Chicken Manure Pretreatment for Enhancing Biogas and Methane Production
Abstract
:1. Introduction
2. Materials and Methods
2.1. Substrates and Seeding Sludge
2.2. Pretreatment of Chicken Manure
2.3. Physical and Chemical Analyses
2.4. Batch Fermentation
2.5. Biogas Measurements
2.6. Conversion Efficiency
3. Results and Discussion
3.1. Sample Characterization
3.2. Dynamics of the Biogas Production and Hydraulic Retention Time
3.3. Biogas Efficiency and VS Reduction
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jurgutis, L.; Slepetiene, A.; Volungevicius, J.; Amaleviciute-Volunge, K. Biogas Production from Chicken Manure at Different Organic Loading Rates in a Mesophilic Full Scale Anaerobic Digestion Plant. Biomass Bioenergy 2020, 141, 105693. [Google Scholar] [CrossRef]
- Ksheem, A.M.; Bennett, J.M.L.; Antille, D.L.; Raine, S.R. Towards a Method for Optimized Extraction of Soluble Nutrients from Fresh and Composted Chicken Manures. Waste Manag. 2015, 45, 76–90. [Google Scholar] [CrossRef] [PubMed]
- Stiborova, H.; Kronusova, O.; Kastanek, P.; Brazdova, L.; Lovecka, P.; Jiru, M.; Belkova, B.; Poustka, J.; Stranska, M.; Hajslova, J.; et al. Waste Products from the Poultry Industry: A Source of High-Value Dietary Supplements. J. Chem. Technol. Biotechnol. 2020, 95, 985–992. [Google Scholar] [CrossRef]
- Cieślak, A.; Dach, J.; Horbańczuk, J.; Józefiak, D.; Pszczoła, M.; Strabel, T.; Szumacher-Strabel, M.; Tomasik, C. Stock Take of Regional Activities and Needs in Relation to Livestock Research—Poland. In Proceedings of the Workshop on the Global Research Alliance on Agricultural Greenhouse Gases, Ministry of Agronomy, Warsaw, Poland, 8–9 March 2014. [Google Scholar]
- Dróżdż, D.; Wystalska, K.; Malińska, K.; Grosser, A.; Grobelak, A.; Kacprzak, M. Management of Poultry Manure in Poland – Current State and Future Perspectives. J. Environ. Manag. 2020, 264, 110327. [Google Scholar] [CrossRef]
- Bayrakdar, A.; Molaey, R.; Sürmeli, R.Ö.; Sahinkaya, E.; Çalli, B. Biogas Production from Chicken Manure: Co-Digestion with Spent Poppy Straw. Int. Biodeterior. Biodegrad. 2017, 119, 205–210. [Google Scholar] [CrossRef]
- Ma, Q.; Paudel, K.P.; Bhandari, D.; Theegala, C.; Cisneros, M. Implications of Poultry Litter Usage for Electricity Production. Waste Manag. 2019, 95, 493–503. [Google Scholar] [CrossRef]
- Augustyńska-Prejsnar, A.; Ormian, M.; Sokołowicz, Z.; Topoczewska, J.; Lechowska, J. Environmental Impacts of Pig and Poultry Farms. Proc. ECOpole 2018, 12, 117–129. [Google Scholar] [CrossRef]
- Niu, Q.; Qiao, W.; Qiang, H.; Hojo, T.; Li, Y.Y. Mesophilic Methane Fermentation of Chicken Manure at a Wide Range of Ammonia Concentration: Stability, Inhibition and Recovery. Bioresour. Technol. 2013, 137, 358–367. [Google Scholar] [CrossRef]
- Li, C.; Strömberg, S.; Liu, G.; Achu, I.; Liu, J. Assessment of Regional Biomass as Co-Substrate in the Anaerobic Digestion of Chicken Manure: Impact of Co-Digestion with Chicken Processing Waste, Seagrass and Miscanthus. Biochem. Eng. J. 2017, 118, 1–10. [Google Scholar] [CrossRef]
