The Effects of Different Doses of Organic Waste on Prairie Cordgrass (Spartina Pectinata L.) Yield and Selected Energy Parameters
Abstract
:1. Introduction
2. Methodology
2.1. Description of the Experiment
- Control (no fertilizer treatment);
- Municipal sewage sludge, introducing 170 kg N ha−1 (0.907 kg of sludge per plot, i.e., 4.54 Mg ha−1), (SS);
- Municipal sewage sludge + mushroom substrate, introducing 170 kg N ha−1, 75% was sewage sludge and 25% mushroom substrate (0.683 kg + 1.40 kg per plot, i.e., 3.38 Mg ha−1 + 7 Mg ha−1), (SS75 + SMS25);
- Municipal sewage sludge + mushroom substrate, introducing 170 kg N ha−1, 50% was sewage sludge and 50% mushroom substrate (0.454 kg + 2.80 kg per plot, i.e., 2.25 Mg ha−1 + 14 Mg ha−1), (SS50 + SMS50);
- Municipal sewage sludge + mushroom substrate, introducing 170 kg N ha−1, 25% was sewage sludge and 75% mushroom substrate (0.227 kg + 4.20 kg per plot, i.e., 1.13 Mg ha−1 + 21 Mg ha−1), (SS25 + SMS25);
- Mushroom substrate, introducing 170 kg N ha−1 (5.60 kg per plot, i.e., 28 Mg ha−1), (SMS).
2.2. Soil and Organic Materials Analysis
- pH value in H2O and in 1 mol KCl dm−3, using the potentiometric method;
- Total nitrogen (TN), carbon (TC) and hydrogen content, by elemental analysis using the PerkinElmer Series II 2400 CHNS/O Analyzer with the thermal conductivity detector (TCD);
- The total content of P, K, Cd, Pb, Zn, Cr, Cu and Ni, by mineralizing soil samples with aqua regia and using the inductively coupled plasma–optical emission spectrometry (ICP–OES) method at Eurofins OBiKŚ Polska Ltd. in Katowice, formerly the Centre for Environmental Research and Control.
- Dry matter, by drying the sample at 105 °C until constant weight was obtained;
- pH value in H2O and 1 mol KCl dm−3, by the potentiometric method;
- Total nitrogen (TN), by the modified Kjeldahl method, mineralizing samples in concentrated sulfuric acid (VI) in the presence of selenium mixture [21];
- Organic carbon (Corg), by the oxidation–titration method [22];
- Total content of macroelements (P and K) and heavy metals (Co, Pb, Cd, Cr, Cu, Zn and Ni), by mineralizing soil samples with aqua regia and using the inductively coupled plasma–optical emission spectrometry (ICP–OES) method.
2.3. Biomass
2.4. Meteorological Conditions
2.5. Statistical Analysis
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Statistical Review of World Energy 2022. Available online: https://www.bp.com/content/dam/bp/business-sites/en/global/corporate/pdfs/energy-economics/statistical-review/bp-stats-review-2022-full-report.pdf (accessed on 13 October 2022).
- IEA. 2022. Available online: https://www.iea.org/news/global-co2-emissions-rebounded-to-their-highest-level-in-history-in-2021 (accessed on 10 January 2023).
