Planning and Optimizing the Replacement Strategies of Power Transformers: Literature Review
Abstract
:1. Introduction
2. Method to Structure the Literature Review
- Power transformers risk index = Risk index AND power transformer;
- Power transformers status prediction = Status, power transformer, AND health;
- Investment scenarios in power transformer fleets = Investment AND power transformer;
- Investment scenarios in power transformer fleets considering the risk index = Risk index, power transformer, AND investment.
- (a)
- Risk index: “risk index” OR “risk assessment”;
- (b)
- Power transformer: “power transformer” OR “power system” OR “power network”;
- (c)
- Status: “life assessment” OR “status”;
- (d)
- Health: “life assessment” OR “health index”;
- (e)
- Investment: “investment” OR “improvement” OR “replacement” OR “economic assessment”.
3. Risk Index Methodologies
4. Methodologies for Evaluating the Useful Life of Power Transformers
5. Assessment Indexes for Power Transformer Replacement
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- ISO 55000; Asset Management—Overview, Principles and Terminology. International Organization for Standardization (ISO): Geneva, Switzerland, 2014; p. 25.
- Medina, R.D. Desarrollo de Indicadores Para El Análisis de Riesgo En Parques de Transformadores de Potencia Dentro de Un Contexto de Gestión de Activos Eléctricos. Ph.D. Thesis, Universidad Nacional de San Juan, San Juan, Puerto Rico, 2017. [Google Scholar]
- IEEE Std C57.12.80-2010 (Revision of IEEE Std C57.12.80-2002); IEEE Standard Terminology for Power and Distribution Transformers. IEEE Standards Association: Manhattan, NY, USA, 2010; pp. 1–60. [CrossRef]
- Jahromi, A.; Piercy, R.; Cress, S.; Service, J.; Fan, W. An Approach to Power Transformer Asset Management Using Health Index. IEEE Electr. Insul. Mag. 2009, 25, 2. [Google Scholar] [CrossRef]
- Duval, M.; Pablo, A.D.; Atanasova-Hoehlein, I.; Grisaru, M. Significance and Detection of Very Low Degree of Polymerization of Paper in Transformers. IEEE Electr. Insul. Mag. 2017, 33, 31–38. [Google Scholar] [CrossRef]
- Caicedo, J.; Mamani, M.; Lopez, S.; Romero, A.A.; Zini, H.; Ratta, G. Impactos de La Conexión de Vehículos Eléctricos En Sistemas de Potencia-Revisión Literaria. In Proceedings of the 2014 IEEE Biennial Congress of Argentina, Bariloche, Argentina, 11–13 June 2014; pp. 645–650. [Google Scholar] [CrossRef]
- Cambia Lens. Available online: https://www.lens.org/ (accessed on 12 March 2021).
- Lelden University. VOSviewer Version 1.6.11. Available online: https://www.vosviewer.com/ (accessed on 12 March 2021).
- García, A. El Arte de Elaborar El Estado Del Arte En Una Investigación. In Serie Técnica de Manuales Prácticos Para El Investigador; Technological Editorial of Costa Rica: San José, Costa Rica, 2014; ISBN 978-9930-541-06-7. [Google Scholar]
- Rao, U.M.; Reddy, M.V.P.; Jarial, R.K. Fuzzy Logic Based System to Diagnose Internal Faults of Power Transformer. In Proceedings of the 2011 International Conference on Communication and Industrial Application, ICCIA 2011, Kolkata, India, 26–28 December 2011. [Google Scholar] [CrossRef]
- Khan, S.A.; Equbal, M.D.; Islam, T. A Comprehensive Comparative Study of DGA Based Transformer Fault Diagnosis Using Fuzzy Logic and ANFIS Models. IEEE Trans. Dielectr. Electr. Insul. 2015, 22, 590–596. [Google Scholar] [CrossRef]
- Flores, W.C.; Mombello, E.; Jardini, J.A.; Rattá, G. Fuzzy Risk Index for Power Transformer Failures Due to External Short-Circuits. Electr. Power Syst. Res. 2009, 79, 539–549. [Google Scholar] [CrossRef]
- Li, W.G.; Yu, Q.; Luo, R.C. Application of Fuzzy Analytic Hierarchy Process and Neural Network in Power Transformer Risk Assessment. J. Cent. South Univ. Technol. 2012, 19, 982–987. [Google Scholar] [CrossRef]
