A Study on the Possibility of Using Iron Scale in the Construction of Electromagnetic Field Shields
Abstract
:1. Introduction
2. Materials and Methods
- − unfilled polyethylene;
- − from 10 to 90% polyethylene + from 90 to 10% iron scale.
2.1. Morphology, Chemical, and Phase Composition Measurements
2.2. Sample Preparation
3. Results and Discussion
3.1. Measurement of Electrical and Magnetic Properties
3.2. Measurement of Thermomechanical Properties
3.3. Tensile Strength
3.4. Shielding Properties
4. Conclusion
- Iron scale in the form of flakes provides the highest level of SE in relation to the filler content.
- Flake scale composites have better mechanical properties than dust-filled composites.
- The developed composites are easy to form and utilize materials easy for recycling.
- Generally, iron scale is a waste that causes trouble for steelmakers. As a result, it is also widely available, unlike nanocarbon and other nanoparticles.
- The cost of making one square meter of shielding from the proposed composite is lower than alternative commercial materials, such as MUMETAL®, copper and aluminum plates, or silver-plated fabrics. However, it was not an economic factor but an ecological one that was the dominant need satisfied by the offered solution.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Tansel, B. From electronic consumer products to e-wastes: Global outlook, waste quantities, recycling challenges. Environ. Int. 2017, 98, 35–45. [Google Scholar] [CrossRef] [PubMed]
- Gubanova, E.; Kupinets, L.; Deforzh, H.; Koval, V.; Gaska, K. Recycling of polymer waste in the context of developing circular economy. Archit. Civ. Eng. Environ. 2019, 12, 99–108. [Google Scholar] [CrossRef] [Green Version]
- Söderholm, P.; Ekvall, T. Metal markets and recycling policies: Impacts and challenges. Miner. Econ. 2020, 33, 257–272. [Google Scholar] [CrossRef] [Green Version]
- Non-Binding Guide to Good Practice for Implementing Directive 2013/35/EU Electromagnetic Fields. Available online: https://op.europa.eu/en/publication-detail/-/publication/c6440d35-8775-11e5-b8b7-01aa75ed71a1 (accessed on 21 December 2021).
- Geetha, S.; Satheesh Kumar, K.K.; Rao, C.R.; Vijayan, M.; Trivedi, D.C. EMI shielding: Methods and materials—A review. J. Appl. Polym. Sci. 2009, 112, 2073–2086. [Google Scholar] [CrossRef]
- Fang, K.; Wang, T.; Yuan, X.; Miao, C.; Pan, Y.; Li, J. Detection of weak electromagnetic interference attacks based on fingerprint in IIoT systems. Future Gener. Comput. Syst. 2022, 126, 295–304. [Google Scholar] [CrossRef]
- Communication from The Commission to The European Parliament, The Council, The European Economic and Social Committee and The Committee of The Regions. Connectivity for a Competitive Digital Single Market—Towards a European Gigabit Society; European Committee for Standardization: Brussels, Belgium, 2016; COM(2016) 587 final.
- List of Common EMC Test Standards. Available online: https://en.wikipedia.org/wiki/List_of_common_EMC_test_standards (accessed on 12 October 2021).
- Bantsis, G.; Sikalidis, C.; Betsiou, M.; Yioultsis, T.; Xenos, T. Electromagnetic absorption, reflection and interference shielding in X-band frequency range of low cost ceramic building bricks and sandwich type ceramic tiles using mill scale waste as an admixture. Ceram. Int. 2011, 37, 3535–3545. [Google Scholar] [CrossRef]
- Hayes, P.R. Efficient EMI characterization of unshielded buildings. 2005 IEEE Antennas Propag. Soc. Int. Symp. 2015, 3, 256–259. [Google Scholar]
- Chung, D.D.L. Electromagnetic interference shielding effectiveness of carbon materials. Carbon 2001, 39, 279–285. [Google Scholar] [CrossRef]
- Li, L.; Chung, D.D.L. Electrical and mechanical properties of electrically conductive polyethersulfone composites. Composites 1994, 25, 215–224. [Google Scholar] [CrossRef]
- Pradhan, S.S.; Unnikrishnan, L.; Mohanty, S.; Nayak, S.K. Thermally conducting polymer composites with EMI shielding: A review. J. Electron. Mater. 2020, 49, 1749–1764. [Google Scholar] [CrossRef]
