Optimal Scheduling of Virtual Power Plant with Flexibility Margin Considering Demand Response and Uncertainties
Abstract
:1. Introduction
2. VPP Structure
2.1. Model Formulation of the VPP
2.1.1. Distributed Photovoltaic System
2.1.2. Combined Heat and Power System
2.1.3. Gas-Fired Boiler
2.1.4. Refrigeration Unit
2.1.5. Energy Storage Unit
2.2. Objective Function
2.3. Constraint Conditions
3. Flexibility Margin Considering Demand Response
3.1. Flexibility Margin
3.2. Flexibility Indicators
4. Example Analysis
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
the power temperature reduction coefficient in the standard state | |
the electric efficiency CHP | |
the utilization efficiency of the electric refrigeration unit | |
the self-discharge ratio | |
the charging efficiency | |
the discharge efficiency | |
the thermal efficiency CHP | |
the gas utilization efficiency of the gas boiler | |
the heat loss rate of CHP | |
the refrigeration efficiency | |
the lower climbing limits (MW/h) | |
the upper climbing limits (MW/h) | |
The electric energy stored by the electric energy storage unit at time t (MW) | |
the electric energy stored by the electric energy storage unit at time t − 1 (MW) | |
the reduction coefficient | |
FGB | the consumption of natural gas (m3) |
FGT | the energy of gas combustion (MW) |
Fru_up | the upward flexibility margin (MW) |
Fru_udown | the downward flexibility margin (MW) |
G | the illumination intensity of the current position (W/m2) |
GS | the illumination intensity of the standard state (W/m2) |
the cooling load (MW) | |
the electric load (MW) | |
PEC | the cooling output of the electric refrigeration unit (MW) |
PEGT | the electric power output by CHP (MW) |
the charging power output (MW) | |
the discharge power output (MW) | |
the rated charging power output (MW) | |
the rated discharge power output (MW) | |
the power supply of the power gird (MW) | |
PGB | The thermal output power of the gas boiler (MW) |
the thermal load (MW) | |
PHGT | the thermal power output by CHP (MW) |
the cooling output of the absorption refrigeration unit (MW) | |
PPV | the power output of the photovoltaic power system (MW) |
PPVR | the rated power output in the standard state (MW) |
the cooling output and heating input of the absorption refrigeration unit (MW) | |
T | the temperature on the surface of the photovoltaic panel (°C) |
Ts | the temperature of the photovoltaic surface in the standard state (°C) |
References
- Kong, X.; Xiao, J.; Wang, C.; Cui, K.; Jin, Q.; Kong, D. Bi-level multi-time scale scheduling method based on bidding for multi-operator virtual power plant. Appl. Energy 2019, 249, 178–189. [Google Scholar] [CrossRef]
- Wei, C.; Xu, J.; Liao, S.; Sun, Y.; Jiang, Y.; Ke, D.; Zhang, Z.; Wang, J. A bi-level scheduling model for virtual power plants with aggregated thermostatically controlled loads and renewable energy. Appl. Energy 2018, 224, 659–670. [Google Scholar] [CrossRef]
- Ju, L.; Tan, Z.; Yuan, J.; Tan, Q.; Li, H.; Dong, F. A bi-level stochastic scheduling optimization model for a virtual power plant connected to a wind–photovoltaic–energy storage system considering the uncertainty and demand response. Appl. Energy 2016, 171, 184–199. [Google Scholar] [CrossRef] [Green Version]
- Riveros, J.Z.; Bruninx, K.; Poncelet, K.; D’haeseleer, W. Bidding strategies for virtual power plants considering CHPs and intermittent renewables. Energy Convers. Manag. 2015, 103, 408–418. [Google Scholar] [CrossRef]
- Alsaleh, M.; Abdul-Rahim, A.S. Bioenergy industry and the growth of the energy sector in the EU-28 region: Evidence from panel cointegration analysis. J. Renew. Sustain. Energy 2018, 10, 53–61. [Google Scholar] [CrossRef]
- Alsaleh, M.; Abdul-Rahim, A.S. Bioenergy Intensity and Its Determinants in European Continental Countries: Evidence Using GMM Estimation. Resources 2019, 8, 43. [Google Scholar] [CrossRef] [Green Version]