- Sun, C.; Cao, W.; Banks, C.J.; Heaven, S.; Liu, R. Biogas Production from Undiluted Chicken Manure and Maize Silage: A Study of Ammonia Inhibition in High Solids Anaerobic Digestion. Bioresour. Technol. 2016, 218, 1215–1223. [Google Scholar] [CrossRef] [Green Version]
- Liu, L.; Zhang, T.; Wan, H.; Chen, Y.; Wang, X.; Yang, G.; Ren, G. Anaerobic Co-Digestion of Animal Manure and Wheat Straw for Optimized Biogas Production by the Addition of Magnetite and Zeolite. Energy Convers. Manag. 2015, 97, 132–139. [Google Scholar] [CrossRef]
- Li, K.; Liu, R.; Yu, Q.; Ma, R. Removal of Nitrogen from Chicken Manure Anaerobic Digestion for Enhanced Biomethanization. Fuel 2018, 232, 395–404. [Google Scholar] [CrossRef]
- Vandecasteele, B.; Reubens, B.; Willekens, K.; De Neve, S. Composting for Increasing the Fertilizer Value of Chicken Manure: Effects of Feedstock on P Availability. Waste Biomass Valorization 2014, 5, 491–503. [Google Scholar] [CrossRef]
- Kelleher, B.P.; Leahy, J.J.; Henihan, A.M.; O’Dwyer, T.F.; Sutton, D.; Leahy, M.J. Advances in Poultry Litter Disposal Technology—A Review. Bioresour. Technol. 2002, 83, 27–36. [Google Scholar] [CrossRef]
- Myszograj, S.; Puchalska, E. Waste from Rearing and Slaughter of Poultry—Treat to the Environment or Feedstock for Energy. Environ. Med. 2012, 15, 106–115. [Google Scholar]
- Agyarko-Mintah, E.; Cowie, A.; Van Zwieten, L.; Singh, B.P.; Smillie, R.; Harden, S.; Fornasier, F. Biochar Lowers Ammonia Emission and Improves Nitrogen Retention in Poultry Litter Composting. Waste Manag. 2017, 61, 129–137. [Google Scholar] [CrossRef]
- Turzyński, T.; Kluska, J.; Kardaś, D. Study on Chicken Manure Combustion and Heat Production in Terms of Thermal Self-Sufficiency of a Poultry Farm. Renew. Energy 2022, 191, 84–91. [Google Scholar] [CrossRef]
- Manogaran, M.D.; Shamsuddin, R.; Mohd Yusoff, M.H.; Lay, M.; Siyal, A.A. A Review on Treatment Processes of Chicken Manure. Clean. Circ. Bioecon. 2022, 2, 100013. [Google Scholar] [CrossRef]
- Cavalaglio, G.; Coccia, V.; Cotana, F.; Gelosia, M.; Nicolini, A.; Petrozzi, A. Energy from Poultry Waste: An Aspen Plus-Based Approach to the Thermo-Chemical Processes. Waste Manag. 2018, 73, 496–503. [Google Scholar] [CrossRef]
- Zentou, H.; Zainal Abidin, Z.; Yunus, R.; Awang Biak, D.R.; Abdullah Issa, M.; Yahaya Pudza, M. A New Model of Alcoholic Fermentation under a Byproduct Inhibitory Effect. ACS Omega 2021, 6, 4137–4146. [Google Scholar] [CrossRef]
- Lauri, P.; Havlík, P.; Kindermann, G.; Forsell, N.; Böttcher, H.; Obersteiner, M. Woody Biomass Energy Potential in 2050. Energy Policy 2014, 66, 19–31. [Google Scholar] [CrossRef]
- Tursi, A. A Review on Biomass: Importance, Chemistry, Classification, and Conversion. Biofuel Res. J. 2019, 6, 962–979. [Google Scholar] [CrossRef]