- Sun, Y.Y.; Wang, X.; Zheng, Y.H.; Li, L.X.; Xu, Q.S. Application of FTA and Improved FAHP in Power Transformer Risk Assessment. Adv. Mat. Res. 2014, 860–863, 2157–2160. [Google Scholar] [CrossRef]
- Ranga, C.; Chandel, A.K.; Chandel, R. Expert System for Condition Monitoring of Power Transformer Using Fuzzy Logic. J. Renew. Sustain. Energy 2017, 9, 044901. [Google Scholar] [CrossRef]
- Malik, H.; Yadav, A.K.; Mishra, S.; Mehto, T. Application of Neuro-Fuzzy Scheme to Investigate the Winding Insulation Paper Deterioration in Oil-Immersed Power Transformer. Int. J. Electr. Power Energy Syst. 2013, 53, 256–271. [Google Scholar] [CrossRef]
- Liao, R.; Bian, J.; Yang, L.; Grzybowski, S. Cloud Model-Based Failure Mode and Effects Analysis for Prioritization of Failures of Power Transformer in Risk Assessment. Int. Trans. Electr. Energy Syst. 2013, 23, 1172–1190. [Google Scholar] [CrossRef]
- Suwanasri, T.Y.; Suwanasri, C.; Phadungthin, R. Risk Assessment Based on Condition and Importance Criteria for Power Transformer in Thailand Transmission Network. IEEJ Trans. Electr. Electron. Eng. 2015, 10, 18–27. [Google Scholar] [CrossRef]
- Medina, R.D.; Morales, D.X.; Toledo, M.A.; Cabrera, J.B. Power Transformer Risk Index Assessment for an Asset Management Plan. In Proceedings of the 2017 CHILEAN Conference on Electrical, Electronics Engineering, Information and Communication Technologies, Pucon, Chile, 18–20 October 2017; pp. 1–7. [Google Scholar] [CrossRef]
- Lin, D.; Xu, Y.Y.; Liang, Y.; Li, Y.; Liu, N.; Zhang, G.J. A Risk Assessment Method of Transformer Considering the Economy and Reliability of Power Network. In Proceedings of the ICEMPE 2017—1st International Conference on Electrical Materials and Power Equipment, Xi’an, China, 14–17 May 2017; pp. 594–597. [Google Scholar] [CrossRef]
- Khuntia, S.R.; Rueda, J.L.; Bouwman, S.; van der Meijden, M.A.M.M. A Literature Survey on Asset Management in Electrical Power [Transmission and Distribution] System. Int. Trans. Electr. Energy Syst. 2016, 26, 2123–2133. [Google Scholar] [CrossRef] [Green Version]
- Romero Quete, A.A.; David, H.; David, J.; Moreno, G. A Practical Method for Risk Assessment in Power Transformer Fleets. Dyna 2017, 84, 11–18. [Google Scholar] [CrossRef]
- Cerón Piamba, A.F. Metodología Para La Definición de Estrategias de Sustitución En El Largo Plazo Para Transformadores de Potencia; Considerando Criterios Técnicos y Económicos, Universidad del Valle: Cali, Colombia, 2020. [Google Scholar]
- Foros, J.; Istad, M. Health Index, Risk and Remaining Lifetime Estimation of Power Transformers. IEEE Trans. Power Deliv. 2020, 35, 2612–2620. [Google Scholar] [CrossRef] [Green Version]
- Sumereder, C.; Muhr, M.; Körbler, B. Lifetime Management of Power TransformersLebensdauermanagement von Leistungstransformatoren. E I Elektrotechnik Und Inf. 2003, 120, 420–423. [Google Scholar] [CrossRef]
- Qian, Z.; Yan, Z. Fuzzy Synthetic Method for Life Assessment of Power Transformer. IEE Proc. Sci. Meas. Technol. 2004, 151, 175–180. [Google Scholar] [CrossRef]
- Pradhan, M.K. Assessment of the Status of Insulation during Thermal Stress Accelerated Experiments on Transformer Prototypes. IEEE Trans. Dielectr. Electr. Insul. 2006, 13, 227–237. [Google Scholar] [CrossRef]
- Martins, M.A.; Fialho, M.; Martins, J.; Soares, M.; Cristina, M.; Lopes, R.C.; Campelo, H.M.R. Power Transformer End-of-Life Assessment-Pracana Case Study*. IEEE Electr. Insul. Mag. 2011, 27, 15–26. [Google Scholar] [CrossRef]
- Yang, C. Research of Ageing and Life Assessment Methods of Power Transformers in Nuclear Power Plants. Adv. Mat. Res. 2013, 614–615, 1109–1115. [Google Scholar] [CrossRef]