- Royapoor, M.; Pazhoohesh, M.; Davison, P.J.; Patsios, C.; Walker, S. Building as a virtual power plant, magnitude and persistence of deferrable loads and human comfort implications. Energy Build. 2020, 213, 109794. [Google Scholar] [CrossRef]
- Sikorski, T.; Jasiński, M.; Ropuszyńska-Surma, E.; Węglarz, M.; Kaczorowska, D.; Kostyla, P.; Leonowicz, Z.; Lis, R.; Rezmer, J.; Rojewski, W.; et al. A Case Study on Distributed Energy Resources and Energy-Storage Systems in a Virtual Power Plant Concept: Technical Aspects. Energies 2020, 13, 3086. [Google Scholar] [CrossRef]
- Loßner, M.; Böttger, D.; Bruckner, T. Economic assessment of virtual power plants in the German energy market—A scenario-based and model-supported analysis. Energy Econ. 2017, 62, 125–138. [Google Scholar] [CrossRef]
- Van Summeren, L.F.; Wieczorek, A.J.; Bombaerts, G.J.; Verbong, G.P. Community energy meets smart grids: Reviewing goals, structure, and roles in Virtual Power Plants in Ireland, Belgium and the Netherlands. Energy Res. Soc. Sci. 2020, 63, 101415. [Google Scholar] [CrossRef]
- Ullah, Z.; Mokryani, G.; Campean, F.; Hu, Y.F. Comprehensive review of VPPs planning, operation and scheduling considering the uncertainties related to renewable energy sources. IET Energy Syst. Integr. 2019, 1, 147–157. [Google Scholar] [CrossRef]
- Nosratabadi, S.M.; Hooshmand, R.-A.; Gholipour, E. A comprehensive review on microgrid and virtual power plant concepts employed for distributed energy resources scheduling in power systems. Renew. Sustain. Energy Rev. 2017, 67, 341–363. [Google Scholar] [CrossRef]
- Arslan, O.; Karasan, O.E. Cost and emission impacts of virtual power plant formation in plug-in hybrid electric vehicle penetrated networks. Energy 2013, 60, 116–124. [Google Scholar] [CrossRef] [Green Version]
- Ju, L.W.; Tan, Q.L.; Lu, Y.; Tan, Z.F.; Zhang, Y.X.; Tan, Q.K. A CVaR-robust-based multi-objective optimization model and three-stage solution algorithm for a virtual power plant considering uncertainties and carbon emission allowances. Int. J. Electr. Power Energy Syst. 2019, 107, 628–643. [Google Scholar] [CrossRef]
- Cui, H.; Li, F.; Hu, Q.; Bai, L.; Fang, X. Day-ahead coordinated operation of utility-scale electricity and natural gas networks considering demand response based virtual power plants. Appl. Energy 2016, 176, 183–195. [Google Scholar] [CrossRef] [Green Version]
- Kasaei, M.J.; Gandomkar, M.; Nikoukar, J. Optimal management of renewable energy sources by virtual power plant. Renew. Energy 2017, 114, 1180–1188. [Google Scholar] [CrossRef]
- Luo, Z.; Hong, S.; Ding, Y. A data mining-driven incentive-based demand response scheme for a virtual power plant. Appl. Energy 2019, 239, 549–559. [Google Scholar] [CrossRef]
- Li, Y.; Gao, W.; Ruan, Y. Feasibility of virtual power plants (VPPs) and its efficiency assessment through benefiting both the supply and demand sides in Chongming country, China. Sustain. Cities Soc. 2017, 35, 544–551. [Google Scholar] [CrossRef]
- Alahyari, A.; Ehsan, M.; Mousavizadeh, M. A hybrid storage-wind virtual power plant (VPP) participation in the electricity markets: A self-scheduling optimization considering price, renewable generation, and electric vehicles uncertainties. J. Energy Storage 2019, 25, 100812. [Google Scholar] [CrossRef]
- Sousa, T.; Morais, H.; Vale, Z.; Faria, P.; Soares, J. Intelligent Energy Resource Management Considering Vehicle-to-Grid: A Simulated Annealing Approach. IEEE Trans. Smart Grid 2012, 3, 535–542. [Google Scholar] [CrossRef]
- Daraei, M.; Campana, P.E.; Thorin, E. Power-to-hydrogen storage integrated with rooftop photovoltaic systems and combined heat and power plants. Appl. Energy 2020, 276, 115499. [Google Scholar] [CrossRef]
