Molecular Characterization of Hydrocarbons in Petroleum by Ultrahigh-Resolution Mass Spectrometry
Abstract
:1. Introduction
2. Development of Soft Ionization Methods for Hydrocarbons
2.1. Chemical Derivatization-Based Soft Ionization
2.2. Chemical Ionization-Based Soft Ionization
3. Development of Data Processing Methods for UHRMS Analysis of Petroleum Hydrocarbons
4. UHRMS Characterization of Hydrocarbons in Different Complex Petroleum Matrix
5. Conclusions and Prospective
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Rodgers, R.P.; McKenna, A.M. Petroleum Analysis. Anal. Chem. 2011, 83, 4665–4687. [Google Scholar] [CrossRef] [PubMed]
- Omari, I.; Zhu, H.; McGarvey, G.B.; McIndoe, J.S. Acid-Selective Mass Spectrometric Analysis of Petroleum Fractions. Int. J. Mass Spectrom. 2019, 435, 315–320. [Google Scholar] [CrossRef]
- Degtyareva, E.S.; Burykina, J.V.; Ananikov, V.P. ESI-MS Analysis of Thiol-Yne Click Reaction in Petroleum Medium. Molecules 2021, 26, 2896. [Google Scholar] [CrossRef]
- Niyonsaba, E.; Manheim, J.M.; Yerabolu, R.; Kenttämaa, H.I. Recent Advances in Petroleum Analysis by Mass Spectrometry. Anal. Chem. 2019, 91, 156–177. [Google Scholar] [CrossRef] [PubMed]
- Ren, L.; Han, Y.; Zhang, Y.; Zhang, Y.; Meng, X.; Shi, Q. Spray Injection Direct Analysis in Real Time (DART) Ionization for Petroleum Analysis. Energy Fuels 2016, 30, 4486–4493. [Google Scholar] [CrossRef]
- Jiang, B.; Zhan, Z.-W.; Shi, Q.; Liao, Y.; Zou, Y.-R.; Tian, Y.; Peng, P. Chemometric Unmixing of Petroleum Mixtures by Negative Ion ESI FT-ICR MS Analysis. Anal. Chem. 2019, 91, 2209–2215. [Google Scholar] [CrossRef]
- Jadidzadeh, A.; Mirzababaei, M.; Serletis, A. Oil Prices and the Hydrocarbon Markets: A Review. Energies 2022, 15, 6192. [Google Scholar] [CrossRef]
- Arutyunov, V.; Pogosyan, N.; Pogosyan, M.; Tavadyan, L.; Shapovalova, O.; Strekova, L. Production of Olefins by the Conjugated Oxidation of Light Hydrocarbons. Chem. Eng. J. 2017, 329, 231–237. [Google Scholar] [CrossRef]
- Dedov, A.G.; Karavaev, A.A.; Loktev, A.S.; Osipov, A.K. Bioisobutanol as a Promising Feedstock for Production of “Green” Hydrocarbons and Petrochemicals (A Review). Pet. Chem. 2021, 61, 1139–1157. [Google Scholar] [CrossRef]
- Schifter, I.; Díaz, L.; Sánchez-Reyna, G.; González-Macías, C.; González, U.; Rodríguez, R. Influence of Gasoline Olefin and Aromatic Content on Exhaust Emissions of 15% Ethanol Blends. Fuel 2020, 265, 116950. [Google Scholar] [CrossRef]
- Bacosa, H.P.; Kamalanathan, M.; Cullen, J.; Shi, D.; Xu, C.; Schwehr, K.A.; Hala, D.; Wade, T.L.; Knap, A.H.; Santschi, P.H.; et al. Marine Snow Aggregates Are Enriched in Polycyclic Aromatic Hydrocarbons (PAHs) in Oil Contaminated Waters: Insights from a Mesocosm Study. J. Mar. Sci. Eng. 2020, 8, 781. [Google Scholar] [CrossRef]
- Hebting, Y.; Schaeffer, P.; Behrens, A.; Adam, P.; Schmitt, G.; Schneckenburger, P.; Bernasconi, S.M.; Albrecht, P. Biomarker Evidence for a Major Preservation Pathway of Sedimentary Organic Carbon. Science 2006, 312, 1627–1631. [Google Scholar] [CrossRef] [PubMed]