- Yang, C. Life Assessment Methods of Large and Medium-Sized Power Transformers. In Proceedings of the IET International Conference on Information Science and Control Engineering 2012 (ICISCE 2012), Shenzhen, China, 7–9 December 2012; Institution of Engineering and Technology: London, UK, 2012; pp. 1–33. [Google Scholar]
- Rigatos, G.; Siano, P. Power Transformers’ Condition Monitoring Using Neural Modeling and the Local Statistical Approach to Fault Diagnosis. Int. J. Electr. Power Energy Syst. 2016, 80, 150–159. [Google Scholar] [CrossRef]
- Cheng, L.; Yu, T.; Wang, G.; Yang, B.; Zhou, L. Hot Spot Temperature and Grey Target Theory-Based Dynamic Modelling for Reliability Assessment of Transformer Oil-Paper Insulation Systems: A Practical Case Study. Energies 2018, 11, 249. [Google Scholar] [CrossRef] [Green Version]
- Li, S.; Ge, Z.; Abu-Siada, A.; Yang, L.; Li, S.; Wakimoto, K. A New Technique to Estimate the Degree of Polymerization of Insulation Paper Using Multiple Aging Parameters of Transformer Oil. IEEE Access 2019, 7, 157471–157479. [Google Scholar] [CrossRef]
- Sarajcev, P.; Jakus, D.; Vasilj, J. Optimal Scheduling of Power Transformers Preventive Maintenance with Bayesian Statistical Learning and Influence Diagrams. J. Clean Prod. 2020, 258, 120850. [Google Scholar] [CrossRef]
- Milosavljevic, S.; Janjic, A. Integrated Transformer Health Estimation Methodology Based on Markov Chains and Evidential Reasoning. Math. Probl. Eng. 2020, 2020, 7291749. [Google Scholar] [CrossRef]
- Wang, J.; Fu, L. Power Transformer Life Analysis Based on Lambert W Function. In Proceedings of the 2021 International Conference on Power Grid System and Green Energy (PGSGE 2021), Wuhan, China, 26–28 March 2021; Volume 252, p. 01004. [Google Scholar] [CrossRef]
- Wouters, P.A.A.F.; Van Schijndel, A.; Wetzer, J.M. Remaining Lifetime Modeling of Power Transformers: Individual Assets and Fleets. IEEE Electr. Insul. Mag. 2011, 27, 45–51. [Google Scholar] [CrossRef]
- IEC 60076-6; Power Transformers—Part 6: Reactors. International Electrotechnical Commission (IEC): Geneva, Switzerland, 2007; p. 242.
- Fischer, M.; Tenbohlen, S.; Schäfer, M.; Haug, R. Determining Power Transformers’ Sequence of Service in Power Grids. IEEE Trans. Dielectr. Electr. Insul. 2011, 18, 1789–1797. [Google Scholar] [CrossRef]
- Van Schijndel, A.; Wouters, P.A.A.F.; Wetzer, J.M. Modeling of Replacement Alternatives for Power Transformer Populations. IEEE Trans. Power Deliv. 2012, 27, 506–513. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Liao, R.; Yang, L.; Deng, X.; Cheng, H.; Lv, C. A Cost-Effectiveness Assessment Model Using Grey Correlation Analysis for Power Transformer Selection Based on Life Cycle Cost. Kybernetes 2014, 43, 5–23. [Google Scholar] [CrossRef]
- Trappey, C.V.; Trappey, A.J.C.; Ma, L.; Tsao, W.T. Data Driven Modeling for Power Transformer Lifespan Evaluation. J. Syst. Sci. Syst. Eng. 2014, 23, 80–93. [Google Scholar] [CrossRef]
- Aldhubaib, H.A.; Salama, M.M.A. A Novel Approach to Investigate the Effect of Maintenance on the Replacement Time for Transformers. IEEE Trans. Power Deliv. 2014, 29, 1603–1612. [Google Scholar] [CrossRef]
- Lin, Y.; Yang, L.; Liao, R.; Sun, W.; Zhang, Y. Effect of Oil Replacement on Furfural Analysis and Aging Assessment of Power Transformers. IEEE Trans. Dielectr. Electr. Insul. 2015, 22, 2611–2619. [Google Scholar] [CrossRef]
- Gatta, F.M.; Geri, A.; Maccioni, M.; Maiolini, C.; Cresta, M.; Paulucci, M.; Palone, F.; Cannavale, G.; Scaggiante, M. Impact of the Recent EU Regulation on HV/MV Transformers: Possible Technical-Economic Benefits Arising from the Replacement of Old Transformers. Two Case Studies. In Proceedings of the EEEIC 2016—International Conference on Environment and Electrical Engineering, Florence, Italy, 7–10 June 2016. [Google Scholar] [CrossRef]
