budget (accessed on 16 September 2022).
- Policy Brief Article 6 and CORSIA after Glasgow: Ready for Take-Off? NDC ASPECTS Policy Brief, Catherine Hall, University of Eastern Finland Nicolas Kreibich, Wuppertal Institute Harro van Asselt, University of Eastern Finland. Available online: https://www.ndc-aspects.eu/sites/default/files/2022-09/ndc_aspects_policy_brief_2.pdf (accessed on 5 September 2022).
- ICAO. Resolution A39-3: Consolidated Statement of Continuing ICAO Policies and Practices Related to Environmental Protection—Global Market-Based Measure (MBM) Scheme. 2016. Available online: https://www.icao.int/environmental-protection/documents/resolution_a39_3.pdf/ (accessed on 5 September 2022).
- UNEP. The Emissions Gap Report; United Nations Environment Programme (UNEP): New York, NY, USA, 2017; ISBN 978-92-807-3673-1. [Google Scholar]
- Larsson, J.; Elofsson, A.; Sterner, T.; Åkerman, J. International and national climate policies for aviation: A review. Clim. Policy 2019, 19, 787–799. [Google Scholar] [CrossRef] [Green Version]
- First Flight in History with 100% Sustainable Aviation Fuel in Both Engines on a Commercial Aircraft—ATR. 2022. Available online: Atr-aircraft.com (accessed on 14 November 2022).
- Proposal for a Directive of the European Parliament and of the Council Amending Directive (EU) 2018/2001 of the European Parliament and of the Council, Regulation (EU) 2018/1999 of the European Parliament and of the Council and Directive 98/70/EC of the European Parliament and of the Council as Regards the Promotion of Energy from Renewable Sources, and Repealing Council Directive (EU) 2015/652. Available online: https://www.europarl.europa.eu/doceo/document/A-9-2022-0208_EN.html (accessed on 15 July 2022).
- Schäfer, A.W.; Barrett, S.R.H.; Doyme, K.; Dray, L.M.; Gnadt, A.R.; Self, R.; O’Sullivan, A.; Synodinos, A.P.; Torija, A.J. Technological, economic and environmental prospects of all-electric air-craft. Nat. Energy 2019, 4, 160–166. [Google Scholar] [CrossRef] [Green Version]
- European Commission. Proposal for a Regulation of the European Parliament and of the Council on Ensuring a Level Playing Field for Sustainable Air Transport. 2021. EUR-Lex - 52021PC0561 - EN - EUR-Lex. Available online: europa.eu (accessed on 14 November 2022).
- Sustainable Aviation Fuel Grand Challenge, Office of Energy Efficiency and Renewable Energy. Available online: https://www.energy.gov/eere/bioenergy/sustainable-aviation-fuel-grand-challenge (accessed on 14 November 2022).
- IATA. Our Commitment to Fly Net Zero by 2050. 2021. Available online: https://www.iata.org/en/programs/environment/flynetzero/#:~:text=IATA%20-%20Fly%20Net%20Zero&text=Fly%20Net%20Zero%20is%20the,warming%20to%201.5°C (accessed on 14 November 2022).
- WAYPOINT 2050. Aviation Benefits Beyond Borders. Available online: aviationbenefits.org (accessed on 14 November 2022).
- Van Soest, H.; Reis, L.A.; Baptista, L.B.; Bertram, C.; Després, J.; Drouet, L.; Elzen, M.; Fragkos, P.; Fricko, O.; Fujimori, S.; et al. A Global Roll-out of Nationally Relevant Policies Bridges the Emissions Gap. Res. Sq. 2020. [Google Scholar] [CrossRef]
- InterVISTAS. Estimating Air Travel Demand Elasticities. IATA. 2007. Available online: https://www.iata.org/en/iata-repository/publications/economic-reports/estimating-air-travel-demand-elasticities---by-intervistas/ (accessed on 7 September 2022).
- Gallet, C.A.; Doucouliagos, H. The income elasticity of air travel: A meta-analysis. Ann. Tour. Res. 2014, 49, 141–155. [Google Scholar] [CrossRef]
- PRIMES Detailed Model Description, 2018. E3MODELLING. Available online: https://e3modelling.com/modelling-tools/primes/ (accessed on 14 October 2021).
- Dray, 2020. AIM2015: Documentation. Available online: http://www.atslab.org/wp-content/uploads/2020/01/AIM-2015-Documentation-v9-270120.pdf (accessed on 12 October 2022).
- European Commission. ReFuelEU Aviation—Sustainable Aviation Fuels. 2020. Available online: europa.eu (accessed on 12 October 2022).