- Brocks, J.J.; Love, G.D.; Summons, R.E.; Knoll, A.H.; Logan, G.A.; Bowden, S.A. Biomarker Evidence for Green and Purple Sulphur Bacteria in a Stratified Palaeoproterozoic Sea. Nature 2005, 437, 866–870. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.; French, K.L.; Cui, X.; Bryant, D.A.; Summons, R.E. Carotenoid Biomarkers in Namibian Shelf Sediments: Anoxygenic Photosynthesis during Sulfide Eruptions in the Benguela Upwelling System. Proc. Natl. Acad. Sci. USA 2021, 118, e2106040118. [Google Scholar] [CrossRef] [PubMed]
- Love, G.D.; Grosjean, E.; Stalvies, C.; Fike, D.A.; Grotzinger, J.P.; Bradley, A.S.; Kelly, A.E.; Bhatia, M.; Meredith, W.; Snape, C.E.; et al. Fossil Steroids Record the Appearance of Demospongiae during the Cryogenian Period. Nature 2009, 457, 718–721. [Google Scholar] [CrossRef]
- Liao, J.; Lu, H.; Sheng, G.; Peng, P.; Hsu, C.S. Monoaromatic, Diaromatic, Triaromatic, and Tetraaromatic Hopanes in Kukersite Shale and Their Stable Carbon Isotopic Composition. Energy Fuels 2015, 29, 3573–3583. [Google Scholar] [CrossRef]
- Zhu, G.; Wang, H.; Weng, N. TSR-Altered Oil with High-Abundance Thiaadamantanes of a Deep-Buried Cambrian Gas Condensate Reservoir in Tarim Basin. Mar. Pet. Geol. 2016, 69, 1–12. [Google Scholar] [CrossRef]
- Herod, A.A.; Bartle, K.D.; Kandiyoti, R. Characterization of Heavy Hydrocarbons by Chromatographic and Mass Spectrometric Methods: An Overview. Energy Fuels 2007, 21, 2176–2203. [Google Scholar] [CrossRef]
- Xiao, Q.; Sun, Y.; Chai, P. Experimental Study of the Effects of Thermochemical Sulfate Reduction on Low Molecular Weight Hydrocarbons in Confined Systems and Its Geochemical Implications. Org. Geochem. 2011, 42, 1375–1393. [Google Scholar] [CrossRef]
- Orrego-Ruiz, J.A.; Marquez, R.E.; Rojas-Ruiz, F.A. New Insights on Organic Geochemistry Characterization of the Putumayo Basin Using Negative Ion Electrospray Ionization Fourier Transform Ion Cyclotron Resonance Mass Spectrometry. Energy Fuels 2020, 34, 5281–5292. [Google Scholar] [CrossRef]
- Burazer, N.; Šajnović, A.; Kašanin-Grubin, M.; Radisavljević, M.; Jovančićević, B. Polycyclic Aromatic Hydrocarbons and Their Relationship to Maturity and Paleoenvironmental Settings in Lacustrine Sediments of the Neogene Toplica Basin, Serbia. J. Paleolimnol. 2021, 66, 187–205. [Google Scholar] [CrossRef]
- Srinivasan, P.; Jacobi, D.; Atwah, I.; Karg, H.; Azzouni, A. Generation Temperatures for Oils Sourced from Sulfur-Rich Kerogens Using Aromatic and Light Hydrocarbon Isomers. Mar. Pet. Geol. 2022, 146, 105917. [Google Scholar] [CrossRef]
- Garrigues, P.; De Sury, R.; Angelin, M.L.; Bellocq, J.; Oudin, J.L.; Ewald, M. Relation of the Methylated Aromatic Hydrocarbon Distribution Pattern to the Maturity of Organic Matter in Ancient Sediments from the Mahakam Delta. Geochim. Cosmochim. Acta 1988, 52, 375–384. [Google Scholar] [CrossRef]
- Asif, M.; Wenger, L.M. Heterocyclic Aromatic Hydrocarbon Distributions in Petroleum: A Source Facies Assessment Tool. Org. Geochem. 2019, 137, 103896. [Google Scholar] [CrossRef]
