Approaches to Building AC and AC–DC Microgrids on Top of Existing Passive Distribution Networks
Abstract
:1. Introduction
2. Challenges Posed by Creating Microgrids on Top of Existing Passive Distribution Networks
2.1. General Requirements to Be Met by Microgrids
2.2. Optimization Problems in Microgrids
2.3. Planning Microgrid Creation and Expansion
2.3.1. Choosing Generation Technologies and ESS Parameters
2.3.2. Microgrid Sizing
2.3.3. Choosing Microgrid Connection Points
2.3.4. Scheduling the Use of Energy Resources
- Online monitoring: The data on current electricity consumption make it possible to identify periods in which undesirable consumption of electricity from the distribution network occurs [117]. If there are production processes in the microgrid, then it is required to coordinate the increase/decrease of power consumption with the DER operation schedules.
- Optimal control algorithms: Power consumption data allow us to determine demand coefficients for each consumer [118]. This makes it possible to obtain significant savings of non-renewable energy resources through the maximum utilization of RES-based DERs and optimal use of ESSs.
2.3.5. Pricing in Microgrids
2.4. Control and Protection in Microgrids
2.5. Information and Communications Technology Infrastructure of Microgrids
3. Implementation of Optimization Algorithms in Microgrids
- Evolutionary computation: modeling the evolution of a population of different individuals; genetic algorithms (GAs) and differential evolution (DE);
- Swarm intelligence: the use of properties of self-organizing groups of biological organisms with “smart” global behavior;
- Artificial immune systems: the modeling of the immune system’s response to external threats;
- Local search: time-constrained search for a local optimum (simulated annealing; tabu search; greedy randomized adaptive search procedure (GRASP); variable neighborhood search (VNS)).
3.1. Optimal Power Flow and Scheduling Methods
3.2. Methods for Microgrid Expansion Planning
4. Approaches to the Selection of Microgrid ACS, Protection System, and ICT Infrastructure
4.1. Choosing the Optimal ACS
- The selection of the ACS type should be based on the analysis of the mix of DERs, microgrid configuration, possible operating conditions, and other factors.
- Control algorithms that do not use communication links based on frequency and voltage droop control (independent of the geographical distance between DERs and the consumers’ electrical loads) are less efficient due to the lack of information exchange between the PECs of DERs [172].
- ACSs based on decentralized algorithms are increasingly being used because of the reduced risk of failure due to damage to a single component, as opposed to centralized or agent-based ACSs.
- Reliable and efficient management of power flows both within the microgrid and between the microgrid and distribution network requires the implementation of complex control algorithms.
- They require an additional intermediate PEC between the DC and AC network in the microgrid, which is necessary to maintain the balance of power in the microgrid, both in grid-connected and islanded modes [173].
- The lack of a system-wide variable used to distribute power between heterogeneous DERs, as well as the lack of frequency and voltage regulation necessitates the use of the ACS with a complex structure [174].
4.2. Choosing the Optimal Protection System
- Machine-learning and artificial intelligence methods;
- Wide-area monitoring, protection, and control (WAMPAC) devices;
- A data exchange protocol compliant with IEC 61,850 [181].
4.3. Choosing the Optimal ICTs
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
DER | distributed energy resources |
ACS | automatic control systems |
ICT | information and communications technology |
ESS | energy storage systems |
FC | fuel cell |
PEC | power electronic converters |
CERTS | Consortium for Electric Reliability Technology Solutions |
PLC | Power Line Communication |
WAMPAC | Wide-Area Monitoring, Protection, and Control |
References
- Silvestre, M.L.; Favuzza, S.; Sanseverino, E.R.; Zizzo, G. How Decarbonization, Digitalization and Decentralization are changing key power infrastructures. Renew. Sustain. Energy Rev. 2018, 93, 483–498. [Google Scholar] [CrossRef]
- Bassam, N.E. Grid challenges: Integration of distributed renewables with the national grid. In Distributed Renewable Energies for Off-Grid Communities: Empowering a Sustainable, Competitive, and Secure Twenty-First Century; Elsevier: Amsterdam, The Netherlands, 2021; pp. 451–456. [Google Scholar] [CrossRef]
- Chen, X.; Zhai, J.; Jiang, Y.; Ni, C.; Wang, S.; Nimmegeers, P. Decentralized coordination between active distribution network and multi-microgrids through a fast decentralized adjustable robust operation framework. Sustain. Energy Grids Netw. 2023, 34, 101068. [Google Scholar] [CrossRef]
- Abdulsalam, K.A.; Adebisi, J.; Emezirinwune, M.; Babatunde, O. An overview and multicriteria analysis of communication technologies for smart grid applications. E-Prime Adv. Electr. Eng. Electron. Energy 2023, 3, 100121. [Google Scholar] [CrossRef]
- Panda, D.K.; Das, S. Smart grid architecture model for control, optimization and data analytics of future power networks with more renewable energy. J. Clean. Prod. 2021, 301, 126877. [Google Scholar] [CrossRef]
- Sinsel, S.R.; Riemke, R.L.; Hoffmann, V.H. Challenges and solution technologies for the integration of variable renewable energy sources—A review. Renew. Energy 2020, 145, 2271–2285. [Google Scholar] [CrossRef]
- Park, C.; Heo, W.G. Review of the changing electricity industry value chain in the ICT convergence era. J. Clean. Prod. 2020, 258, 120743. [Google Scholar] [CrossRef]
- Ilyushin, P.V.; Pazderin, A.V. Approaches to organization of emergency control at isolated operation of energy areas with distributed generation. In Proceedings of the International Ural Conference on Green Energy (URALCON), Chelyabinsk, Russia, 4–6 October 2018. [Google Scholar] [CrossRef]
- Kumar, S.; Islam, S.M.; Jolfaei, A. Microgrid communications—Protocols and standards. In Variability, Scalability and Stability of Microgrids; Institution of Engineering and Technology: London, UK, 2019; Volume 139, pp. 291–326. [Google Scholar] [CrossRef]
- Pena Ramirez, J.; Garcia, E.; Alvarez, J. Master-slave synchronization via dynamic control. Commun. Nonlinear Sci. Numer. Simul. 2020, 80, 104977. [Google Scholar] [CrossRef]
- Ilyushin, P.; Volnyi, V.; Suslov, K.; Filippov, S. State-of-the-Art Literature Review of Power Flow Control Methods for Low-Voltage AC and AC-DC Microgrids. Energies 2023, 16, 3153. [Google Scholar] [CrossRef]
- IEEE Joint Task Force on Quadrennial Energy Review. 2014. Available online: https://smartgrid.ieee.org/images/files/pdf/IEEE_QER_Microgrids_October_3_2014.pdf (accessed on 10 June 2023).