- Cosentino, S.L.; Copani, V.; Patanè, C.; Mantineo, M.; D’Agosta, G.M. Agronomic, energetic and environmental aspects of biomass energy crops suitable for Italian environments. Ital. J. Agron. 2008, 3, 81–96. [Google Scholar] [CrossRef] [Green Version]
- Blanco-Canqui, H. Energy crops and their implications on soil and environment. Agron. J. 2010, 102, 403–419. [Google Scholar] [CrossRef]
- Kowalczyk-Juśko, A. Ash from different energy crops. Proc. ECOpole 2009, 3, 159–164. (In Polish) [Google Scholar]
- Demirbas, A.; Edris, G.; Alalayah, W.M. Sludge production from municipal wastewater treatment in sewage treatment plant. Energy Sources Part A Recovery Util. Environ. Eff. 2017, 39, 999–1006. [Google Scholar] [CrossRef]
- Antonkiewicz, J.; Baran, A.; Pałka, R.; Wisła-Świder, A.; Nowak, E.; Konieczka, P. A mixture of cellulose production waste with municipal sewage as new material for an ecological management of wastes. Ecotoxicol. Environ. Saf. 2019, 169, 607–614. [Google Scholar] [CrossRef]
- Antonkiewicz, J.; Kołodziej, B.; Bielińska, E.J.; Witkowicz, R.; Tabor, S. Using Jerusalem artichoke to extract heavy metals from municipal sewage sludge amended soil. Pol. J. Environ. Stud. 2018, 27, 513–527. [Google Scholar] [CrossRef]
- Jankowski, J.K.; Kołodziej, B.; Dubis, B.; Sugier, B.; Antonkiewicz, J.; Szatkowski, J. The effect of sewage sludge on the energy balance of cup plant biomass production. A six-year field experiment in Poland. Energy 2023, 276, 127478. [Google Scholar] [CrossRef]
- Lukehurst, C.T. Biogas from AD as a key technology for nutrient management in Great Britain and Northern Ireland. In The Future of Biogas in Europe II Proceedings Report of the European Biogas Workshop 2003, October 2–4; Al Seadi, T., Holm-Nielsen, J.B., Eds.; University of Southern Denmark: Esbjerg, Denmark, 2003. [Google Scholar]
- Losak, T.; Hlusek, J.; Zatloukalova, A.; Musilova, L.; Vitezova, M.; Skarpa, P.; Zlanalova, T.; Fryc, J.; Vitez, T.; Marecek, J.; et al. Digestate from biogas plants is an attractive alternative to mineral fertilisation of kohlrabi. J. Sustain. Dev. Energy Water Environ. Syst. 2014, 2, 309–318. [Google Scholar] [CrossRef] [Green Version]
- Gasco, G.; Martinez-Inigo, M.; Lobo, M. Soil organic matter transformation after a sewage sludge application. Electron. J. Environ. Agric. Food Chem. EJEAFChe 2004, 3, 716–723. [Google Scholar]
- Bai, Y.; Zang, C.; Gu, M.; Gu, C.; Shao, H.; Guan, Y.; Wang, X.; Zhan, X.; Shan, Y.; Feng, K. Sewage sludge as an initial fertility driver for rapid improvement of mudflat salt-soils. Sci. Total Environ. 2017, 578, 47–55. [Google Scholar] [CrossRef]
- Seleiman, M.F.; Al-Suhaibani, N.; Ali, N.; Akmal, M.; Alotaibi, M.; Refay, Y.; Dingaroglu, T.; Abdul-Wajid, H.H.; Battaglia, M.L. Drought stress impacts on plants and different approaches to alleviate its adverse effects. Plants 2021, 10, 259. [Google Scholar] [CrossRef]
- Du, W.; Jang, J.; Gong, C. Primary research on agricultural effect of sludge—Impact of sludge application on crop seeds germination and seeding growth. Procedia Environ. Sci. 2012, 16, 340–345. [Google Scholar] [CrossRef] [Green Version]
- Malinowska, E.; Kalembasa, S. Effect of liming and application of sludge on the content of nitrogen and carbon in test plants and in soil in a four-year pot experiment. Ecol. Chem. Eng. A. 2012, 19, 873–886. [Google Scholar]
- World Reference Base for Soil Resources. International Soil Classification System for Naming Soils and Creating Legends for Soil Maps, 4th ed.; International Union of Soil Sciences (IUSS): Vienna, Austria, 2022; pp. 1–236. ISBN 979-8-9862451-1-9. [Google Scholar]
- Polish Standard PN-R-04033; Soils and Mineral Formations—Divisi on into Fractions and Granulometric Groups. Polish Committee for Standardization (PKN): Warszawa, Poland, 1998.