- Xie, G.; Barcelona, M.J.; Fang, J. Quantification and Interpretation of Total Petroleum Hydrocarbons in Sediment Samples by a GC/MS Method and Comparison with EPA 418.1 and a Rapid Field Method. Anal. Chem. 1999, 71, 1899–1904. [Google Scholar] [CrossRef] [PubMed]
- Potgieter, H.; de Coning, P.; Bekker, R.; Rohwer, E.; Amirav, A. The Pre-Separation of Oxygen Containing Compounds in Oxidised Heavy Paraffinic Fractions and Their Identification by GC-MS with Supersonic Molecular Beams. J. Mass Spectrom. 2019, 54, 328–341. [Google Scholar] [CrossRef] [PubMed]
- Donahue, C.J. Fractional Distillation and GC Analysis of Hydrocarbon Mixtures. J. Chem. Educ. 2002, 79, 721. [Google Scholar] [CrossRef]
- Lorentz, C.; Laurenti, D.; Zotin, J.L.; Geantet, C. Comprehensive GC×GC Chromatography for the Characterization of Sulfur Compound in Fuels: A Review. Catal. Today 2017, 292, 26–37. [Google Scholar] [CrossRef]
- Prebihalo, S.E.; Berrier, K.L.; Freye, C.E.; Bahaghighat, H.D.; Moore, N.R.; Pinkerton, D.K.; Synovec, R.E. Multidimensional Gas Chromatography: Advances in Instrumentation, Chemometrics, and Applications. Anal. Chem. 2018, 90, 505–532. [Google Scholar] [CrossRef]
- Staš, M.; Auersvald, M.; Vozka, P. Two-Dimensional Gas Chromatography Characterization of Pyrolysis Bio-Oils: A Review. Energy Fuels 2021, 35, 8541–8557. [Google Scholar] [CrossRef]
- Lelevic, A.; Souchon, V.; Moreaud, M.; Lorentz, C.; Geantet, C. Gas Chromatography Vacuum Ultraviolet Spectroscopy: A Review. J. Sep. Sci. 2020, 43, 150–173. [Google Scholar] [CrossRef] [PubMed]
- Walters, C.C.; Wang, F.C.; Higgins, M.B.; Madincea, M.E. Universal Biomarker Analysis Using GC×GC with Dual FID and ToF-MS (EI/FI) Detection. Org. Geochem. 2018, 115, 57–66. [Google Scholar] [CrossRef]
- Giri, A.; Coutriade, M.; Racaud, A.; Stefanuto, P.-H.; Okuda, K.; Dane, J.; Cody, R.B.; Focant, J.-F. Compositional Elucidation of Heavy Petroleum Base Oil by GC × GC-EI/PI/CI/FI-TOFMS. J. Mass Spectrom. 2019, 54, 148–157. [Google Scholar] [CrossRef] [PubMed]
- Dutriez, T.; Courtiade, M.; Thiébaut, D.; Dulot, H.; Bertoncini, F.; Vial, J.; Hennion, M.-C. High-Temperature Two-Dimensional Gas Chromatography of Hydrocarbons up to NC60 for Analysis of Vacuum Gas Oils. J. Chromatogr. A 2009, 1216, 2905–2912. [Google Scholar] [CrossRef]
- Mahé, L.; Courtiade, M.; Dartiguelongue, C.; Ponthus, J.; Souchon, V.; Thiébaut, D. Overcoming the High-Temperature Two-Dimensional Gas Chromatography Limits to Elute Heavy Compounds. J. Chromatogr. A 2012, 1229, 298–301. [Google Scholar] [CrossRef]
- Piparo, M.; Flamant, L.; Jousset, G.; Cardinael, P.; Giusti, P. Careful Investigations of PTV Injection Parameters for the Analysis of Vacuum Gas Oil by High-Temperature Comprehensive GC × GC. Energy Fuels 2020, 34, 12010–12017. [Google Scholar] [CrossRef]
- Han, Y.; Zhang, Y.; Xu, C.; Hsu, C.S. Molecular Characterization of Sulfur-Containing Compounds in Petroleum. Fuel 2018, 221, 144–158. [Google Scholar] [CrossRef]