- Onu, U.G.; Zambroni de Souza, A.C.; Bonatto, B.D. Drivers of microgrid projects in developed and developing economies. Util. Policy 2023, 80, 101487. [Google Scholar] [CrossRef]
- Kroposki, B.; Pink, C.; Lynch, J.; John, V.; Daniel, S.M.; Benedict, E.; Vihinen, I. Development of a high-speed static switch for distributed energy and microgrid applications. In Proceedings of the Fourth Power Conversion Conference-NAGOYA, PCC-NAGOYA 2007—Conference Proceedings, Nagoya, Japan, 2–5 April 2007; pp. 1418–1423. [Google Scholar] [CrossRef] [Green Version]
- Ilyushin, P.V.; Suslov, K.V. Operation of automatic transfer switches in the networks with distributed generation. In Proceedings of the 2019 IEEE Milan PowerTech, Milan, Italy, 23–27 June 2019. [Google Scholar] [CrossRef]
- Chatterjee, A.; Burmester, D.; Brent, A.; Rayudu, R. Research Insights and Knowledge Headways for Developing Remote, Off-Grid Microgrids in Developing Countries. Energies 2019, 12, 2008. [Google Scholar] [CrossRef] [Green Version]
- Jiang, J.; Bao, Y.; Wang, L.Y. Topology of a Bidirectional Converter for Energy Interaction between Electric Vehicles and the Grid. Energies 2014, 7, 4858–4894. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Taul, M.G.; Wu, H.; Liao, Y.; Blaabjerg, F.; Harnefors, L. Grid-Synchronization Stability of Converter-Based Resources—An Overview. IEEE Open J. Ind. Appl. 2020, 1, 115–134. [Google Scholar] [CrossRef]
- Wang, J.; Jin, C.; Wang, P. A Uniform Control Strategy for the Interlinking Converter in Hierarchical Controlled Hybrid AC/DC Microgrids. IEEE Trans. Ind. Electron. 2018, 65, 6188–6197. [Google Scholar] [CrossRef]
- Arabali, A.; Ghofrani, M.; Bassett, J.B.; Pham, M.; Moeini-Aghtaei, M. Optimum Sizing and Siting of Renewable-Energy-based DG Units in Distribution Systems. In Optimization in Renewable Energy Systems: Recent Perspectives; Butterworth-Heinemann: Oxford, UK, 2017; pp. 233–277. [Google Scholar] [CrossRef]
- Mehta, S.; Puri, V. A review of different multi-level inverter topologies for grid integration of solar photovoltaic system. Renew. Energy Focus 2022, 43, 263–276. [Google Scholar] [CrossRef]
- Che, L.; Shahidehpour, M. DC microgrids: Economic operation and enhancement of resilience by hierarchical control. IEEE Trans. Smart Grid 2014, 5, 2517–2526. [Google Scholar] [CrossRef]
- Zolfaghari, M.; Gharehpetian, G.B.; Shafie-khah, M.; Catalão, J.P.S. Comprehensive review on the strategies for controlling the interconnection of AC and DC microgrids. Int. J. Electr. Power Energy Syst. 2022, 136, 107742. [Google Scholar] [CrossRef]
- Rocabert, J.; Luna, A.; Blaabjerg, F.; Rodríguez, P. Control of power converters in AC microgrids. IEEE Trans. Power Electron. 2012, 27, 4734–4749. [Google Scholar] [CrossRef]
- Kolesar, M. Energy communities: A North American perspective. In Energy Communities: Customer-Centered, Market-Driven, Welfare-Enhancing; Academic Press: Cambridge, MA, USA, 2022; pp. 107–130. [Google Scholar] [CrossRef]
- Mahmud, K.; Khan, B.; Ravishankar, J.; Ahmadi, A.; Siano, P. An internet of energy framework with distributed energy resources, prosumers and small-scale virtual power plants: An overview. Renew. Sustain. Energy Rev. 2020, 127, 109840. [Google Scholar] [CrossRef]
- López González, D.M.; Garcia Rendon, J. Opportunities and challenges of mainstreaming distributed energy resources towards the transition to more efficient and resilient energy markets. Renew. Sustain. Energy Rev. 2022, 157, 112018. [Google Scholar] [CrossRef]
- Ilyushin, P.V.; Pazderin, A.V. Requirements for power stations islanding automation an influence of power grid parameters and loads. In Proceedings of the 2018 International Conference on Industrial Engineering, Applications and Manufacturing (ICIEAM), Moscow, Russia, 15–18 May 2018. [Google Scholar]
- Prabhakar, K.; Jain, S.K.; Padhy, P.K. Inertia estimation in modern power system: A comprehensive review. Electr. Power Syst. Res. 2022, 211, 108222. [Google Scholar] [CrossRef]
- Musca, R.; Vasile, A.; Zizzo, G. Grid-forming converters. A critical review of pilot projects and demonstrators. Renew. Sustain. Energy Rev. 2022, 165, 112551. [Google Scholar] [CrossRef]
- Ilyushin, P.; Volnyi, V.; Suslov, K.; Filippov, S. Review of Methods for Addressing Challenging Issues in the Operation of Protection Devices in Microgrids with Voltages of up to 1 kV That Integrates Distributed Energy Resources. Energies 2022, 15, 9186. [Google Scholar] [CrossRef]
- Ghadi, M.J.; Rajabi, A.; Ghavidel, S.; Azizivahed, A.; Li, L.; Zhang, J. From active distribution systems to decentralized microgrids: A review on regulations and planning approaches based on operational factors. Appl. Energy 2019, 253, 113543. [Google Scholar] [CrossRef]
- Sivakumar, K.; Jayashree, R.; Danasagaran, K. Efficiency-driven planning for sizing of distributed generators and optimal construction of a cluster of microgrids. Eng. Sci. Technol. Int. J. 2021, 24, 1153–1167. [Google Scholar] [CrossRef]
- Hatziargyriou, N.D.; Jenkins, N.; Strbac, G.; Lopes, J.A.; Ruela, J.; Engler, A.; Oyarzabal, J.; Kariniotakis, G.; Amorim, A. Microgrids—Large scale integration of microgeneration to low voltage grids. In Proceedings of the CIGRE, Paris, France, 27 August–1 September 2006. [Google Scholar]
- Bollen, M.H.J.; Yang, Y.; Hassan, F. Integration of distributed generation in the power system a power quality approach. In Proceedings of the ICHQP 2008: 13th International Conference on Harmonics and Quality of Power, Wollongong, Australia, 28 September–1 October 2008. [Google Scholar] [CrossRef]
- Souza, M.E.T.; Freitas, L.C.G. Grid-Connected and Seamless Transition Modes for Microgrids: An Overview of Control Methods, Operation Elements, and General Requirements. IEEE Access 2022, 10, 97802–97834. [Google Scholar] [CrossRef]
- Hou, X.; Han, H.; Zhong, C.; Yuan, W.; Sun, Y.; Su, M. A unified distributed control for grid-connected and islanded modes in multi-bus AC microgrid. In Proceedings of the IECON 2017—43rd Annual Conference of the IEEE Industrial Electronics Society, Beijing, China, 29 October–1 November 2017; pp. 2377–2382. [Google Scholar] [CrossRef]
- Hirsch, A.; Parag, Y.; Guerrero, J. Microgrids: A review of technologies, key drivers, and outstanding issues. Renew. Sustain. Energy Rev. 2018, 90, 402–411. [Google Scholar] [CrossRef]
- CIGRE Green Books|Book Titles in This Series. (n.d.) Available online: https://www.springer.com/series/15209/books (accessed on 13 January 2023).