- Mao, C.; Feng, Y.; Wang, X.; Ren, G. Review on Research Achievements of Biogas from Anaerobic Digestion. Renew. Sustain. Energy Rev. 2015, 45, 540–555. [Google Scholar] [CrossRef]
- Fuchs, W.; Wang, X.; Gabauer, W.; Ortner, M.; Li, Z. Tackling Ammonia Inhibition for Efficient Biogas Production from Chicken Manure: Status and Technical Trends in Europe and China. Renew. Sustain. Energy Rev. 2018, 97, 186–199. [Google Scholar] [CrossRef]
- Kirchmann, H.; Witter, E. Ammonia Volatilization during Aerobic and Anaerobic Manure Decomposition. Plant Soil 1989, 115, 35–41. [Google Scholar] [CrossRef]
- Sakar, S.; Yetilmezsoy, K.; Kocak, E. Anaerobic Digestion Technology in Poultry and Livestock Waste Treatment - A Literature Review. Waste Manag. Res. 2009, 27, 3–18. [Google Scholar] [CrossRef]
- Rajagopal, R.; Massé, D.I.; Singh, G. A Critical Review on Inhibition of Anaerobic Digestion Process by Excess Ammonia. Bioresour. Technol. 2013, 143, 632–641. [Google Scholar] [CrossRef]
- Yenigün, O.; Demirel, B. Ammonia Inhibition in Anaerobic Digestion: A Review. Process Biochem. 2013, 48, 901–911. [Google Scholar] [CrossRef]
- Nahm, K.H. Factors Influencing Nitrogen Mineralization during Poultry Litter Composting and Calculations for Available Nitrogen. Worlds. Poult. Sci. J. 2005, 61, 238–255. [Google Scholar] [CrossRef]
- Chen, Y.; Cheng, J.J.; Creamer, K.S. Inhibition of Anaerobic Digestion Process: A Review. Bioresour. Technol. 2008, 99, 4044–4064. [Google Scholar] [CrossRef]
- Hejnfelt, A.; Angelidaki, I. Anaerobic Digestion of Slaughterhouse By-Products. Biomass Bioenergy 2009, 33, 1046–1054. [Google Scholar] [CrossRef]
- Yuan, H.; Zhu, N. Progress in Inhibition Mechanisms and Process Control of Intermediates and By-Products in Sewage Sludge Anaerobic Digestion. Renew. Sustain. Energy Rev. 2016, 58, 429–438. [Google Scholar] [CrossRef]
- Lay, J.-J.; Li, Y.-Y.; Noike, T. The Influence of PH and Ammonia Concentration on the Methane Production in High-Solids Digestion Processes. Water Environ. Res. 1998, 70, 1075–1082. [Google Scholar] [CrossRef]
- Bi, S.; Qiao, W.; Xiong, L.; Mahdy, A.; Wandera, S.M.; Yin, D.; Dong, R. Improved High Solid Anaerobic Digestion of Chicken Manure by Moderate in Situ Ammonia Stripping and Its Relation to Metabolic Pathway. Renew. Energy 2020, 146, 2380–2389. [Google Scholar] [CrossRef]
- Niu, Q.; Takemura, Y.; Kubota, K.; Li, Y.-Y. Comparing Mesophilic and Thermophilic Anaerobic Digestion of Chicken Manure: Microbial Community Dynamics and Process Resilience. Waste Manag. 2015, 43, 114–122. [Google Scholar] [CrossRef] [PubMed]
- Bujoczek, G.; Oleszkiewicz, J.; Sparling, R.; Cenkowski, S. High Solid Anaerobic Digestion of Chicken Manure. J. Agric. Eng. Res. 2000, 76, 51–60. [Google Scholar] [CrossRef]