- Polish Society of Soil Science. Grading classification of soils and mineral formations. Roczn. Glebozn. 2009, 60, 5–16. [Google Scholar]
- Regulation of the Minister of the Environment of February 6, 2015 on the use of municipal sewage sludge. Dz.U. 2015 poz. 257. Dz.U. 2022 poz. 89. Available online: https://isap.sejm.gov.pl/isap.nsf/DocDetails.xsp?id=wdu20150000257 (accessed on 3 May 2023).
- Kalembasa, S.; Carlson, R.W.; Kalembasa, D. A new method for the reduction in nitrates in total nitrogen determination according to the Kjeldahl method. Pol. J. Soil Sci. 1989, 22, 21–26. [Google Scholar]
- Kalembasa, S.; Kalembasa, D. A quick method for determination of C/N ratio in mineral soils. Pol. J. Soil Sci. 1992, 25, 41–46. [Google Scholar]
- Ziernicka-Wojtaszek, A. Comparison of selected indices for the assessment of atmospheric drought in the Podkarpackie Province in the years 1901–2000. Woda-Sr.-Obsz. Wiej. 2012, 12, 365–376. (In Polish) [Google Scholar]
- Skowera, B.; Puła, J. Pluviometric extreme conditions in spring season in Poland in the years 1971–2000. Acta Agroph. 2004, 1, 171–177. (In Polish) [Google Scholar]
- Statistica (Data Analysis Software System), Version 13.1; StatSoft, Inc.: Tulsa, OK, USA, 2021. Available online: www.ststsoft.com(accessed on 25 May 2023).
- Devincentis, A.J. Scales of Sustainable Agricultural Water Management. Ph.D. Thesis, University of California, Davis, CA, USA, 2020. [Google Scholar]
- Seleiman, M.F.; Sautanen, A.; Aäkëla, P.S. Recycling sludge on cropland as fertilizers Advantages and risks. Resour. Conserv. Recycl. 2020, 155, 104647. [Google Scholar] [CrossRef]
- Chojnacka, K.; Skrzypczak, D.; Szopa, D.; Izydorczyk, G.; Moustaks, K.; Witek-Krowiak, A. Management of biological sewage sludge: Fertilizer nitrogen recovery as the solution to fertilizer crisis. J. Environ. Manag. 2023, 236, 116602. [Google Scholar] [CrossRef]
- Grobelak, A.; Stępień, W.; Kacprzak, M. Sewage sludge as an ingredient in fertilizers and soil substitutes. Inż. Ekolog. 2016, 48, 52–60. [Google Scholar] [CrossRef]
- Antoniadis, V.; Koutroubas, S.D.; Fotiadis, S. Nitrogen, phosphorus, and potassium availability in manure-and sewage sludgeapplied soil. Communic. Soil Sci. Plant Anal. 2015, 46, 393–404. [Google Scholar] [CrossRef]
- Soudani, L.; Maatoug, M.; Heilmeier, H.; Kharytonov, M.; Wiche, O.; Moschner, C.; Onyshchenkoc, E.; Bouchenafa, N. Fertilization value of municipal sewage sludge for eucalyptus camaldulensis plants. Biotechnol. Rep. 2017, 13, 8–12. [Google Scholar] [CrossRef]
- Jordan, S.N.; Mullen, G.J.; Murphy, M.C. Composition variability of spent mushroom compost in Ireland. Bioresour. Technol. 2008, 99, 411–418. [Google Scholar] [CrossRef]
- Czop, M.; Kłapcia, E. Evaluation of the suitability to organic recycling of the base coming from champignon mushroom farming. Arch. Gosp. Odpad. Ochr. Środ. 2015, 17, 139–150. (In Polish) [Google Scholar]