- Sanusi, J.; Oghenewvogaga, O.; Adetokun, B.B.; Abba, A.M. The Impact of Communication Technologies on the Smart Grid. In Proceedings of the 2022 IEEE Nigeria 4th International Conference on Disruptive Technologies for Sustainable Development (NIGERCON), Lagos, Nigeria, 5–7 April 2022. [Google Scholar] [CrossRef]
- Jabbari-Sabet, R.; Moghaddas-Tafreshi, S.M.; Mirhoseini, S.S. Microgrid operation and management using probabilistic reconfiguration and unit commitment. Int. J. Electr. Power Energy Syst. 2016, 75, 328–336. [Google Scholar] [CrossRef]
- Dorahaki, S.; Rashidinejad, M.; Fatemi Ardestani, S.F.; Abdollahi, A.; Salehizadeh, M.R. An integrated model for citizen energy communities and renewable energy communities based on clean energy package: A two-stage risk-based approach. Energy 2023, 277, 127727. [Google Scholar] [CrossRef]
- Hai, T.; Zhou, J.; Rezvani, A.; Le, B.N.; Oikawa, H. Optimal energy management strategy for a renewable based microgrid with electric vehicles and demand response program. Electr. Power Syst. Res. 2023, 221, 109370. [Google Scholar] [CrossRef]
- di Somma, M.; Graditi, G.; Heydarian-Forushani, E.; Shafie-khah, M.; Siano, P. Stochastic optimal scheduling of distributed energy resources with renewables considering economic and environmental aspects. Renew. Energy 2018, 116, 272–287. [Google Scholar] [CrossRef]
- Bornapour, M.; Hooshmand, R.A.; Khodabakhshian, A.; Parastegari, M. Optimal stochastic scheduling of CHP-PEMFC, WT, PV units and hydrogen storage in reconfigurable micro grids considering reliability enhancement. Energy Convers. Manag. 2017, 150, 725–741. [Google Scholar] [CrossRef]
- Kumar, A.; Deng, Y.; He, X.; Singh, A.R.; Kumar, P.; Bansal, R.C.; Bettayeb, M.; Ghenai, C.; Naidoo, R.M. Impact of demand side management approaches for the enhancement of voltage stability load ability and customer satisfaction index. Appl. Energy 2023, 339, 120949. [Google Scholar] [CrossRef]
- Mochi, P.; Pandya, K.; Soares, J.; Vale, Z. Optimizing Power Exchange Cost Considering Behavioral Intervention in Local Energy Community. Mathematics 2023, 11, 2367. [Google Scholar] [CrossRef]
- Beenish, S.; Ahmad, A. Optimization of Microgrid Energy Cost with Electrical Vehicles and Demand Response. Pak. J. Eng. Technol. 2023, 6, 57–62. [Google Scholar] [CrossRef]
- Hemmati, R. Dynamic expansion planning in active distribution grid integrated with seasonally transferred battery swapping station and solar energy. Energy 2023, 277, 127719. [Google Scholar] [CrossRef]
- Ilyushin, P.; Filippov, S.; Kulikov, A.; Suslov, K.; Karamov, D. Specific Features of Operation of Distributed Generation Facilities Based on Gas Reciprocating Units in Internal Power Systems of Industrial Entities. Machines 2022, 10, 693. [Google Scholar] [CrossRef]
- Gielen, D.; Boshell, F.; Saygin, D.; Bazilian, M.D.; Wagner, N.; Gorini, R. The role of renewable energy in the global energy transformation. Energy Strategy Rev. 2019, 24, 38–50. [Google Scholar] [CrossRef]
- Zhan, W.; Wang, Z.; Zhang, L.; Liu, P.; Cui, D.; Dorrell, D.G. A review of siting, sizing, optimal scheduling, and cost-benefit analysis for battery swapping stations. Energy 2022, 258, 124723. [Google Scholar] [CrossRef]
- Rahimi, M.; Ardakani, F.J.; Olatujoye, O. Improving flexible optimal scheduling of virtual power plants considering dynamic line rating and flexible supply and demand. Int. J. Electr. Power Energy Syst. 2023, 150, 109099. [Google Scholar] [CrossRef]
- Cagnano, A.; de Tuglie, E.; Mancarella, P. Microgrids: Overview and guidelines for practical implementations and operation. Appl. Energy 2020, 258, 114039. [Google Scholar] [CrossRef]
- Basak, P.; Chowdhury, S.; Halder Nee Dey, S.; Chowdhury, S.P. A literature review on integration of distributed energy resources in the perspective of control, protection and stability of microgrid. Renew. Sustain. Energy Rev. 2012, 16, 5545–5556. [Google Scholar] [CrossRef]
- SDG&E-Beach Cities MicroGrid Project Symposium on Microgrids. (n.d.) Available online: https://microgrid-symposiums.org/wp-content/uploads/2014/12/sandiego_bialek.pdf (accessed on 10 June 2023).
- Kabalci, E. Hybrid Renewable Energy Systems and Microgrids; Elsevier Science: Amsterdam, The Netherlands, 2020; Available online: https://books.google.ru/books?id=NDoEEAAAQBAJ (accessed on 10 June 2023).
- Chen, H.; Yang, C.; Deng, K.; Zhou, N.; Wu, H. Multi-objective optimization of the hybrid wind/solar/fuel cell distributed generation system using Hammersley Sequence Sampling. Int. J. Hydrogen Energy 2017, 42, 7836–7846. [Google Scholar] [CrossRef]
- Henriquez-Auba, R.; Hidalgo-Gonzalez, P.; Pauli, P.; Kalathil, D.; Callaway, D.S.; Poolla, K. Sharing economy and optimal investment decisions for distributed solar generation. Appl. Energy 2021, 294, 117029. [Google Scholar] [CrossRef]
- IEEE STD 1547-2018; IEEE Standard for Interconnection and Interoperability of Distributed Energy Resources with Associated Electric Power Systems Interfaces. IEEE: Manhattan, NY, USA, 2018; pp. 1–138.
- IEC 61000-4-30:2015+AMD1:2021 CSV|IEC Webstore. (n.d.). IEEE 115 [115-2019—IEEE Guide for Test Procedures for Synchronous Machines Including Acceptance and Performance Testing and Parameter Determination for Dynamic Analysis. 2020. Available online: https://webstore.iec.ch/publication/68642 (accessed on 10 June 2023).
- IEC 61508:2010 CMV|IEC Webstore. (n.d.) Available online: https://webstore.iec.ch/publication/22273 (accessed on 11 June 2023).
- IEC 61499-1:2012|IEC Webstore. (n.d.) Available online: https://webstore.iec.ch/publication/5506&preview=1 (accessed on 11 June 2023).
- IEC 61499-2:2012|IEC Webstore. (n.d.) Available online: https://webstore.iec.ch/publication/5507 (accessed on 11 June 2023).