- Yoshida, S.; Sato, M.; Sugawara, E.; Shimada, Y. Permeability and electromagnetic-interference characteristics of Fe–Si–Al alloy flakes–polymer composite. Int. J. Appl. Phys. 1999, 85, 4636–4638. [Google Scholar] [CrossRef]
- Xu, C.; Liu, J.; Zhu, X.; Zhu, Y.; Xiong, X.; Cheng, X. Electromagnetic interference shielding boards produced using Tetra Paks waste and iron fiber. J. Mater. Cycles Waste Manag. 2015, 17, 391–398. [Google Scholar] [CrossRef]
- Willard, M.A.; Laughlin, D.E.; McHenry, M.E.; Thoma, D.; Sickafus, K.; Cross, J.O.; Harris, V.G. Structure and magnetic properties of (Fe 0.5 Co 0.5) 88 Zr 7 B 4 Cu 1 nanocrystalline alloys. Int. J. Appl. Phys. 1998, 84, 6773–6777. [Google Scholar] [CrossRef]
- Institute of Electrical and Electronics Engineers (IEEE). IEEE standard method for measuring the effectiveness of electromagnetic shielding enclosures. IEEE Std 299.1–2013 2014, 1–96. [Google Scholar] [CrossRef]
- Benhamou, S.M.; Hamouni, M. Determination of reflection loss, absorption loss, internal reflection and shielding effectiveness of a double electromagnetic shield of conductive polymer. J. Mater. Environ. Sci. 2014, 5, 1982–1987. [Google Scholar]
- Xiao, L. Shielding Effectiveness (SE) Measurement for Maxair Waveguide Panel, Lossy Material Evaluation by Laptop Application. Master’s Thesis, Missouri University of Science and Technology, Rolla, MO, USA, 2014; p. 7316. [Google Scholar]
- Jakubas, A.; Łada-Tondyra, E.; Makówka, M.; Chyra, M.; Sochacka, O.; Suchecki, Ł. Concept of Using Recycled Raw Materials for the Production of Composite Soft Magnetic for shielding of electromagnetic field. Prz. Elektrotechniczny 2020, 97, 182–185. [Google Scholar] [CrossRef]
- Bambynek, D.; Jabłoński, P.; Jakubas, A. Attenuation of High Frequency Electromagnetic Waves by Polymer Composites with Waste Materials. In 2018 Applications of Electromagnetics in Modern Techniques and Medicine (PTZE); IEEE Xplore: Piscataway, NJ, USA, 2018; pp. 1–4. [Google Scholar]
- Garnaud, G.; Rapp, R.A. Thickness of the oxide layers formed during the oxidation of iron. Oxid. Met. 1977, 11, 193–198. [Google Scholar] [CrossRef]
- Mohamed, A.T.; Mobarak, Y. Thermal Experimental Analysis for Dielectric Characterization of High Density Polyethylene Nanocomposites. Adv. Electr. Electron. Eng. 2016, 14, 295–303. [Google Scholar] [CrossRef]
- Azis, R.A.S.; Hashim, M.; Saiden, N.M.; Daud, N.; Shahrani, N.M.M. Study the iron environments of the steel waste product and its possible potential applications in ferrites. Adv. Mat. Res. 2015, 1109, 295–299. [Google Scholar] [CrossRef]
- Wetton, R.E.; Marsh, R.D.L.; Van-de-Velde, J.G. Theory and application of dynamic mechanical thermal analysis. Thermochim. Acta 1991, 175, 1–11. [Google Scholar] [CrossRef]
- Kijo-Kleczkowska, A.; Gnatowski, A.; Szumera, M.; Otwinowski, H.; Kwiatkowski, D.; Suchecki, Ł. Effect of addition of coal sludge to polymeric material on thermal effects in analysis by TG/DTG/DSC methods. In E3S Web of Conferences. EDP Sci. 2020, 154, 03002. [Google Scholar] [CrossRef] [Green Version]
- Jakubas, A.; Chyra, M.; Gnatowski, A. The Influence of Reinforcement Fibers on Mechanical and Electrical Properties of the Electrical Engineering Composites. Acta Phys. Pol. A 2019, 135, 193–195. [Google Scholar] [CrossRef]
- Broniewski, T.; Kapko, J.; Płaczek, W.; Thomalla, J. Metody Badań i Ocena Właściwości Tworzyw Sztucznych; WNT: Warszawa, Poland, 2000; pp. 39–43. [Google Scholar]
- EN ISO 527-2:2012. Plastics—Determination of Tensile Properties—Part 2: Test Conditions for Moulding and Extrusion Plastics; European Committee for Standardization: Brussels, Belgium, 2012. [Google Scholar]
- Łada-Tondyra, E.; Jakubas, A.; Figiel, M. The research and the analysis of electromagnetic field shielding properties of the textile materials with an electroconductive coating. Przegląd Elektrotechnczny 2021, 97, 133–136. [Google Scholar] [CrossRef]