- Salomez, J.; De Bolle, S.; Sleutel, S.; De Neve, S.; Hofman, G. Nutrient legislation in flanders (Belgium). In Proceedings of the 18th International Symposium of CIEC; More Sustainability in Agriculture: New Fertilizers and Fertilization Management, Rome, Italy, 8–12 November; 2009; pp. 546–551. [Google Scholar]
- Wiśniewska-Kadżajan, B. Impact of different spent mushroom substrate doses on compactness and regrowth different kind of lawns mixtures. Folia Pomer. Univ. Technol. Stetin. Agric. Aliment. Pisc. Zootech. 2013, 305, 75–82. (In Polish) [Google Scholar]
- Jasińska, A.; Prasad, R.; Lisiecka, J.; Roszak, M.; Stoknes, K.; Mleczak, M.; Niedzielski, P. Combined dairy manure-food waste digestate as a medium for Pleurotus djamor—Mineral composition in substrate and bioaccumulation of elements in fruiting bodies. Horticulturae 2022, 8, 934. [Google Scholar] [CrossRef]
- Kowalczyk-Juśko, A. Biometric and energetic parameters of cordgrass (Spartina pectinata Link.) In the first three years of growth. Probl. Agric. Eng. 2013, 2, 69–77. [Google Scholar]
- El Bassam, N. Energy Plant Species; James and James Science Publishers: London, UK, 1998; p. 321. [Google Scholar]
- Wilk, B. Determination of the Dependence of Calorific Value on Selected Physic Chemical Properties of Biomass. Matt. Seminar. “Analytical Techniques and Research Procedures in Application to New Legal Conditions in the Energy Sector”; IChPW: Zabrze, Poland, 2006. (In Polish) [Google Scholar]
- Viana, H.; Vega-Nieva, D.J.; Torres, L.O.; Lousada, J.; Aranha, J. Fuel characterization and biomass combustion properties of selected native woody shrub species from central Portugal and NW Spain. Fuel 2012, 102, 737–745. [Google Scholar] [CrossRef]
- Kowalczyk-Juśko, A. Chemical composition and energetic characteristics of Miscanthus sacchariflorus biomass as used for generation of Energy. Przemysł Chem. 2016, 95, 2326–2329. (In Polish) [Google Scholar]
- Bałuch-Małecka, A.; Olszewska, M.; Alberski, J. Yielding and energy value in selected species of tall grasses. Łąkarstwo w Polsce 2017, 20, 7–24. (In Polish) [Google Scholar]
- Kolowca, J.; Knapik, P. Właściwości mechaniczne źdźbła miskanta olbrzymiego. Inż. Roln. 2008, 9, 139–142. [Google Scholar]
- Kościk, B. (Ed.) Energy Crops; Uniwersytet Przyrodniczy w Lublinie: Lublin, Polish, 2003; p. 146. ISBN 83-7259-091-5. (In Polish) [Google Scholar]
- Niedziółka, I.; Zuchniarz, A. Quality assessment for plant biomass-based briquettes produced using worm type compacting unit. Inż. Roln. 2006, 14, 79–86. (In Polish) [Google Scholar]
- Bilandzija, N.; Jurisic, V.; Voca, N.; Leto, J.; Matin, A.; Sito, S.; Kricka, T. Combustion properties of Miscanthus x giganteus biomass—Optimization of harvest time. J. Energy Inst. 2017, 90, 528–533. [Google Scholar] [CrossRef]