- Hillary, W.D.A.G.; Jayarathna, K.L.I.M.P.B.; Ranasinghe, L.I.; Samarakoon, S.M.B.P.; Rathnayake, N.M.T.N.; Lucas, J.R.; Samarasinghe, R. A Tool for Estimating Remaining Life Time of a Power Transformer. In Proceedings of the 3rd International Moratuwa Engineering Research Conference, Moratuwa, Sri Lanka, 29–31 May 2017; pp. 373–378. [Google Scholar] [CrossRef]
- De Pablo, A. Furfural and Ageing: How Are They Related. In Proceedings of the IEE Colloquium Insulating Liquids, Leatherhead, UK, 27 May 1999; Volume 1999, p. 5. [Google Scholar]
- Ye, Z.; Wu, K.; Cheng, C.; Song, W. Replacement of Aging Power Transformers Considering System Risks under Multi-Level Load. In Proceedings of the 2017 IEEE Power & Energy Society General Meeting, Chicago, IL, USA, 16–20 July 2017. [Google Scholar] [CrossRef]
- Martin, D.; Marks, J.; Saha, T. Survey of Australian Power Transformer Failures and Retirements. IEEE Electr. Insul. Mag. 2017, 33, 16–22. [Google Scholar] [CrossRef]
- Eyuboglu, O.H.; Dindar, B.; Gul, O. Risk Assessment by Using Failure Modes and Effects Analysis (FMEA) Based on Power Transformer Aging for Maintenance and Replacement Decision. In Proceedings of the 2020 IEEE 2nd Global Power, Energy and Communication Conference, GPECOM 2020, Online, 20–23 October 2020; pp. 251–255. [Google Scholar] [CrossRef]
- Schmitz, W.I.; Feil, D.L.P.; Canha, L.N.; Abaide, A.R.; Marchesan, T.B.; Carraro, R. Operational Vulnerability Indicator for Prioritization and Replacement of Power Transformers in Substation. Int. J. Electr. Power Energy Syst. 2018, 102, 60–70. [Google Scholar] [CrossRef]
- Harianti, S.; Purnomo, M.H. Determining Priority of Power Transformer Replacement Project by Using Fuzzy AHP Method. In Proceedings of the 2019 International Conference on Information and Communication Technology and Systems, ICTS 2019, Surabaya, Indonesia, 18 July 2019; pp. 114–119. [Google Scholar] [CrossRef]
Search Rule | Document Type | Total | |||
---|---|---|---|---|---|
Book | Journal Article | Conference Article | Other | ||
PT. Risk Index- | 8 | 178 | 110 | 37 | 333 |
PT. State- | 12 | 667 | 5 | 0 | 684 |
P T.-Investment | 21 | 321 | 259 | 167 | 768 |
PT Risk Index Investment-- | 0 | 3 | 1 | 1 | 5 |
Input Data | Reference | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
[12] | [13] | [17] | [14] | [16] | [18] | [21] | [15] | [19] | [20] | [22] | [2] | [23] | [24] | |
History of single-phase and three-phase faults | √ | √ | √ | |||||||||||
Element failure history | √ | √ | ||||||||||||
Mechanical tests | √ | √ | √ | |||||||||||
Physicochemical tests | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | ||||
Electrical tests | √ | √ | √ | √ | √ | √ | √ | √ | ||||||
Visual inspection | √ | √ | √ | |||||||||||
Insulation characteristics | √ | √ | √ | √ | ||||||||||
Maintenance and operation | √ | √ | √ | √ | ||||||||||
Other components | √ | √ | √ | √ | √ | √ | √ | √ | ||||||
Moisture content | √ | √ | √ | √ | √ | √ | ||||||||
External influences | √ | √ | √ | √ | ||||||||||
DGA analysis | √ | √ | √ | √ | √ | √ | √ | √ | ||||||
Asset age | √ | √ | √ | √ | √ | √ | ||||||||
Load history | √ | √ | √ | √ | √ | √ | ||||||||
Power factor | √ | |||||||||||||
Network criticality | √ | √ | √ | √ | √ | |||||||||
Load Factor | √ | |||||||||||||
Load shedding | √ | √ | √ | √ | ||||||||||
Furans or degree of polymerization (DP) | √ | √ | √ | √ | √ | √ | ||||||||
Cost and repair time | √ | √ | √ | |||||||||||
Environmental impact | √ | √ | √ | |||||||||||
Penalty | √ | √ | ||||||||||||
Paper degradation (hydrolysis, pyrolysis, and oxidation) | √ | √ | ||||||||||||
Oil volume | √ | |||||||||||||
Risk to nearby buildings | √ |
Method Used | Reference | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