- Trinklein, T.J.; Jiang, J.; Synovec, R.E. Profiling Olefins in Gasoline by Bromination Using GC × GC-TOFMS Followed by Discovery-Based Comparative Analysis. Anal. Chem. 2022, 94, 9407–9414. [Google Scholar] [CrossRef]
- Kumar, S.; Dutta, S. Utility of Comprehensive GC×GC-TOFMS in Elucidation of Aromatic Hydrocarbon Biomarkers. Fuel 2021, 283, 118890. [Google Scholar] [CrossRef]
- Chen, T.; Zheng, X.; He, X.; You, Y.; Huang, G.; Cao, Y.; He, L.; Wu, Y. Comprehensive Characterization of Polycyclic Aromatic Hydrocarbon Emissions from Heavy-Duty Diesel Vehicles Utilizing GC × GC-ToF-MS. Sci. Total Environ. 2022, 833, 155127. [Google Scholar] [CrossRef]
- Chattopadhyay, K.; Yadav, A.; Singh, D.; Chopra, A.; Rai, K.; Pandey, J.N.; Kagdiyal, V.; Saxena, D. Detailed Hydrocarbon Class Composition Analysis and Trace Level BTEX Estimation in Raffinate Column Bottom (RCB) Using GC × GC–TOFMS. Chromatographia 2017, 80, 145–150. [Google Scholar] [CrossRef]
- Corilo, Y.E.; Vaz, B.G.; Simas, R.C.; Lopes Nascimento, H.D.; Klitzke, C.F.; Pereira, R.C.L.; Bastos, W.L.; Santos Neto, E.V.; Rodgers, R.P.; Eberlin, M.N. Petroleomics by EASI(±) FT-ICR MS. Anal. Chem. 2010, 82, 3990–3996. [Google Scholar] [CrossRef] [PubMed]
- Marshall, A.G.; Rodgers, R.P. Petroleomics: Chemistry of the Underworld. Proc. Natl. Acad. Sci. USA 2008, 105, 18090–18095. [Google Scholar] [CrossRef] [PubMed]
- Marshall, A.G.; Rodgers, R.P. Petroleomics: The Next Grand Challenge for Chemical Analysis. Acc. Chem. Res. 2004, 37, 53–59. [Google Scholar] [CrossRef] [PubMed]
- Rodgers, R.P.; Marshall, A.G.; Schaub, T.M. Petroleomics: MS Returns to Its Roots. Anal. Chem. 2005, 77, 20A–27A. [Google Scholar] [CrossRef]
- Klitzke, C.F.; Corilo, Y.E.; Siek, K.; Binkley, J.; Patrick, J.; Eberlin, M.N. Petroleomics by Ultrahigh-Resolution Time-of-Flight Mass Spectrometry. Energy Fuels 2012, 26, 5787–5794. [Google Scholar] [CrossRef]
- Smith, D.F.; Schaub, T.M.; Kim, S.; Rodgers, R.P.; Rahimi, P.; Teclemariam, A.; Marshall, A.G. Characterization of Acidic Species in Athabasca Bitumen and Bitumen Heavy Vacuum Gas Oil by Negative-Ion ESI FT−ICR MS with and without Acid−Ion Exchange Resin Prefractionation. Energy Fuels 2008, 22, 2372–2378. [Google Scholar] [CrossRef]
- Wang, W.; Li, S.; Hou, H.; Mo, C.; Lai, T.; Cai, X.; Dong, M.; Liu, Z. Ion Suppression of Basic Nitrogen Compounds in Vacuum Gas Oil Studied by Positive Electrospray Ionization Fourier Transform Ion Cyclotron Resonance Mass Spectrometry. Energy Fuels 2020, 34, 15949–15956. [Google Scholar] [CrossRef]
- Shi, Q.; Zhang, Y.; Chung, K.H.; Zhao, S.; Xu, C. Molecular Characterization of Fossil and Alternative Fuels Using Electrospray Ionization Fourier Transform Ion Cyclotron Resonance Mass Spectrometry: Recent Advances and Perspectives. Energy Fuels 2021, 35, 18019–18055. [Google Scholar] [CrossRef]
- Fang, Z.; He, C.; Li, Y.; Chung, K.H.; Xu, C.; Shi, Q. Fractionation and Characterization of Dissolved Organic Matter (DOM) in Refinery Wastewater by Revised Phase Retention and Ion-Exchange Adsorption Solid Phase Extraction Followed by ESI FT-ICR MS. Talanta 2017, 162, 466–473. [Google Scholar] [CrossRef]