Year | Month | ||||||
---|---|---|---|---|---|---|---|
April | May | June | July | August | September | October | |
Year 1 (2018) | 1.07 (md) | 0.50 (sd) | 1.38 (o) | 1.58 (o) | 0.44 (sd) | 0.92 (d) | 1.52 (o) |
Year 2 (2019) | 0.32 (ed) | 2.83 (sw) | 0.44 (sd) | 1.72 (d) | 1.21 (md) | 1.01 (md) | 0.62 (sd) |
Year 3 (2020) | 0.29 (ed) | 3.24 (ew) | 3.02 (ew) | 0.69 (sd) | 1.09 (md) | 1.06 (md) | 2.73 (sw) |
Organic Waste | pH | DM (%) | Corg (g kg−1) | C/N | N (g kg−1) | P (g kg−1) | K (g kg−1) |
---|---|---|---|---|---|---|---|
municipal sewage sludge (SS) | 6.40 | 93.0 | 348 | 7.80 | 40.5 | 19.8 | 2.56 |
mushroom substrate (SMS) | 6.41 | 30.0 | 284 | 13.6 | 20.9 | 8.86 | 11.2 |
Type of Organic Waste | Heavy Metal Content (mg kg−1 DM) | |||||
---|---|---|---|---|---|---|
Co | Pb | Cd | Cr | Zn | Ni | |
municipal sewage sludge (SS) | 3.58 | 36.12 | 1.81 | 15.44 | 987.2 | 44.23 |
mushroom substrate (SMS) | 0.415 | 3.98 | 0.287 | 3.08 | 156.9 | 4.84 |
Year of Research (B) | Experimental Plot (A) | Mean | |||||
---|---|---|---|---|---|---|---|
Control Plot | SS | SS75 + SMS25 | SS50 + SMS50 | SS25 + SMS75 | SMS | ||
Fresh Matter | |||||||
Year 1 | 1.20 | 1.51 | 1.63 | 1.47 | 1.89 | 1.78 | 1.58 |
Year 2 | 2.31 | 3.89 | 4.60 | 3.47 | 3.68 | 4.10 | 3.68 |
Year 3 | 6.89 | 9.54 | 8.54 | 9.14 | 10.12 | 9.74 | 8.99 |
Mean | 3.47 | 4.98 | 4.92 | 4.69 | 5.23 | 5.21 | 4.75 |
LSD0.05 A-0.980; B-0.563; A/B-1.70; B/A-1.38 | |||||||
dry matter | |||||||
Year 1 | 0.96 | 1.22 | 1.30 | 1.21 | 1.47 | 1.42 | 1.26 |
Year 2 | 1.96 | 3.07 | 3.77 | 2.78 | 2.91 | 3.24 | 2.96 |
Year 3 | 5.37 | 7.35 | 6.75 | 7.43 | 8.30 | 7.89 | 7.18 |
Mean | 2.76 | 3.88 | 3.94 | 3.81 | 4.23 | 4.18 | 3.80 |
LSD0.05 A-0.333; B-0.191; A/B-0.469; B/A-0.341 |
Year of Research (B) | Experimental Plot (A) | Mean | |||||
---|---|---|---|---|---|---|---|
Control Plot | SS | SS75 + SMS25 | SS50 + SMS50 | SS25 + SMS75 | SMS | ||
Biomass in the Natural State | |||||||
Year 1 | 5.17 | 5.33 | 5.11 | 5.61 | 5.31 | 5.20 | 5.29 |
Year 2 | 5.31 | 5.09 | 5.69 | 5.37 | 5.59 | 5.82 | 5.48 |
Year 3 | 5.08 | 4.13 | 3.41 | 3.57 | 4.68 | 4.98 | 4.31 |
Mean | 5.19 | 4.85 | 4.74 | 4.85 | 5.19 | 5.33 | 5.03 |
LSD0.05 A-NS B-0.449 A/B-NS B/A-NS | |||||||
Biomass in the dry state | |||||||
Year 1 | 5.39 | 5.60 | 5.38 | 5.86 | 5.58 | 5.51 | 5.55 |
Year 2 | 5.54 | 5.31 | 5.96 | 5.61 | 5.83 | 6.08 | 5.72 |
Year 3 | 5.39 | 4.38 | 3.61 | 3.72 | 4.95 | 5.61 | 4.61 |
Mean | 5.44 | 5.10 | 4.98 | 5.06 | 5.45 | 5.73 | 5.30 |
LSD0.05 A-0.721 B-0.414 A/B-1.25 B/A-1.01 |
Year of Research (B) | Experimental Plot (A) | Mean | |||||
---|---|---|---|---|---|---|---|
Control Plot | SS | SS75 + SMS25 | SS50 + SMS50 | SS25 + SMS75 | SMS | ||
Biomass in the Natural State | |||||||
Year 1 | 18,360 | 17,259 | 18,143 | 18,460 | 18,090 | 18,130 | 18,074 |