- IEC 61499-4:2013|IEC Webstore. (n.d.) Available online: https://webstore.iec.ch/publication/5508 (accessed on 11 June 2023).
- IEC 61970:2023 SER|IEC Webstore|Automation, Cyber Security, Smart City, Smart Energy, Smart Grid, CGMES. (n.d.) Available online: https://webstore.iec.ch/publication/61167 (accessed on 11 June 2023).
- International Electrotechnical Commission (IEC). IEC Smart Grid Standardization Roadmap; Tech. Rep. Ed. 1.0, SMB Smart Grid Strategic Group (SG3); IEC: Geneva, Switzerland, 2010; 136p. Available online: https://www.smartgrid.gov/files/documents/IEC_Smart_Grid_Standardization_Roadmap_201005.pdf (accessed on 10 June 2023).
- Tissue Overview of All Parts|IEC 61850 Tissue Database. (n.d.) Available online: https://iec61850.tissue-db.com/parts.mspx (accessed on 12 June 2023).
- IEC 62351:2023 SER|IEC Webstore|Cyber Security, Smart City. (n.d.) Available online: https://webstore.iec.ch/publication/6912 (accessed on 14 June 2023).
- IEC TR 62357-1:2016|IEC Webstore|Smart Energy, Smart Grid. (n.d.) Available online: https://webstore.iec.ch/publication/26251 (accessed on 14 June 2023).
- IEC TR 62357-2:2019|IEC Webstore. (n.d.) Available online: https://webstore.iec.ch/publication/28523 (accessed on 14 June 2023).
- IEEE Std P2030|IEEE Standards Coordinating Committee 21 (SCC21). (n.d.) Available online: https://sagroups.ieee.org/scc21/standards/ieee-std-2030-2011/ (accessed on 14 June 2023).
- IEEE SA—IEEE 2030.10-2021. (n.d.) Available online: https://standards.ieee.org/ieee/2030.10/10742/ (accessed on 14 June 2023).
- ISO. ISO 52016-1:2017—Energy Performance of Buildings—Energy Needs for Heating and Cooling, Internal Temperatures and Sensible and Latent Heat Loads—Part 1: Calculation Procedures. (n.d.) Available online: https://www.iso.org/standard/65696.html (accessed on 14 June 2023).
- IEC 61851-23:2014|IEC Webstore|LVDC. (n.d.) Available online: https://webstore.iec.ch/publication/6032 (accessed on 14 June 2023).
- Refaat, S.S.; Ellabban, O.; Bayhan, S.; Abu-Rub, H.; Blaabjerg, F.; Begovic, M.M. Smart Grid and Enabling Technologies; John Wiley & Sons: Hoboken, NJ, USA, 2021. [Google Scholar]
- Ilyushin, P.V.; Filippov, S.P. Under-frequency load shedding strategies for power districts with distributed generation. In Proceedings of the 2019 International Conference on Industrial Engineering, Applications and Manufacturing (ICIEAM), Sochi, Russia, 25–29 March 2019. [Google Scholar] [CrossRef]
- Ilyushin, P.V.; Pazderin, A.V.; Seit, R.I. Photovoltaic power plants participation in frequency and voltage regulation. In Proceedings of the 17th International Ural Conference on AC Electric Drives (ACED 2018), Ekaterinburg, Russia, 26–30 March 2018. [Google Scholar] [CrossRef]
- Ajewole, T.O.; Olabode, O.E.; Babalola, O.S.; Omoigui, M.O. Use of experimental test systems in the application of electric microgrid technology across the sub-Saharan Africa: A review. Sci. Afr. 2020, 8, e00435. [Google Scholar] [CrossRef]
- The CERTS Microgrid Concept, as Demonstrated at the CERTS/AEP Microgrid Test Bed. (n.d.) Available online: https://www.researchgate.net/publication/328600356_The_CERTS_Microgrid_Concept_as_Demonstrated_at_the_CERTSAEP_Microgrid_Test_Bed (accessed on 4 June 2023).
- Jiayi, H.; Chuanwen, J.; Rong, X. A review on distributed energy resources and MicroGrid. Renew. Sustain. Energy Rev. 2008, 12, 2472–2483. [Google Scholar] [CrossRef]
- Hatziargyriou, N. (n.d.) Microgrids: Architectures and Control. Available online: https://books.google.com/books/about/Microgrids.html?hl=ru&id=ywxzAgAAQBA (accessed on 10 June 2023).
- Case Studies of Smart Community Demonstration Project|NEDO. (n.d.). Available online: https://www.nedo.go.jp/english/news/reports_20130222.html#India (accessed on 11 June 2023).
- Jayawarna, N.; Jones, C.; Barnes, M.; Jenkins, N. Operating MicroGrid energy storage control during network faults. In Proceedings of the 2007 IEEE International Conference on System of Systems Engineering, SOSE, San Antonio, TX, USA, 16–18 April 2007. [Google Scholar] [CrossRef]
- Krishnamurthy, S.; Jahns, T.M.; Lasseter, R.H. The operation of diesel gensets in a CERTS microgrid. In Proceedings of the IEEE Power and Energy Society 2008 General Meeting: Conversion and Delivery of Electrical Energy in the 21st Century, PES, Pittsburgh, PA, USA, 20–24 July 2008. [Google Scholar] [CrossRef]
- Bossi, C.; Degner, T.; Tselepis, S. Distributed generation with high penetration of renewable energy sources. In Dispower, Final Public Report, Laboratory Tests Case Studies and Field Experience; Laboratory Tests Case Studies and Field Experience: Kessel, Germany, 2006; Available online: https://scholar.google.com/citations?view_op=view_citation&hl=en&user=wwOk4OoAAAAJ&citation_for_view=wwOk4OoAAAAJ:M3ejUd6NZC8C (accessed on 11 June 2023).