- Xia, C.; Yu, J.; Shi, S.Q.; Qiu, Y.; Cai, L.; Wu, H.F.; Zhang, H. Natural fiber and aluminum sheet hybrid composites for high electromagnetic interference shielding performance. Compos. Part B Eng. 2017, 114, 121–127. [Google Scholar] [CrossRef]
- Chen, W.; Wang, J.; Zhang, B.; Wu, Q.; Su, X. Enhanced electromagnetic interference shielding properties of carbon fiber veil/Fe3O4 nanoparticles/epoxy multiscale composites. Mater. Res. Express 2017, 4, 126303. [Google Scholar] [CrossRef]
- Das, N.C.; Khastgir, D.; Chaki, T.K.; Chakraborty, A. Electromagnetic interference shielding effectiveness of carbon black and carbon fibre filled EVA and NR based composites. Compos. Part A Appl. Sci. Manuf. 2000, 31, 1069–1081. [Google Scholar] [CrossRef]
- Yesmin, N.; Chalivendra, V. Electromagnetic Shielding Effectiveness of Glass Fiber/Epoxy Laminated Composites with Multi-Scale Reinforcements. J. Compos. Sci. 2021, 5, 204. [Google Scholar] [CrossRef]
- Jia, Z.; Kou, K.; Yin, S.; Feng, A.; Zhang, C.; Liu, X.; Wu, G. Magnetic Fe nanoparticle to decorate N dotted C as an exceptionally absorption-dominate electromagnetic shielding material. Compos. Part B Eng. 2020, 189, 107895. [Google Scholar] [CrossRef]
- Cheng, H.; Wei, S.; Ji, Y.; Zhai, J.; Zhang, X.; Chen, J.; Shen, C. Synergetic effect of Fe3O4 nanoparticles and carbon on flexible poly (vinylidence fluoride) based films with higher heat dissipation to improve electromagnetic shielding. Compos. Part A Appl. Sci. Manuf. 2019, 121, 139–148. [Google Scholar] [CrossRef]
- YSHIELD® SILVER-SILK Fabric Data Sheet. Available online: https://www.yshield.com/ (accessed on 21 December 2021).
- YSHIELD® MCL61 EMI Foil Data Sheet. Available online: https://www.yshield.com/ (accessed on 21 December 2021).
Element | Flake Scale | Powder Scale | Iron Oxides |
---|---|---|---|
Chemical Composition (wt.%) | |||
O | 35 | 25 | 26 |
Si | - | 3 | - |
C, Al | <1 | <1 | <1 |
Fe | Balance | Balance | Balance |
Phase | Phase composition | ||
Fe3O4 | + | + | + |
Fe2O3 | + | + | + |
Fe0.925O | - | - | + |
Materials (Thickness) | Frequency Range | SE (dB) | Ref. |
---|---|---|---|
Carbon fiber—Fe3O40 (1.0 mm) + epoxy | 8.2–12.4 GHz | 51.5 | [32] |
Carbon fiber—Fe3O40 (3.5 mm) + EVA | 8.2–12.4 GHz | 34.1 | [33] |
Composites with Fe3O4 nano particles of 1.0 wt.% and carbon fibers | 8–12 GHz | ≥20 | [34] |
Ceramic brick with (up to) 20% of mill scale | 8–12 GHz | ≤8 | [9] |
Fiberglass Al cover (0.2 mm/Al 210 nm) | 8.1–12.1 GHz | >40 | [30] |
Natural fiber and aluminum sheet hybrid composites | 8–12 GHz | <54 | [31] |
NCS/Fe (1.2 mm) | 8–12 GHz | <30 | [35] |
PVDF/Fe3O4—8%CNT (1.1 mm) | 18–26.5 GHz | <23 | [36] |
Shielding fabric (80% nylon, 20% silver, specific weight: 45 g/m².) | 8–12 GHz | <60 | [37] |
MCL61/EMI foil (Composition: polyester, Co, Fe, Mo, Nb, Si, B. Material thickness: 0.1 mm) | 8–12 GHz | <90 | [38] |
HDPE-ISFlakes70% (2 mm) | 8.1–12.1 GHz | <52 | Present work |
HDPE-ISFlakes50% (2 mm) | 8.1–12.1 GHz | 25.3 | Present work |
HDPE-ISPowder60% (2 mm) | 8.1–12.1 GHz | 11 | Present work |
HDPE-ISMix50%90/10 (2 mm) | 8.1–12.1 GHz | 13.5 | Present work |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jakubas, A.; Łada-Tondyra, E.; Makówka, M.; Suchecki, Ł. A Study on the Possibility of Using Iron Scale in the Construction of Electromagnetic Field Shields. Energies 2022, 15, 1332. https://doi.org/10.3390/en15041332
Jakubas A, Łada-Tondyra E, Makówka M, Suchecki Ł. A Study on the Possibility of Using Iron Scale in the Construction of Electromagnetic Field Shields. Energies. 2022; 15(4):1332. https://doi.org/10.3390/en15041332
Chicago/Turabian StyleJakubas, Adam, Ewa Łada-Tondyra, Marcin Makówka, and Łukasz Suchecki. 2022. "A Study on the Possibility of Using Iron Scale in the Construction of Electromagnetic Field Shields" Energies 15, no. 4: 1332. https://doi.org/10.3390/en15041332
APA StyleJakubas, A., Łada-Tondyra, E., Makówka, M., & Suchecki, Ł. (2022). A Study on the Possibility of Using Iron Scale in the Construction of Electromagnetic Field Shields. Energies, 15(4), 1332. https://doi.org/10.3390/en15041332