Year 2 | 19,003 | 18,734 | 18,879 | 18,877 | 18,581 | 18,874 | 18,825 |
Year 3 | 18,183 | 18,878 | 18,538 | 17,956 | 18,037 | 17,896 | 18,248 |
Mean | 18,516 | 18,290 | 18,520 | 18,431 | 18,236 | 18,300 | 18,382 |
LSD0.05 A-NS B-309.3 A/B-932.6 B/A-757.5 | |||||||
Biomass in the dry state | |||||||
Year 1 | 19,462 | 18,236 | 19,208 | 19,109 | 18,861 | 18,886 | 18,960 |
Year 2 | 19,817 | 19,543 | 19,762 | 19,735 | 19,369 | 19,729 | 19,660 |
Year 3 | 19,631 | 20,032 | 19,643 | 18,960 | 19,077 | 18,960 | 19,383 |
Mean | 19,637 | 19,270 | 19,539 | 19,268 | 19,101 | 19,192 | 19,334 |
LSD0.05 A-502.2 B-288.4 A/B-869.8 B/A-706.5 |
Years of Research (B) | Experimental Plot (A) | Mean | |||||
---|---|---|---|---|---|---|---|
Control Plot | SS | SS75 + SMS25 | SS50 + SMS50 | SS25 + SMS75 | SS | ||
Biomass in the Natural State | |||||||
Year 1 | 17,070 | 16,001 | 16,841 | 17,097 | 16,806 | 16,860 | 16,779 |
Year 2 | 17,734 | 17,461 | 17,610 | 17,605 | 17,316 | 17,608 | 17,556 |
Year 3 | 17,238 | 17,586 | 17,247 | 16,651 | 16,744 | 16,605 | 17,012 |
Mean | 17,347 | 17,016 | 17,233 | 17,118 | 16,955 | 17,024 | 17,116 |
LSD0.05 A-NS B-306.9 A/B-925.5 B/A-751.8 | |||||||
Biomass in the dry state | |||||||
Year 1 | 18,242 | 17,045 | 17,947 | 17,864 | 17,627 | 17,664 | 17,732 |
Year 2 | 18,598 | 18,321 | 18,548 | 18,517 | 18,154 | 18,517 | 18,109 |
Year 3 | 18,410 | 18,798 | 18,399 | 17,718 | 17,783 | 17,737 | 18,141 |
Mean | 17,750 | 18,055 | 18,298 | 18,033 | 17,855 | 17,973 | 17,994 |
LSD0.05 A-NS B-360.6 A/B-883.2 B/A-1087 |
Biomass Energy Parameter | Calorific Value | Moisture | Ash Content | Heat of Combustion |
---|---|---|---|---|
Calorific value | 1.00 | |||
Moisture | −0.042 | 1.00 | ||
Ash content | −0.058 | −0.516 * | 1.00 | |
Heat of combustion | 0.988 * | −0.029 | −0.077 | 1.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Malinowska, E.; Wiśniewska-Kadżajan, B. The Effects of Different Doses of Organic Waste on Prairie Cordgrass (Spartina Pectinata L.) Yield and Selected Energy Parameters. Energies 2023, 16, 5599. https://doi.org/10.3390/en16155599
Malinowska E, Wiśniewska-Kadżajan B. The Effects of Different Doses of Organic Waste on Prairie Cordgrass (Spartina Pectinata L.) Yield and Selected Energy Parameters. Energies. 2023; 16(15):5599. https://doi.org/10.3390/en16155599
Chicago/Turabian StyleMalinowska, Elżbieta, and Beata Wiśniewska-Kadżajan. 2023. "The Effects of Different Doses of Organic Waste on Prairie Cordgrass (Spartina Pectinata L.) Yield and Selected Energy Parameters" Energies 16, no. 15: 5599. https://doi.org/10.3390/en16155599
APA StyleMalinowska, E., & Wiśniewska-Kadżajan, B. (2023). The Effects of Different Doses of Organic Waste on Prairie Cordgrass (Spartina Pectinata L.) Yield and Selected Energy Parameters. Energies, 16(15), 5599. https://doi.org/10.3390/en16155599