- Paroussos, L.; Fragkos, P.; Capros, P.; Fragkiadakis, K. Assessment of carbon leakage through the industry channel: The EU perspective. Technol. Forecast. Soc. Chang. 2015, 90, 204–219. [Google Scholar] [CrossRef]
- EC—European Commission (2021c): Proposal for a Regulation of the European Parliament and of the Council on the Use of Renewable and Low-Carbon Fuels in Maritime Transport and Amending Directive 2009/16/EC, COM(2021) 562 Final. 2021. Available online: https://ec.europa.eu/info/sites/default/files/fueleu_maritime_-_green_european_maritime_space.pdf (accessed on 20 July 2022).
- Capros, P.; Zazias, G.; Evangelopoulou, S.; Kannavou, M.; Fotiou, T.; Siskos, P.; De Vita, A.; Sakellaris, K. Energy-system modelling of the EU strategy to-wards climate-neutrality. Energy Policy 2019, 134, 110960. [Google Scholar] [CrossRef]
- European Commission. EU Reference Scenario 2020. Available online: europa.eu (accessed on 12 October 2022).
- Van Soest, H.L.; Reis, L.A.; Baptista, L.B.; Bertram, C.; Després, J.; Drouet, L.; Elzen, M.D.; Fragkos, P.; Fricko, O.; Fujimori, S.; et al. Global roll-out of comprehen-sive policy measures may aid in bridging emissions gap. Nat. Commun. 2021, 12, 6419. [Google Scholar] [CrossRef]
- IPCC. Summary for Policymakers. In Climate Change 2022: Mitigation of Climate Change. Contribution of Working Group III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Shukla, P.R., Skea, J., Slade, R., al Khourdajie, A., van Diemen, R., McCollum, D., Pathak, M., Some, S., Vyas, P., Fradera, R., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2022. [Google Scholar] [CrossRef]
- Riahi, K.; Bertram, C.; Huppmann, D.; Rogelj, J.; Bosetti, V.; Cabardos, A.-M.; Deppermann, A.; Drouet, L.; Frank, S.; Fricko, O.; et al. Cost and attainability of meeting stringent climate targets without over-shoot. Nat. Clim. Chang. 2021, 11, 1063–1069. [Google Scholar] [CrossRef]
- Kikstra, J.S.; Vinca, A.; Lovat, F.; Boza-Kiss, B.; van Ruijven, B.; Wilson, C.; Rogelj, J.; Zakeri, B.; Fricko, O.; Riahi, K. Climate mitigation scenarios with per-sistent COVID-19-related energy demand changes. Nat. Energy 2021, 6, 1114–1123. [Google Scholar] [CrossRef]
- Fragkos, P.; Fragkiadakis, K.; Paroussos, L. Reducing the Decarbonisation Cost Burden for EU Energy-Intensive Indus-tries. Energies 2021, 14, 236. [Google Scholar] [CrossRef]
- Johnston, M.; Dawson, J.; de Souza, E.; Stewart, E.J. Management challenges for the fastest growing marine shipping sector in Arctic Canada: Pleasure crafts. Polar Rec. 2017, 53, 67–78. [Google Scholar] [CrossRef]
Scenario Name | Description | Carbon Budget |
---|---|---|
REF | Considers current policies and 2015 NDC pledges, SSP2 socioeconomic assumptions | - |
2deg | Meets the 2 °C carbon budget with a cost-optimal manner | 1000 Gt CO2 |
1.5deg | Meets the 1.5 °C carbon budget with a cost-optimal manner | 650 Gt CO2 |
1.5deg_LD | Meets the 1.5 °C carbon budget with lower aviation and shipping activity than 1.5 °C. | 650 Gt CO2 |
1.5deg_HD | Meets the 1.5 °C carbon budget with higher aviation and shipping activity than 1.5 °C. | 650 Gt CO2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fragkos, P. Decarbonizing the International Shipping and Aviation Sectors. Energies 2022, 15, 9650. https://doi.org/10.3390/en15249650
Fragkos P. Decarbonizing the International Shipping and Aviation Sectors. Energies. 2022; 15(24):9650. https://doi.org/10.3390/en15249650
Chicago/Turabian StyleFragkos, Panagiotis. 2022. "Decarbonizing the International Shipping and Aviation Sectors" Energies 15, no. 24: 9650. https://doi.org/10.3390/en15249650
APA StyleFragkos, P. (2022). Decarbonizing the International Shipping and Aviation Sectors. Energies, 15(24), 9650. https://doi.org/10.3390/en15249650