- Lidula, N.W.A.; Rajapakse, A.D. Microgrids research: A review of experimental microgrids and test systems. Renew. Sustain. Energy Rev. 2011, 15, 186–202. [Google Scholar] [CrossRef]
- Martin-Martínez, F.; Sánchez-Miralles, A.; Rivier, M. A literature review of Microgrids: A functional layer based classification. Renew. Sustain. Energy Rev. 2016, 62, 1133–1153. [Google Scholar] [CrossRef]
- Zhang, D.; Kong, Q. Renewable energy policy, green investment, and sustainability of energy firms. Renew. Energy 2022, 192, 118–133. [Google Scholar] [CrossRef]
- Kavousi-Fard, A.; Khodaei, A.; Bahramirad, S. Improved efficiency, enhanced reliability and reduced cost: The transition from static microgrids to reconfigurable microgrids. Electr. J. 2016, 29, 22–27. [Google Scholar] [CrossRef]
- Koubai, N.; Bouyakoub, F. Myrestaurant: A smart restaurant with a recommendation system. Int. J. Comput. Digit. Syst. 2019, 8, 143–156. [Google Scholar] [CrossRef]
- Shahidehpour, M.; Fotuhi-Friuzabad, M. Grid modernization for enhancing the resilience, reliability, economics, sustainability, and security of electricity grid in an uncertain environment. Sci. Iran. 2016, 23, 2862–2873. Available online: www.scientiairanica.com (accessed on 11 June 2023). [CrossRef] [Green Version]
- Rodrigues, S.D.; Garcia, V.J. Transactive energy in microgrid communities: A systematic review. Renew. Sustain. Energy Rev. 2023, 171, 112999. [Google Scholar] [CrossRef]
- Alemohammad, S.H.; Mashhour, E.; Saniei, M. A market-based method for reconfiguration of distribution network. Electr. Power Syst. Res. 2015, 125, 15–22. [Google Scholar] [CrossRef]
- Gazijahani, F.S.; Salehi, J. Integrated DR and reconfiguration scheduling for optimal operation of microgrids using Hong’s point estimate method. Int. J. Electr. Power Energy Syst. 2018, 99, 481–492. [Google Scholar] [CrossRef]
- Papadimitrakis, M.; Giamarelos, N.; Stogiannos, M.; Zois, E.N.; Livanos, N.A.I.; Alexandridis, A. Metaheuristic search in smart grid: A review with emphasis on planning, scheduling and power flow optimization applications. Renew. Sustain. Energy Rev. 2021, 145, 111072. [Google Scholar] [CrossRef]
- Tooryan, F.; Hassanzadeh Fard, H.; Collins, E.R.; Jin, S.; Ramezani, B. Optimization and energy management of distributed energy resources for a hybrid residential microgrid. J. Energy Storage 2020, 30, 101556. [Google Scholar] [CrossRef]
- Chukkaluru, S.; Ramprabhakar, J. Optimization Techniques for Operationand Control of Microgrids Review. J. Green Eng. 2018, 8, 621–644. [Google Scholar] [CrossRef] [Green Version]
- Kiptoo, M.K.; Lotfy, M.E.; Adewuyi, O.B.; Conteh, A.; Howlader, A.M.; Senjyu, T. Integrated approach for optimal techno-economic planning for high renewable energy-based isolated microgrid considering cost of energy storage and demand response strategies. Energy Convers. Manag. 2020, 215, 112917. [Google Scholar] [CrossRef]
- Esmaili, M.; Firozjaee, E.C.; Shayanfar, H.A. Optimal placement of distributed generations considering voltage stability and power losses with observing voltage-related constraints. Appl. Energy 2014, 113, 1252–1260. [Google Scholar] [CrossRef]
- Gamarra, C.; Guerrero, J.M.; Montero, E. A knowledge discovery in databases approach for industrial microgrid planning. Renew. Sustain. Energy Rev. 2016, 60, 615–630. [Google Scholar] [CrossRef] [Green Version]
- Zidan, A.; Gabbar, H.A.; Eldessouky, A. Optimal planning of combined heat and power systems within microgrids. Energy 2015, 93, 235–244. [Google Scholar] [CrossRef]
- Liu, X.; Yan, Z.; Wu, J. Optimal coordinated operation of a multi-energy community considering interactions between energy storage and conversion devices. Appl. Energy 2019, 248, 256–273. [Google Scholar] [CrossRef]
- Khalilpour, R.; Vassallo, A. Planning and operation scheduling of PV-battery systems: A novel methodology. Renew. Sustain. Energy Rev. 2016, 53, 194–208. [Google Scholar] [CrossRef]
- Alsaidan, I.; Gao, W.; Khodaei, A. Optimal design of battery energy storage in stand-alone brownfield microgrids. In Proceedings of the 2017 North American Power Symposium (NAPS 2017), Morgantown, WV, USA, 17–19 September 2017. [Google Scholar] [CrossRef]
- León, L.M.; Romero-Quete, D.; Merchán, N.; Cortés, C.A. Optimal design of PV and hybrid storage based microgrids for healthcare and government facilities connected to highly intermittent utility grids. Appl. Energy 2023, 335, 120709. [Google Scholar] [CrossRef]
- Yang, Y.; Li, H.; Aichhorn, A.; Zheng, J.; Greenleaf, M. Sizing strategy of distributed battery storage system with high penetration of photovoltaic for voltage regulation and peak load shaving. IEEE Trans. Smart Grid 2013, 5, 982–991. [Google Scholar] [CrossRef]
- Yang, Y.; Bremner, S.; Menictas, C.; Kay, M. Battery energy storage system size determination in renewable energy systems: A review. Renew. Sustain. Energy Rev. 2018, 91, 109–125. [Google Scholar] [CrossRef]
- Ilyushin, P.; Filippov, S.; Kulikov, A.; Suslov, K.; Karamov, D. Intelligent Control of the Energy Storage System for Reliable Operation of Gas-Fired Reciprocating Engine Plants in Systems of Power Supply to Industrial Facilities. Energies 2022, 15, 6333. [Google Scholar] [CrossRef]
- Shamarova, N.; Suslov, K.; Ilyushin, P.; Shushpanov, I. Review of Battery Energy Storage Systems Modeling in Microgrids with Renewables Considering Battery Degradation. Energies 2022, 15, 6967. [Google Scholar] [CrossRef]
- Wong, L.A.; Ramachandaramurthy, V.K.; Taylor, P.; Ekanayake, J.B.; Walker, S.L.; Padmanaban, S. Review on the optimal placement, sizing and control of an energy storage system in the distribution network. J. Energy Storage 2019, 21, 489–504. [Google Scholar] [CrossRef]
- Jannesar, M.R.; Sedighi, A.; Savaghebi, M.; Guerrero, J.M. Optimal placement, sizing, and daily charge/discharge of battery energy storage in low voltage distribution network with high photovoltaic penetration. Appl. Energy 2018, 226, 957–966. [Google Scholar] [CrossRef] [Green Version]
- Dulău, L.I.; Abrudean, M.; Bică, D. Optimal Location of a Distributed Generator for Power Losses Improvement. Procedia Technol. 2016, 22, 734–739. [Google Scholar] [CrossRef] [Green Version]