- Lai, T.; Mao, Y.; Wang, W.; Wang, X.; Wang, N.; Liu, Z. Characterization of Basic Nitrogen Compounds Isolated with FeCl3 in Vacuum Gas Oil and Its Hydrotreated Product. Fuel 2020, 262, 116523. [Google Scholar] [CrossRef]
- Peacock, P.M.; Zhang, W.-J.; Trimpin, S. Advances in Ionization for Mass Spectrometry. Anal. Chem. 2017, 89, 372–388. [Google Scholar] [CrossRef] [PubMed]
- Cha, E.; Jeong, E.S.; Han, S.B.; Cha, S.; Son, J.; Kim, S.; Oh, H.B.; Lee, J. Ionization of Gas-Phase Polycyclic Aromatic Hydrocarbons in Electrospray Ionization Coupled with Gas Chromatography. Anal. Chem. 2018, 90, 4203–4211. [Google Scholar] [CrossRef] [PubMed]
- Srinivas, G.N.; Radhakrishnan, T.P. Structure-Resonance Calculation of the Ionization Potential of Saturated Hydrocarbons. J. Mol. Struct. 1991, 246, 289–300. [Google Scholar] [CrossRef]
- Gaire, B.; Gatton, A.; Wiegandt, F.; Neff, J.; Janke, C.; Zeller, S.; Reedy, D.; Rajput, J.; Ben-Itzhak, I.; Landers, A.L.; et al. Bond-Rearrangement and Ionization Mechanisms in the Photo-Double-Ionization of Simple Hydrocarbons (C2H4, C2H3F, and 1,1−C2H2F2) near and above Threshold. Phys. Rev. A 2016, 94, 033412. [Google Scholar] [CrossRef]
- Stavitskaya, A.V.; Konstantinova, M.L.; Safieva, R.Z. An Ultrahigh-Resolution Mass Spectrometry Study of Ozonation Products of Petroleum Sulfur Compounds. Pet. Chem. 2016, 56, 623–628. [Google Scholar] [CrossRef]
- Linden, M.H.; Linden, H.B.; Nieth, N.; Gross, J.H. Self-Supplied Liquid Injection Field Desorption/Ionization Ion Source for an Orthogonal Time-of-Flight Instrument. J. Am. Soc. Mass Spectrom. 2019, 30, 2358–2368. [Google Scholar] [CrossRef]
- Genuit, W.; Chaabani, H. Comprehensive Two-Dimensional Gas Chromatography-Field Ionization Time-of-Flight Mass Spectrometry (GC×GC-FI-TOFMS) for Detailed Hydrocarbon Middle Distillate Analysis. Int. J. Mass Spectrom. 2017, 413, 27–32. [Google Scholar] [CrossRef]
- Gross, J.H.; Vékey, K.; Dallos, A. Field Desorption Mass Spectrometry of Large Multiply Branched Saturated Hydrocarbons. J. Mass Spectrom. 2001, 36, 522–528. [Google Scholar] [CrossRef]
- Carlsen, P.H.J. Ruthenium Catalyzed Oxidation of Alkanes. Synth. Commun. 1987, 17, 19–23. [Google Scholar] [CrossRef]
- Tenaglia, A.; Terranova, E.; Waegell, B. Ruthenium-Catalysed C–H Bond Activation. Evidence for a Concerted Mechanism in Oxyfunctionalization of Cyclic Saturated Hydrocarbons. J. Chem. Soc. Chem. Commun. 1990, 19, 1344–1345. [Google Scholar] [CrossRef]
- Murahashi, S.-I.; Oda, Y.; Komiya, N.; Naota, T. Ruthenium-Catalyzed Oxidation of Alkanes with Peracids. Tetrahedron Lett. 1994, 35, 7953–7956. [Google Scholar] [CrossRef]
- Zhou, X.; Shi, Q.; Zhang, Y.; Zhao, S.; Zhang, R.; Chung, K.H.; Xu, C. Analysis of Saturated Hydrocarbons by Redox Reaction with Negative-Ion Electrospray Fourier Transform Ion Cyclotron Resonance Mass Spectrometry. Anal. Chem. 2012, 84, 3192–3199. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Zhang, Y.; Zhao, S.; Chung, K.H.; Xu, C.; Shi, Q. Characterization of Saturated Hydrocarbons in Vacuum Petroleum Residua: Redox Derivatization Followed by Negative-Ion Electrospray Ionization Fourier Transform Ion Cyclotron Resonance Mass Spectrometry. Energy Fuels 2014, 28, 417–422. [Google Scholar] [CrossRef]