- Nie, H.; Jacobi, H.F.; Strach, K.; Xu, C.; Zhou, H.; Liebetrau, J. Mono-Fermentation of Chicken Manure: Ammonia Inhibition and Recirculation of the Digestate. Bioresour. Technol. 2015, 178, 238–246. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Lang, Q.; Pan, Z.; Jiang, Y.; Liebetrau, J.; Nelles, M.; Dong, H.; Dong, R. Performance Evaluation of a Novel Anaerobic Digestion Operation Process for Treating High-Solids Content Chicken Manure: Effect of Reduction of the Hydraulic Retention Time at a Constant Organic Loading Rate. Waste Manag. 2017, 64, 340–347. [Google Scholar] [CrossRef]
- Rahman, M.A.; Møller, H.B.; Saha, C.K.; Alam, M.M.; Wahid, R.; Feng, L. Optimal Ratio for Anaerobic Co-Digestion of Poultry Droppings and Lignocellulosic-Rich Substrates for Enhanced Biogas Production. Energy Sustain. Dev. 2017, 39, 59–66. [Google Scholar] [CrossRef]
- Wang, X.; Yang, G.; Feng, Y.; Ren, G.; Han, X. Optimizing Feeding Composition and Carbon-Nitrogen Ratios for Improved Methane Yield during Anaerobic Co-Digestion of Dairy, Chicken Manure and Wheat Straw. Bioresour. Technol. 2012, 120, 78–83. [Google Scholar] [CrossRef]
- Matheri, A.N.; Ndiweni, S.N.; Belaid, M.; Muzenda, E.; Hubert, R. Optimising Biogas Production from Anaerobic Co-Digestion of Chicken Manure and Organic Fraction of Municipal Solid Waste. Renew. Sustain. Energy Rev. 2017, 80, 756–764. [Google Scholar] [CrossRef]
- Feng, L.; Lin, X.; Li, X. Combined Anaerobic Digestion of Chicken Manure and Corn Straw: Study on Methanogenic Potential and Microbial Diversity. Ann. Microbiol. 2022, 72, 44. [Google Scholar] [CrossRef]
- Abouelenien, F.; Namba, Y.; Kosseva, M.R.; Nishio, N.; Nakashimada, Y. Enhancement of Methane Production from Co-Digestion of Chicken Manure with Agricultural Wastes. Bioresour. Technol. 2014, 159, 80–87. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Li, J.; Ye, B.; Zhang, X.; Tyagi, R.D.; Gao, X. Energy Balance Assessment on Chicken Manure for Biogas Production in Rabat-Salé-Zemmour-Zaïr of Morocco. J. Environ. Manag. 2021, 299, 113656. [Google Scholar] [CrossRef] [PubMed]
- Manogaran, M.D.; Hakimi, M.; Basheer Ahmad, M.H.N.; Shamsuddin, R.; Lim, J.W.; Hassan, M.A.M.; Sahrin, N.T. Effect of Temperature on Co-Anaerobic Digestion of Chicken Manure and Empty Fruit Bunch: A Kinetic Parametric Study. Sustainability 2023, 15, 5813. [Google Scholar] [CrossRef]
- Yilmazel, Y.D.; Demirer, G.N. Removal and Recovery of Nutrients as Struvite from Anaerobic Digestion Residues of Poultry Manure. Environ. Technol. 2011, 32, 783–794. [Google Scholar] [CrossRef]
- Demeestere, K.; Smet, E.; Van Langenhove, H.; Galbacs, Z. Optimalisation of Magnesium Ammonium Phosphate Precipitation and Its Applicability to the Removal of Ammonium. Environ. Technol. 2001, 22, 1419–1428. [Google Scholar] [CrossRef]
- Ryu, H.D.; Lee, S.I. Struvite Recovery from Swine Wastewater and Its Assessment as a Fertilizer. Environ. Eng. Res. 2016, 21, 29–35. [Google Scholar] [CrossRef]
- Rahman, M.M.; Salleh, M.A.M.; Rashid, U.; Ahsan, A.; Hossain, M.M.; Ra, C.S. Production of Slow Release Crystal Fertilizer from Wastewaters through Struvite Crystallization—A Review. Arab. J. Chem. 2014, 7, 139–155. [Google Scholar] [CrossRef] [Green Version]