- Kumar, M.; Soomro, A.M.; Uddin, W.; Kumar, L. Optimal Multi-Objective Placement and Sizing of Distributed Generation in Distribution System: A Comprehensive Review. Energies 2022, 15, 7850. [Google Scholar] [CrossRef]
- Park, H.; Kim, J.K.; Yi, S.C. Optimization of site utility systems for renewable energy integration. Energy 2023, 269, 126799. [Google Scholar] [CrossRef]
- Zou, W.; Sun, Y.; Gao, D.; Zhang, X.; Liu, J. A review on integration of surging plug-in electric vehicles charging in energy-flexible buildings: Impacts analysis, collaborative management technologies, and future perspective. Appl. Energy 2023, 331, 120393. [Google Scholar] [CrossRef]
- Kamal, M.M.; Ashraf, I.; Fernandez, E. Planning and optimization of microgrid for rural electrification with integration of renewable energy resources. J. Energy Storage 2022, 52, 104782. [Google Scholar] [CrossRef]
- Akram, U.; Khalid, M.; Shafiq, S. Optimal sizing of a wind/solar/battery hybrid grid-connected microgrid system. IET Renew. Power Gener. 2018, 12, 72–80. [Google Scholar] [CrossRef]
- Rehman, A.U.; Shafiq, A.; Ullah, Z.; Iqbal, S.; Hasanien, H.M. Implications of smart grid and customer involvement in energy management and economics. Energy 2023, 276, 127626. [Google Scholar] [CrossRef]
- Vankudoth, L.; Badar, A. Lokesh Optimal Sizing of RES and BESS in Networked Microgrids based on Proportional Peer-to-Peer and Peer-to-Grid Energy Trading. Energy Storage 2023, e464. [Google Scholar] [CrossRef]
- Rezaei, N.; Pezhmani, Y.; Khazali, A. Economic-environmental risk-averse optimal heat and power energy management of a grid-connected multi microgrid system considering demand response and bidding strategy. Energy 2022, 240, 122844. [Google Scholar] [CrossRef]
- Yuan, X. Study on Dynamic Interval Power Flow Calculation of Microgrid Based on Monte Carlo Algorithm. Int. Trans. Electr. Energy Syst. 2023, 2023, 1702918. [Google Scholar] [CrossRef]
- Alam, M.S.; Al-Ismail, F.S.; Rahman, S.M.; Shafiullah, M.; Hossain, M.A. Planning and protection of DC microgrid: A critical review on recent developments. Eng. Sci. Technol. Int. J. 2023, 41, 101404. [Google Scholar] [CrossRef]
- Kulikov, A.; Ilyushin, P.; Suslov, K.; Filippov, S. Organization of Control of the Generalized Power Quality Parameter Using Wald’s Sequential Analysis Procedure. Inventions 2023, 8, 17. [Google Scholar] [CrossRef]
- Ahmed, M.; Meegahapola, L.; Vahidnia, A.; Datta, M. Stability and Control Aspects of Microgrid Architectures-A Comprehensive Review. IEEE Access 2020, 8, 144730–144766. [Google Scholar] [CrossRef]
- Eroshenko, S.A.; Ilyushin, P.V. Features of implementing multi-parameter islanding protection in power districts with distributed generation units. In Proceedings of the 2018 IEEE 59th International Scientific Conference on Power and Electrical Engineering of Riga Technical University (RTUCON), Riga, Latvia, 12–14 November 2018. [Google Scholar] [CrossRef]
- Ali, S.S.; Choi, B.J. State-of-the-art artificial intelligence techniques for distributed smart grids: A review. Electronics 2020, 9, 1030. [Google Scholar] [CrossRef]
- Khan, F.; Siddiqui, M.A.B.; Rehman, A.U.; Khan, J.; Asad, M.T.S.A.; Asad, A. IoT based power monitoring system for smart grid applications. In Proceedings of the 2020 International Conference on Engineering and Emerging Technologies (ICEET), Lahore, Pakistan, 22–23 February 2020; pp. 1–5. [Google Scholar]
- Liou, H. The Development of Electricity Grid, Smart Grid and Renewable Energy in Taiwan. Smart Grid Renew. Energy 2017, 8, 163–177. [Google Scholar] [CrossRef] [Green Version]
- Stagnaro, C.; Benedettini, S. Smart meters: The gate to behind-the-meter? In Behind and Beyond the Meter: Digitalization, Aggregation, Optimization, Monetization; Academic Press: Cambridge, MA, USA, 2020; pp. 251–265. [Google Scholar] [CrossRef]
- Mets, K.; Ojea, J.A.; Develder, C. Combining Power and Communication Network Simulation for Cost-Effective Smart Grid Analysis. IEEE Commun. Surv. Tutor. 2014, 16, 1771–1796. [Google Scholar] [CrossRef]
- Li, W.; Zhang, X. Simulation of the smart grid communications: Challenges, techniques, and future trends. Comput. Electr. Eng. 2014, 40, 270–288. [Google Scholar] [CrossRef]
- Dileep, G. A survey on smart grid technologies and applications. Renew. Energy 2020, 146, 2589–2625. [Google Scholar] [CrossRef]
- Sahoo, S.K.; Sinha, A.K.; Kishore, N.K. Control Techniques in AC, DC, and Hybrid AC-DC Microgrid: A Review. IEEE J. Emerg. Sel. Top. Power Electron. 2018, 6, 738–759. [Google Scholar] [CrossRef]
- Ortiz, L.; González, J.W.; Gutierrez, L.B.; Llanes-Santiago, O. A review on control and fault-tolerant control systems of AC/DC microgrids. Heliyon 2020, 6, e04799. [Google Scholar] [CrossRef] [PubMed]
- Dunuweera, M.S.; Porawagamage, G.D.; Hemapala, K.T.M.U.; De Silva, N. Design and implementation of an optimized communication method for Remote Meter Reading using Zigbee. In Proceedings of the 2017 Third International Conference on Advances in Electrical, Electronics, Information, Communication and Bio-Informatics (AEEICB), Chennai, India, 27–28 February 2017; pp. 231–236. [Google Scholar]
- Ben Youssef, N.E.H. Analytical analysis of information-centric networking in smart grids. Int. J. Wirel. Inf. Netw. 2022, 29, 354–364. [Google Scholar] [CrossRef]
- Ilyushin, P.V. Emergency and post-emergency control in the formation of micro-grids. In E3S Web of Conferences, Proceedings of the Methodological Problems in Reliability Study of Large Energy Systems (RSES), Bishkek, Kyrgyzstan, 11–15 September 2017; EDP Sciences: Les Ulis, France, 2017; Volume 25, p. 02002. [Google Scholar] [CrossRef] [Green Version]
- Abdi, H.; Beigvand, S.D.; Scala, M. A review of optimal power flow studies applied to smart grids and microgrids. Renew. Sustain. Energy Rev. 2017, 71, 742–766. [Google Scholar] [CrossRef]
- Koltsaklis, N.E.; Giannakakis, M.; Georgiadis, M.C. Optimal energy planning and scheduling of microgrids. Chem. Eng. Res. Des. 2018, 131, 318–332. [Google Scholar] [CrossRef]
- Zheng, Z.; Yang, S.; Guo, Y.; Jin, X.; Wang, R. Meta-heuristic Techniques in Microgrid Management: A Survey. Swarm Evol. Comput. 2023, 78, 101256. [Google Scholar] [CrossRef]