[25] | [26] | [27] | [28] | [29] | [31] | [32] | [33] | [35] | [34] | [36] | |
Thermal aging | √ | √ | √ | ||||||||
Fuzzy logic | √ | √ | √ | ||||||||
Lab tests | √ | ||||||||||
Carbon analysis (CO2/CO) | √ | ||||||||||
Empirical formulas | √ | √ | √ | ||||||||
Neural networks | √ | ||||||||||
Weibull distribution | √ | ||||||||||
“Gray target” theory | √ | ||||||||||
Linear regression | √ | ||||||||||
Greedy algorithm | √ | ||||||||||
Markov chains | √ | ||||||||||
Dempster–Shafer Theory | √ | ||||||||||
Bayesian networks | √ | ||||||||||
Lambert W function | √ |
Ref. | Development | Advantage | Disadvantage |
---|---|---|---|
[37] | A model predicting the remaining life of an insulating paper based on the degradation process. | Despite the lack of load data, a good estimate can still be made. | Because several input parameters are missing, the results are considered speculative. |
The proposed load redistribution can reduce asset lifetimes. | |||
[39] | PT replacement model based on the condition and risk of disconnection to users. | By using data from samples in the oil, calculations are based on the actual condition of the equipment. | Data input is not always complete. |
Assets that are in different states of health can be weighed similarly using fuzzy logic. | |||
[40] | Assessment of substitution alternatives based on probabilistic analysis of thermal degradation of paper. | With redistribution, it takes longer for a failure to occur. | Load balancing affects the remaining life of assets. |
Having a fixed number of assets to replace each year makes management easier. | Good monitoring is required to avoid errors in calculations. | ||
Computing is reduced when similar units are grouped together. | PD calculations show a significant deviation. | ||
[41] | A model for evaluating investments based on lifecycle costs. | Based on lifecycle cost, it also considers reliability and maintenance. | Calculations are based purely on economics and not on asset operation. |
Deals effectively with scarce information issues. | |||
[42] | Remote assessment of the PT’s service life. | Calculates the transformer lifetime using data from both real-time and historical sources. | There are technical evaluations, but no economic evaluations for unit replacement. |
[43] | Methodical decision-making system to determine the optimal replacement time for the asset. | An emphasis is placed on the characteristics of equipment operation at the point of instability. | All calculations are performed using an algorithm that ignores several critical parameters that should be monitored, including the actual condition of the asset. |
The effect of maintenance is considered. | |||
It combines both the economic and the reliability components. | |||
[45] | An economic study of the replacement of the PT according to current regulations. | Predicts future equipment load scenarios. | In addition to power, it does not consider other parameters that can affect asset life. |
[46] | A mathematical model for estimating a PT’s remaining life. | By calculating other parameters, the degree of polymerization is calculated, thus avoiding the degradation of insulation during sampling. | Because it is not possible to make a fully reliable decision on asset replacement using linear or non-linear regression, the uncertainty of the calculated parameter is high. |
[48] | A cost–benefit analysis method for replacing a PT. | It considers the risks associated with each loading stage, including penalties for not providing the service. | It focuses primarily on loads and hot spots while ignoring other important parameters that determine the condition of assets. |