- Ming Ng, K.; Ling Ma, N.; Wai Tsang, C. Differentiation of Isomeric Polyaromatic Hydrocarbons by Electrospray Ag(I) Cationization Mass Spectrometry. Rapid Commun. Mass Spectrom. 2003, 17, 2082–2088. [Google Scholar] [CrossRef] [PubMed]
- Roussis, S.G.; Proulx, R. Molecular Weight Distributions of Heavy Aromatic Petroleum Fractions by Ag+ Electrospray Ionization Mass Spectrometry. Anal. Chem. 2002, 74, 1408–1414. [Google Scholar] [CrossRef] [PubMed]
- Sherrod, S.D.; Diaz, A.J.; Russell, W.K.; Cremer, P.S.; Russell, D.H. Silver Nanoparticles as Selective Ionization Probes for Analysis of Olefins by Mass Spectrometry. Anal. Chem. 2008, 80, 6796–6799. [Google Scholar] [CrossRef] [PubMed]
- Casas-Ferreira, A.M.; del Nogal Sánchez, M.; Rodríguez-Gonzalo, E.; Pavón, J.L.P. Non-Separative Determination of Isomeric Polycyclic Aromatic Hydrocarbons by Electrospray Ag(I) Cationization Mass Spectrometry and Multivariate Calibration. Microchem. J. 2022, 183, 108072. [Google Scholar] [CrossRef]
- Zhang, Y.; Huang, C.; Kong, F.; Wang, Y.; Shi, Q.; Zhang, L. Selective Molecular Characterization of Olefins in Hydrocarbon Mixtures by Ag+ Complexation ESI High-Resolution Mass Spectrometry. Fuel 2022, 319, 123760. [Google Scholar] [CrossRef]
- Li, H.; Li, S.; Wu, J.; Xie, L.; Liang, Y.; Zhang, Y.; Zhao, S.; Xu, C.; Shi, Q. Molecular Characterization of Aromatics in Petroleum Fractions by Combining Silica Sulfuric Acid Sulfonation with Electrospray Ionization High-Resolution Mass Spectrometry. Fuel 2022, 317, 123463. [Google Scholar] [CrossRef]
- Houriet, R.; Stahl, D.; Winkler, F.J. Negative Chemical Ionization of Alcohols. Environ. Health Perspect. 1980, 36, 63–68. [Google Scholar] [CrossRef] [PubMed]
- Manheim, J.M.; Milton, J.R.; Zhang, Y.; Kenttämaa, H.I. Fragmentation of Saturated Hydrocarbons upon Atmospheric Pressure Chemical Ionization Is Caused by Proton-Transfer Reactions. Anal. Chem. 2020, 92, 8883–8892. [Google Scholar] [CrossRef] [PubMed]
- Fang, J.; Zhao, H.; Zhang, Y.; Lu, M.; Cai, Z. Atmospheric Pressure Chemical Ionization in Gas Chromatography-Mass Spectrometry for the Analysis of Persistent Organic Pollutants. Trends Environ. Anal. Chem. 2020, 25, e00076. [Google Scholar] [CrossRef]
- Gao, J.; Owen, B.C.; Borton, D.J.; Jin, Z.; Kenttämaa, H.I. HPLC/APCI Mass Spectrometry of Saturated and Unsaturated Hydrocarbons by Using Hydrocarbon Solvents as the APCI Reagent and HPLC Mobile Phase. J. Am. Soc. Mass Spectrom. 2012, 23, 816–822. [Google Scholar] [CrossRef] [PubMed]
- Hourani, N.; Kuhnert, N. High Molecular Weight Non-Polar Hydrocarbons as Pure Model Substances and in Motor Oil Samples Can Be Ionized without Fragmentation by Atmospheric Pressure Chemical Ionization Mass Spectrometry: APCI-MS of Hydrocarbons. Rapid Commun. Mass Spectrom. 2012, 26, 2365–2371. [Google Scholar] [CrossRef]