- Maier, H.R.; Razavi, S.; Kapelan, Z.; Matott, L.S.; Kasprzyk, J.; Tolson, B.A. Introductory overview: Optimization using evolutionary algorithms and other metaheuristics. Environ. Model. Softw. 2019, 114, 195–213. [Google Scholar] [CrossRef]
- Memari, M.; Karimi, A.; Hashemi-Dezaki, H. Reliability evaluation of smart grid using various classic and metaheuristic clustering algorithms considering system uncertainties. Int. Trans. Electr. Energy Syst. 2021, 31, e12902. [Google Scholar] [CrossRef]
- Das, B.K.; Hoque, N.; Mandal, S.; Pal, T.K.; Raihan, M.A. A techno-economic feasibility of a stand-alone hybrid power generation for remote area application in Bangladesh. Energy 2017, 134, 775–788. [Google Scholar] [CrossRef]
- Li, W.; Wang, R.; Zhang, T.; Ming, M.; Lei, H. Multi-scenario microgrid optimization using an evolutionary multi-objective algorithm. Swarm Evol. Comput. 2019, 50, 100570. [Google Scholar] [CrossRef]
- Bharothu, J.N.; Sridhar, M.; Rao, R.S. Modified adaptive differential evolution based optimal operation and security of AC-DC microgrid systems. Int. J. Electr. Power Energy Syst. 2018, 103, 185–202. [Google Scholar] [CrossRef]
- Mukherjee, D.; Mallick, S. Utilization of adaptive swarm intelligent metaheuristic in designing an efficient photovoltaic interfaced Static Synchronous Series Compensator. Eng. Appl. Artif. Intell. 2023, 123, 106346. [Google Scholar] [CrossRef]
- Suvorov, A.; Askarov, A.; Kievets, A. A freely configurable structure of virtual synchronous generator for grid-forming converters. Electr. Eng. 2023, 105, 1331–1345. [Google Scholar] [CrossRef]
- Tavana, M.; Kazemi, M.R.; Vafadarnikjoo, A.; Mobin, M. An Artificial Immune Algorithm for Ergonomic Product Classification Using Anthropometric Measurements. Meas. J. Int. Meas. Confed. 2016, 93, 621–629. [Google Scholar] [CrossRef]
- Katsigiannis, Y.A.; Georgilakis, P.S.; Karapidakis, E.S. Hybrid simulated annealing-tabu search method for optimal sizing of autonomous power systems with renewables. IEEE Trans. Sustain. Energy 2012, 3, 330–338. [Google Scholar] [CrossRef]
- Thirunavukkarasu, M.; Sawle, Y.; Lala, H. A comprehensive review on optimization of hybrid renewable energy systems using various optimization techniques. Renew. Sustain. Energy Rev. 2023, 176, 113192. [Google Scholar] [CrossRef]
- Srinivasan, D.; Ng, W.S.; Liew, A.C. Neural-network-based signature recognition for harmonic source identification. IEEE Trans. Power Deliv. 2006, 21, 398–405. [Google Scholar] [CrossRef]
- Maulik, A.; Das, D. Optimal operation of microgrid using four different optimization techniques. Sustain. Energy Technol. Assess. 2017, 21, 100–120. [Google Scholar] [CrossRef]
- Ahmed, M.; Abbas, G.; Jumani, T.; Rashid, N.; Bhutto, A.; Eldin, S. Techno-economic optimal planning of an industrial microgrid considering integrated energy resources. Front. Energy Res. 2023, 11, 1145888. [Google Scholar] [CrossRef]
- Borghei, M.; Ghassemi, M. Optimal planning of microgrids for resilient distribution networks. Int. J. Electr. Power Energy Syst. 2021, 128, 106682. [Google Scholar] [CrossRef]
- Wang, Y.; Huang, Y.; Wang, Y.; Li, F.; Zhang, Y.; Tian, C. Operation Optimization in a Smart Micro-Grid in the Presence of Distributed Generation and Demand Response. Sustainability 2018, 10, 847. [Google Scholar] [CrossRef] [Green Version]
- Moretti, L.; Astolfi, M.; Vergara, C.; Macchi, E.; Pérez-Arriaga, J.I.; Manzolini, G. A design and dispatch optimization algorithm based on mixed integer linear programming for rural electrification. Appl. Energy 2019, 233–234, 1104–1121. [Google Scholar] [CrossRef]
- Liu, D.; Zhang, C.; Chen, G.; Xu, Y.; Dong, Z.Y. Stochastic security-constrained optimal power flow for a microgrid considering tie-line switching. Int. J. Electr. Power Energy Syst. 2022, 134, 107357. [Google Scholar] [CrossRef]
- Grover-Silva, E.; Heleno, M.; Mashayekh, S.; Cardoso, G.; Girard, R.; Kariniotakis, G. A stochastic optimal power flow for scheduling flexible resources in microgrids operation. Appl. Energy 2018, 229, 201–208. [Google Scholar] [CrossRef]
- Riva Sanseverino, E.; Nguyen Quang, N.; di Silvestre, M.L.; Guerrero, J.M.; Li, C. Optimal power flow in three-phase islanded microgrids with inverter interfaced units. Electr. Power Syst. Res. 2015, 123, 48–56. [Google Scholar] [CrossRef] [Green Version]
- Hai, T.; Zhou, J.; Muranaka, K. Energy management and operational planning of renewable energy resources-based microgrid with energy saving. Electr. Power Syst. Res. 2023, 214, 108792. [Google Scholar] [CrossRef]
- Bakhtiari, H.; Zhong, J.; Alvarez, M. Uncertainty modeling methods for risk-averse planning and operation of stand-alone renewable energy-based microgrids. Renew. Energy 2022, 199, 866–880. [Google Scholar] [CrossRef]
- Ruban, N.; Suvorov, A.; Andreev, M.; Ufa, R.; Askarov, A.; Gusev, A.; Bhalja, B. Software and Hardware Decision Support System for Operators of Electrical Power Systems. IEEE Trans. Power Syst. 2021, 36, 3840–3848. [Google Scholar] [CrossRef]
- Meng, Y.; Wang, Y.; Sun, S.; Wang, S.; Zhang, H. Multi-objective optimal dispatching of demand response-enabled microgrid considering uncertainty of renewable energy generations based on two-level iterative strategy. Energy Rep. 2023, 9, 1842–1858. [Google Scholar] [CrossRef]
- Ma, Y.; Zhang, M.; Yang, H.; Wang, X.; Xu, J.; Hu, X. Decentralized and coordinated scheduling model of interconnected multi-microgrid based on virtual energy storage. Int. J. Electr. Power Energy Syst. 2023, 148, 108990. [Google Scholar] [CrossRef]
- Stevanato, N.; Pellecchia, G.; Sangiorgio, I.; Shendrikova, D.; Soares, C.A.; Mereu, R.; Colombo, E. Planning third generation minigrids: Multi-objective optimization and brownfield investment approaches in modelling village-scale on-grid and off-grid energy systems. Renew. Sustain. Energy Transit. 2023, 3, 100053. [Google Scholar] [CrossRef]
- Dufo-López, R.; Cristóbal-Monreal, I.R.; Yusta, J.M. Optimization of PV-wind-diesel-battery stand-alone systems to minimise cost and maximise human development index and job creation. Renew. Energy 2016, 94, 280–293. [Google Scholar] [CrossRef]