[51] | Methodology for classifying and replacing PTs in substations. | In addition to the risk index, it also takes into account whether other equipment is supporting the transformer load. | When data or measurements are not available, values are assumed, such as the level of furans. |
Calculates the risk by considering the manufacturing time of the unit. | Economic factors, such as environmental damage, corporate budgets, penalties, etc., are not considered. | ||
[50] | Methodology for predicting PT replacement using risk. | To make more accurate calculations, separates the detectability from the severity of a failure. | Only equipment parameters are considered, not economic or external factors. |
Defining the type of failure that will occur next helps the operator take corrective action in a timely manner. | |||
[23] | Economic quantifications and risk matrix applied to transformer substitution. | Considers physical, economic, and external risks. | The results are not affected by maintenance events on the asset that add uncertainty to the results. Maintenance can extend the life of the unit or change the inputs used to calculate of the asset health index. |
Predicts future behavior and makes better long-term decisions. | |||
Optimizes replacement costs according to the company’s budget. |
Reference | Risk Index | Life Evaluation | Economic Analysis | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Life Based on DP | Health Index or Probability of Failure | Consequences of Failure | Evaluations and Weights | Fuzzy Logic | Statistical Analysis | Empirical Formulas | Neural Networks | Theories and Theorems | Algorithms | Bayesian Networks | Stochastic Processes | Future Prediction | Penalty | Maintenance | Replacement | Optimization | |
[12] | √ | √ | √ | √ | √ | ||||||||||||
[15] | √ | √ | |||||||||||||||
[13] | √ | √ | √ | √ | |||||||||||||
[14] | √ | √ | √ | √ | √ | ||||||||||||
[2] | √ | √ | √ | √ | √ | √ | |||||||||||
[23] | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | |||||||
[16] | √ | √ | √ | √ | √ | √ | |||||||||||
[17] | √ | √ | √ | √ | |||||||||||||
[18] | √ | √ | √ | ||||||||||||||
[19] | √ | √ | √ | ||||||||||||||
[20] | √ | √ | √ | √ | √ | √ | √ | ||||||||||
[50] | √ | √ | |||||||||||||||
[24] | √ | √ | √ | √ | √ | √ | √ | √ | |||||||||
[26] | √ | √ | √ | ||||||||||||||
[27] | √ | √ | |||||||||||||||
[28] | √ | √ | √ | √ | |||||||||||||
[31] | √ | √ | √ | √ | √ | √ | √ | ||||||||||
[32] | √ | √ | √ | √ | |||||||||||||
[33] | √ | √ | √ | ||||||||||||||
[35] | √ | √ | √ | √ | √ | ||||||||||||
[34] | √ | √ | √ | √ | √ | √ | √ | √ | |||||||||
[36] | √ | √ | √ | √ | |||||||||||||
[37] | √ | √ | √ | √ | |||||||||||||
[39] | √ | √ | √ | √ | |||||||||||||
[40] | √ | √ | √ | ||||||||||||||
[41] | √ | √ | √ | √ | √ | √ | |||||||||||
[42] | √ | √ | √ | √ | √ | ||||||||||||
[43] | √ | √ | √ | ||||||||||||||
[45] | √ | √ | √ | ||||||||||||||
[46] | √ | √ | √ | ||||||||||||||
[48] | √ | √ | √ | √ | √ | √ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Balanta, J.Z.; Rivera, S.; Romero, A.A.; Coria, G. Planning and Optimizing the Replacement Strategies of Power Transformers: Literature Review. Energies 2023, 16, 4448. https://doi.org/10.3390/en16114448
Balanta JZ, Rivera S, Romero AA, Coria G. Planning and Optimizing the Replacement Strategies of Power Transformers: Literature Review. Energies. 2023; 16(11):4448. https://doi.org/10.3390/en16114448
Chicago/Turabian StyleBalanta, Jefferson Zuñiga, Sergio Rivera, Andrés A. Romero, and Gustavo Coria. 2023. "Planning and Optimizing the Replacement Strategies of Power Transformers: Literature Review" Energies 16, no. 11: 4448. https://doi.org/10.3390/en16114448
APA StyleBalanta, J. Z., Rivera, S., Romero, A. A., & Coria, G. (2023). Planning and Optimizing the Replacement Strategies of Power Transformers: Literature Review. Energies, 16(11), 4448. https://doi.org/10.3390/en16114448