- Shi, L.; Simplicio, W.S.; Wu, G.; Hu, Z.; Hu, H.; Zhan, X. Nutrient Recovery from Digestate of Anaerobic Digestion of Livestock Manure: A Review. Curr. Pollut. Rep. 2018, 4, 74–83. [Google Scholar] [CrossRef]
- Wongkiew, S.; Koottatep, T.; Polprasert, C.; Prombutara, P.; Jinsart, W.; Khanal, S.K. Bioponic System for Nitrogen and Phosphorus Recovery from Chicken Manure: Evaluation of Manure Loading and Microbial Communities. Waste Manag. 2021, 125, 67–76. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Wang, G.; Cao, Z.; Sui, C.; Zou, J.; Wang, Z. Effects of Different Addition Ratios of Unsterilized Chicken Manure Biogas Slurry on Chlorella Cultivation. Energy Sources Part A Recover. Util. Environ. Eff. 2020. [Google Scholar] [CrossRef]
- Yetilmezsoy, K.; Sertyesilisik, B.; Kocak, E.; Sapci-Zengin, Z. Ameliorative Effect of Different Doses of MgNH4PO4 6H2O Precipitate Recovered from the Effluent of UASB Treating Poultry Manure Wastewater: Growth of Lolium Perenne. J. Food Agric. Environ. 2009, 7, 823–831. [Google Scholar]
- Luo, W.; Fang, Y.; Song, L.; Niu, Q. Production of Struvite by Magnesium Anode Constant Voltage Electrolytic Crystallisation from Anaerobically Digested Chicken Manure Slurry. Environ. Res. 2022, 214, 113991. [Google Scholar] [CrossRef]
- American Public Health Association, Inc. (APHA). Standard Methods for the Examination of Water and Wastewater, 20th ed.; American Public Health Association, Inc. (APHA): Washington, DC, USA, 1998. [Google Scholar]
- Raposo, F.; Banks, C.J.; Siegert, I.; Heaven, S.; Borja, R. Influence of Inoculum to Substrate Ratio on the Biochemical Methane Potential of Maize in Batch Tests. Process Biochem. 2006, 41, 1444–1450. [Google Scholar] [CrossRef]
- Strömberg, S.; Nistor, M.; Liu, J. Towards Eliminating Systematic Errors Caused by the Experimental Conditions in Biochemical Methane Potential (BMP) Tests. Waste Manag. 2014, 34, 1939–1948. [Google Scholar] [CrossRef]
- Žalys, B.; Venslauskas, K.; Navickas, K.; Buivydas, E.; Rubežius, M. The Influence of CO2 Injection into Manure as a Pretreatment Method for Increased Biogas Production. Sustain. 2023, 15. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, R.; Chen, C.; Liu, G.; He, Y.; Liu, X. Biogas Production from Co-Digestion of Corn Stover and Chicken Manure under Anaerobic Wet, Hemi-Solid, and Solid State Conditions. Bioresour. Technol. 2013, 149, 406–412. [Google Scholar] [CrossRef]
- Abouelenien, F.; Nakashimada, Y.; Nishio, N. Dry Mesophilic Fermentation of Chicken Manure for Production of Methane by Repeated Batch Culture. J. Biosci. Bioeng. 2009, 107, 293–295. [Google Scholar] [CrossRef]
- Lisboa, M.S.; Lansing, S. Characterizing Food Waste Substrates for Co-Digestion through Biochemical Methane Potential (BMP) Experiments. Waste Manag. 2013, 33, 2664–2669. [Google Scholar] [CrossRef]