- Singh, P.; Pandit, M.; Srivastava, L. Multi-objective optimal sizing of hybrid micro-grid system using an integrated intelligent technique. Energy 2023, 269, 126756. [Google Scholar] [CrossRef]
- Azimian, M.; Amir, V.; Mohseni, S.; Brent, A.C.; Bazmohammadi, N.; Guerrero, J.M. Optimal Investment Planning of Bankable Multi-Carrier Microgrid Networks. Appl. Energy 2022, 328, 120121. [Google Scholar] [CrossRef]
- Hubble, A.H.; Ustun, T.S. Composition, placement, and economics of rural microgrids for ensuring sustainable development. Sustain. Energy Grids Netw. 2018, 13, 1–18. [Google Scholar] [CrossRef]
- Alagoz, B.B.; Kaygusuz, A.; Karabiber, A. A user-mode distributed energy management architecture for smart grid applications. Energy 2012, 44, 167–177. [Google Scholar] [CrossRef]
- Vu, T.L.; Mukherjee, S.; Adetola, V. Resilient Communication Scheme for Distributed Decision of Interconnecting Networks of Microgrids. arXiv 2022, arXiv:2209.07385. [Google Scholar] [CrossRef]
- Li, Q.; Gao, M.; Lin, H.; Chen, Z.; Chen, M. MAS-based distributed control method for multi-microgrids with high-penetration renewable energy. Energy 2019, 171, 284–295. [Google Scholar] [CrossRef]
- Muyeen, S.M.; Islam, S.M.; Blaabjerg, F. Variability, Scalability and Stability of Microgrids; Institution of Engineering and Technology: London, UK, 2019; pp. 1–623. [Google Scholar] [CrossRef]
- Molderink, A.; Bakker, V.; Bosman, M.; Hurink, J.; Smit, G.J.M. Management and Control of Domestic Smart Grid Technology. IEEE Trans. Smart Grid 2010, 1, 109–119. [Google Scholar] [CrossRef] [Green Version]
- Yao, Y.; Hilaire, V.; Koukam, A.; Cai, W. A Holonic Model in Wireless Sensor Networks. In Proceedings of the IEEE International Conference on Intelligent Information Hiding and Multimedia Signal Processing, Harbin, China, 15–17 August 2008; pp. 491–495. [Google Scholar] [CrossRef]
- Negeri, E.; Baken, N.; Popov, M. Holonic Architecture of the Smart Grid. Smart Grid Renew. Energy 2013, 4, 202–212. [Google Scholar] [CrossRef] [Green Version]
- Marín-Quintero, J.; Orozco-Henao, C.; Percybrooks, W.S.; Vélez, J.C.; Montoya, O.D.; Gil-González, W. Toward an adaptive protection scheme in active distribution networks: Intelligent approach fault detector. Appl. Soft Comput. 2021, 98, 106839. [Google Scholar] [CrossRef]
- Kulikov, A.L.; Ilyushin, P.V.; Suslov, K.V.; Karamov, D.N. Coherence of digital processing of current and voltage signals at decimation for power systems with a large share of renewable power stations. Energy Rep. 2022, 8, 1464–1478. [Google Scholar] [CrossRef]
- Kaur, G.; Prakash, A.; Rao, K.U. A critical review of Microgrid adaptive protection techniques with distributed generation. Renew. Energy Focus 2021, 39, 99–109. [Google Scholar] [CrossRef]
- Alvarez de Sotomayor, A.; della Giustina, D.; Massa, G.; Dedè, A.; Ramos, F.; Barbato, A. IEC 61850-based adaptive protection system for the MV distribution smart grid. Sustain. Energy Grids Netw. 2018, 15, 26–33. [Google Scholar] [CrossRef]
- Shobole, A.A.; Wadi, M. Multiagent systems application for the smart grid protection. Renew. Sustain. Energy Rev. 2021, 149, 111352. [Google Scholar] [CrossRef]
- Marín-Quintero, J.; Orozco-Henao, C.; Velez, J.C.; Bretas, A.S. Micro grids decentralized hybrid data-driven cuckoo search based adaptive protection model. Int. J. Electr. Power Energy Syst. 2021, 130, 106960. [Google Scholar] [CrossRef]
- Fan, X.; Dudkina, E.; Gambuzza, L.V.; Frasca, M.; Crisostomi, E. A network-based structure-preserving dynamical model for the study of cascading failures in power grids. Electr. Power Syst. Res. 2022, 209, 107987. [Google Scholar] [CrossRef]
- Gungor, V.C.; Sahin, D.; Kocak, T.; Ergut, S.; Buccella, C.; Cecati, C.; Hancke, G.P. Smart grid technologies: Communication technologies and standards. IEEE Trans. Ind. Inform. 2011, 7, 529–539. [Google Scholar] [CrossRef] [Green Version]
- Bayindir, R.; Colak, I.; Fulli, G.; Demirtas, K. Smart grid technologies and applications. Renew. Sustain. Energy Rev. 2016, 66, 499–516. [Google Scholar]
- Ramezy, B.; Saadatmand, M.; Mozafari, B. Review of Communication Technologies for Smart Grid applications. In Proceedings of the National Conference on: New Approaches in Power Industry, Tehran, Iran, 11 December 2017. [Google Scholar]
Type | Technology | Data Rate | Coverage Range | Network Topology | Max Number of Cell Nodes | Limitations | Applications |
---|---|---|---|---|---|---|---|
Wireless | GSM | Up to 14.4 kbps | 0.5–35 km | Multipoint to multipoint | 7 cells/ cluster 9, 12, 13 | Low date rates | AMI 1, HAN 2, Demand Response |
GPRS | Up to 170 kbps | 0.5–35 km | Multipoint to multipoint | 7 cells/ cluster 9, 12, 13 | Low date rates | AMI, HAN, Demand Response | |
3G | Up to 2 Mbps | 0.1–10 km | Multipoint to multipoint | 1–7 cells | Costly spectrum | AMI, HAN, Demand Response, Monitoring for Remote Distribution | |
ZigBee | 250 kbps | 10–100 m | Star, mesh, cluster-tree | more than 65,000 | Low data rate, short range | Automation, Remote Load Control, AMI | |
WiMAX | Up to 50 Mbps | 10–50 km (LOS) 1–5 km (NLOS) | Point to multipoint; multipoint to multipoint | 1 | Not widespread | AMI, Demand Response, Wireless Automatic Meter Reading | |
Wired | PLC | Up to 0.5/200 Mbps | 3/0.2 km | Star, point-to-point | 1 | Harsh, noisy channel environment | AMI, Fraud Detection |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Volnyi, V.; Ilyushin, P.; Suslov, K.; Filippov, S. Approaches to Building AC and AC–DC Microgrids on Top of Existing Passive Distribution Networks. Energies 2023, 16, 5799. https://doi.org/10.3390/en16155799
Volnyi V, Ilyushin P, Suslov K, Filippov S. Approaches to Building AC and AC–DC Microgrids on Top of Existing Passive Distribution Networks. Energies. 2023; 16(15):5799. https://doi.org/10.3390/en16155799
Chicago/Turabian StyleVolnyi, Vladislav, Pavel Ilyushin, Konstantin Suslov, and Sergey Filippov. 2023. "Approaches to Building AC and AC–DC Microgrids on Top of Existing Passive Distribution Networks" Energies 16, no. 15: 5799. https://doi.org/10.3390/en16155799
APA StyleVolnyi, V., Ilyushin, P., Suslov, K., & Filippov, S. (2023). Approaches to Building AC and AC–DC Microgrids on Top of Existing Passive Distribution Networks. Energies, 16(15), 5799. https://doi.org/10.3390/en16155799