- Tose, L.V.; Cardoso, F.M.R.; Fleming, F.P.; Vicente, M.A.; Silva, S.R.C.; Aquije, G.M.F.V.; Vaz, B.G.; Romão, W. Analyzes of Hydrocarbons by Atmosphere Pressure Chemical Ionization FT-ICR Mass Spectrometry Using Isooctane as Ionizing Reagent. Fuel 2015, 153, 346–354. [Google Scholar] [CrossRef]
- Manheim, J.; Zhang, Y.; Viidanoja, J.; Kenttämaa, H.I. An Automated Method for Chemical Composition Analysis of Lubricant Base Oils by Using Atmospheric Pressure Chemical Ionization Mass Spectrometry. J. Am. Soc. Mass Spectrom. 2019, 30, 2014–2021. [Google Scholar] [CrossRef]
- Zhang, Y.; Han, Y.; Wu, J.; Wang, Y.; Li, J.; Shi, Q.; Xu, C.; Hsu, C.S. Comprehensive Composition, Structure, and Size Characterization for Thiophene Compounds in Petroleum Using Ultrahigh-Resolution Mass Spectrometry and Trapped Ion Mobility Spectrometry. Anal. Chem. 2021, 93, 5089–5097. [Google Scholar] [CrossRef]
- Dong, C.; Hu, W.; Wang, Y.; Zhang, Y.; Zhu, G.; Han, Y. Double-Bond Equivalence Linear Equations for Structural Interpretation of Fossil Hydrocarbons. Fuel 2023, 332, 126206. [Google Scholar] [CrossRef]
- Wang, Y.; Zhu, G.; Wang, M.; Wu, J.; Fu, D.; Xie, Q.; Shi, Q.; Xu, C.; Han, Y. Discovery of Novel Cage Compounds of Diamondoids Using Multi-Dimensional Mass Spectrometry. Chem. Eng. Sci. 2023, 273, 118677. [Google Scholar] [CrossRef]
- Gupta, S.; Samal, N. Application of Direct Analysis in Real-Time Mass Spectrometry (DART-MS) in Forensic Science: A Comprehensive Review. Egypt. J. Forensic Sci. 2022, 12, 17. [Google Scholar] [CrossRef]
- Cody, R.B.; Dane, A.J. Soft Ionization of Saturated Hydrocarbons, Alcohols and Nonpolar Compounds by Negative-Ion Direct Analysis in Real-Time Mass Spectrometry. J. Am. Soc. Mass Spectrom. 2013, 24, 329–334. [Google Scholar] [CrossRef] [PubMed]
- Bae, E.; Yeo, I.J.; Jeong, B.; Shin, Y.; Shin, K.-H.; Kim, S. Study of Double Bond Equivalents and the Numbers of Carbon and Oxygen Atom Distribution of Dissolved Organic Matter with Negative-Mode FT-ICR MS. Anal. Chem. 2011, 83, 4193–4199. [Google Scholar] [CrossRef]
- Hughey, C.A.; Hendrickson, C.L.; Rodgers, R.P.; Marshall, A.G.; Qian, K. Kendrick Mass Defect Spectrum: A Compact Visual Analysis for Ultrahigh-Resolution Broadband Mass Spectra. Anal. Chem. 2001, 73, 4676–4681. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; Kramer, R.W.; Hatcher, P.G. Graphical Method for Analysis of Ultrahigh-Resolution Broadband Mass Spectra of Natural Organic Matter, the Van Krevelen Diagram. Anal. Chem. 2003, 75, 5336–5344. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.H.; Kim, S. Improved Abundance Sensitivity of Molecular Ions in Positive-Ion APCI MS Analysis of Petroleum in Toluene. J. Am. Soc. Mass Spectrom. 2010, 21, 386–392. [Google Scholar] [CrossRef] [PubMed]
- Nyadong, L.; Quinn, J.P.; Hsu, C.S.; Hendrickson, C.L.; Rodgers, R.P.; Marshall, A.G. Atmospheric Pressure Laser-Induced Acoustic Desorption Chemical Ionization Mass Spectrometry for Analysis of Saturated Hydrocarbons. Anal. Chem. 2012, 84, 7131–7137. [Google Scholar] [CrossRef]