- Kozłowski, K.; Dach, J.; Lewicki, A.; Malińska, K.; Do Carmo, I.E.P.; Czekała, W. Potential of Biogas Production from Animal Manure in Poland. Arch. Environ. Prot. 2019, 45, 99–108. [Google Scholar] [CrossRef]
- Janczak, D.; Malinska, K.; Czekała, W.; Cáceres, R.; Lewicki, A.; Dach, J. Biochar to Reduce Ammonia Emissions in Gaseous and Liquid Phase during Composting of Poultry Manure with Wheat Straw. Waste Manag. 2017, 66, 36–45. [Google Scholar] [CrossRef] [PubMed]
- Świątek, M.; Lewicki, A.; Szymanowska, D.; Kubiak, P. The Effect of Introduction of Chicken Manure on the Biodiversity and Performance of an Anaerobic Digester. Electron. J. Biotechnol. 2019, 37, 25–33. [Google Scholar] [CrossRef]
- Resch, C.; Wörl, A.; Waltenberger, R.; Braun, R.; Kirchmayr, R. Enhancement Options for the Utilisation of Nitrogen Rich Animal By-Products in Anaerobic Digestion. Bioresour. Technol. 2011, 102, 2503–2510. [Google Scholar] [CrossRef] [PubMed]
- Bohn, I.; Björnsson, L.; Mattiasson, B. The Energy Balance in Farm Scale Anaerobic Digestion of Crop Residues at 11–37 °C. Process Biochem. 2007, 42, 57–64. [Google Scholar] [CrossRef]
- Böjti, T.; Kovács, K.L.; Kakuk, B.; Wirth, R.; Rákhely, G.; Bagi, Z. Pretreatment of Poultry Manure for Efficient Biogas Production as Monosubstrate or Co-Fermentation with Maize Silage and Corn Stover. Anaerobe 2017, 46, 138–145. [Google Scholar] [CrossRef] [PubMed]
- Hagos, K.; Zong, J.; Li, D.; Liu, C.; Lu, X. Anaerobic Co-Digestion Process for Biogas Production: Progress, Challenges and Perspectives. Renew. Sustain. Energy Rev. 2017, 76, 1485–1496. [Google Scholar] [CrossRef]
Extraction Temperature [°C] | pH | Conductivity [ms/cm] | ORP [mV] |
---|---|---|---|
20 | 6.53 | 6.989 | 187.2 |
30 | 6.79 | 7.885 | 161.2 |
40 | 6.39 | 8.113 | 156.7 |
50 | 6.35 | 8.726 | 147.3 |
60 | 6.33 | 8.793 | 145.1 |
Parameters | Seeding Sludge | Raw Chicken Manure | Solid Fraction after Extraction | |
---|---|---|---|---|
Cold Water (20 °C) | Hot Water (50 °C) | |||
TS [%FM] | 4.06 | 40.99 | 13.13 | 11.88 |
VS [%TS] | 50.92 | 86.44 | 88.62 | 90.39 |
C:N ratio | - | 10:1 | 20:1 | 27:1 |
pH | 7.43 | 8.11 | 7.66 | 7.22 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Konkol, I.; Świerczek, L.; Cenian, A. Chicken Manure Pretreatment for Enhancing Biogas and Methane Production. Energies 2023, 16, 5442. https://doi.org/10.3390/en16145442
Konkol I, Świerczek L, Cenian A. Chicken Manure Pretreatment for Enhancing Biogas and Methane Production. Energies. 2023; 16(14):5442. https://doi.org/10.3390/en16145442
Chicago/Turabian StyleKonkol, Izabela, Lesław Świerczek, and Adam Cenian. 2023. "Chicken Manure Pretreatment for Enhancing Biogas and Methane Production" Energies 16, no. 14: 5442. https://doi.org/10.3390/en16145442
APA StyleKonkol, I., Świerczek, L., & Cenian, A. (2023). Chicken Manure Pretreatment for Enhancing Biogas and Methane Production. Energies, 16(14), 5442. https://doi.org/10.3390/en16145442