- Hourani, N.; Muller, H.; Adam, F.M.; Panda, S.K.; Witt, M.; Al-Hajji, A.A.; Sarathy, S.M. Structural Level Characterization of Base Oils Using Advanced Analytical Techniques. Energy Fuels 2015, 29, 2962–2970. [Google Scholar] [CrossRef]
- Pereira, T.M.C.; Vanini, G.; Oliveira, E.C.S.; Cardoso, F.M.R.; Fleming, F.P.; Neto, A.C.; Lacerda, V.; Castro, E.V.R.; Vaz, B.G.; Romão, W. An Evaluation of the Aromaticity of Asphaltenes Using Atmospheric Pressure Photoionization Fourier Transform Ion Cyclotron Resonance Mass Spectrometry—APPI(±)FT-ICR MS. Fuel 2014, 118, 348–357. [Google Scholar] [CrossRef]
- Cho, Y.; Kim, Y.H.; Kim, S. Planar Limit-Assisted Structural Interpretation of Saturates/Aromatics/Resins/Asphaltenes Fractionated Crude Oil Compounds Observed by Fourier Transform Ion Cyclotron Resonance Mass Spectrometry. Anal. Chem. 2011, 83, 6068–6073. [Google Scholar] [CrossRef]
- Krajewski, L.C.; Lobodin, V.V.; Johansen, C.; Bartges, T.E.; Maksimova, E.V.; MacDonald, I.R.; Marshall, A.G. Linking Natural Oil Seeps from the Gulf of Mexico to Their Origin by Use of Fourier Transform Ion Cyclotron Resonance Mass Spectrometry. Environ. Sci. Technol. 2018, 52, 1365–1374. [Google Scholar] [CrossRef] [PubMed]
- Han, Y.; Noah, M.; Lüders, V.; Körmös, S.; Schubert, F.; Poetz, S.; Horsfield, B.; Mangelsdorf, K. Fractionation of Hydrocarbons and NSO-Compounds during Primary Oil Migration Revealed by High Resolution Mass Spectrometry: Insights from Oil Trapped in Fluid Inclusions. Int. J. Coal Geol. 2022, 254, 103974. [Google Scholar] [CrossRef]
- Souza, L.; Silva, S.; Filgueiras, P.; dos Santos, F.; Vasconcelos, G.; Lacerda, V., Jr.; Vaz, B.; Romão, W. Study of the Effect of Inhibitors Solutions on the Chemical Composition of Waxes by Rheology Tests and High Resolution Mass Spectrometry. J. Braz. Chem. Soc. 2020, 31, 627–637. [Google Scholar] [CrossRef]
- Dong, C.; Jia, C.; Zheng, S.; Zeng, H.; Fu, D.; Xu, L.; Han, Y. Molecular Composition Analysis Using Ultra-High Resolution Mass Spectrometry for Lubricating Oil Process Optimization. Pet. Sci. Bull. 2019, 4, 430–439. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, J.; Wang, L.; Chen, F.; Hu, W.; Dong, C.; Wang, Y.; Han, Y. Molecular Characterization of Hydrocarbons in Petroleum by Ultrahigh-Resolution Mass Spectrometry. Energies 2023, 16, 4296. https://doi.org/10.3390/en16114296
Liu J, Wang L, Chen F, Hu W, Dong C, Wang Y, Han Y. Molecular Characterization of Hydrocarbons in Petroleum by Ultrahigh-Resolution Mass Spectrometry. Energies. 2023; 16(11):4296. https://doi.org/10.3390/en16114296
Chicago/Turabian StyleLiu, Jikun, Litao Wang, Fei Chen, Wenya Hu, Chenglong Dong, Yinghao Wang, and Yehua Han. 2023. "Molecular Characterization of Hydrocarbons in Petroleum by Ultrahigh-Resolution Mass Spectrometry" Energies 16, no. 11: 4296. https://doi.org/10.3390/en16114296
APA StyleLiu, J., Wang, L., Chen, F., Hu, W., Dong, C., Wang, Y., & Han, Y. (2023). Molecular Characterization of Hydrocarbons in Petroleum by Ultrahigh-Resolution Mass Spectrometry. Energies, 16(11), 4296. https://doi.org/10.3390/en16114296