- Kolenc, M.; Nemček, P.; Gutschi, C.; Suljanović, N.; Zajc, M. Performance evaluation of a virtual power plant communication system providing ancillary services. Electr. Power Syst. Res. 2017, 149, 46–54. [Google Scholar] [CrossRef]
- Bloess, A. Modeling of combined heat and power generation in the context of increasing renewable energy penetration. Appl. Energy 2020, 267, 1–17. [Google Scholar] [CrossRef]
- Arteconi, A.; Mugnini, A.; Polonara, F. Energy flexible buildings: A methodology for rating the flexibility performance of buildings with electric heating and cooling systems. Appl. Energy 2019, 251, 113387. [Google Scholar] [CrossRef]
- Magdy, F.E.Z.; Ibrahim, D.K.; Sabry, W. Energy management of virtual power plants dependent on electro-economical model. Ain Shams Eng. J. 2020, 11, 643–649. [Google Scholar] [CrossRef]
- Yu, S.; Fang, F.; Liu, Y.; Liu, J. Uncertainties of virtual power plant: Problems and countermeasures. Appl. Energy 2019, 239, 454–470. [Google Scholar] [CrossRef]
- Liu, Y.; Shen, Z.; Tang, X.; Lian, H.; Li, J.; Gong, J. Worst-case conditional value-at-risk based bidding strategy for wind-hydro hybrid systems under probability distribution uncertainties. Appl. Energy 2019, 256, 113918. [Google Scholar] [CrossRef]
- Liang, Z.; Alsafasfeh, Q.; Jin, T.; Pourbabak, H.; Su, W. Risk-Constrained Optimal Energy Management for Virtual Power Plants Considering Correlated Demand Response. IEEE Trans. Smart Grid 2019, 10, 1577–1587. [Google Scholar] [CrossRef]
- Adu-Kankam, K.O.; Camarinha-Matos, L.M. Towards collaborative Virtual Power Plants: Trends and convergence. Sustain. Energy Grids Netw. 2018, 16, 217–230. [Google Scholar] [CrossRef]
- Robu, V.; Chalkiadakis, G.; Kota, R.; Rogers, A.; Jennings, N.R. Rewarding cooperative virtual power plant formation using scoring rules. Energy 2016, 117, 19–28. [Google Scholar] [CrossRef] [Green Version]
- Guerrero, J.; Gebbran, D.; Mhanna, S.; Chapman, A.C.; Verbic, G. Towards a transactive energy system for integration of distributed energy resources: Home energy management, distributed optimal power flow, and peer-to-peer energy trading. Renew. Sustain. Energy Rev. 2020, 132, 110000. [Google Scholar] [CrossRef]
- Hooshmand, R.A.; Nosratabadi, S.M.; Gholipour, E. Event-based scheduling of industrial technical virtual power plant considering wind and market prices stochastic behaviors—A case study in Iran. J. Clean. Prod. 2018, 172, 1748–1764. [Google Scholar] [CrossRef]
- Obringer, R.; Mukherjee, S.; Nateghi, R. Evaluating the climate sensitivity of coupled electricity-natural gas demand using a multivariate framework. Appl. Energy 2020, 262, 114419. [Google Scholar] [CrossRef]
- Shabanzadeh, M.; Sheikh-El-Eslami, M.-K.; Haghifam, M.-R. An interactive cooperation model for neighboring virtual power plants. Appl. Energy 2017, 200, 273–289. [Google Scholar] [CrossRef]
Times | Prices (yuan/kWh) |
---|---|
valley period | 0.3946 |
usual period | 0.685 |
peak period | 1.0044 |
Times | Prices (yuan/kWh) |
---|---|
valley period | 0.284 |
usual period | 0.52 |
peak period | 0.89 |
Technical Equipment | Installation Cost yuan/kW | Running Costs yuan/kWh | Efficiency | Period (Year) | |
---|---|---|---|---|---|
Electrical Efficiency | Heating Efficiency | ||||
Internal combustion engine | 5000 | 0.072 | 0.4 | 0.45 | 30 |
Photovoltaic system | 7500 | 0.01 | 0.12 | 0 | 25 |
Energy storage system | 4000 | 0.0022 | 0.81 | 15 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tan, Y.; Zhi, Y.; Luo, Z.; Fan, H.; Wan, J.; Zhang, T. Optimal Scheduling of Virtual Power Plant with Flexibility Margin Considering Demand Response and Uncertainties. Energies 2023, 16, 5833. https://doi.org/10.3390/en16155833
Tan Y, Zhi Y, Luo Z, Fan H, Wan J, Zhang T. Optimal Scheduling of Virtual Power Plant with Flexibility Margin Considering Demand Response and Uncertainties. Energies. 2023; 16(15):5833. https://doi.org/10.3390/en16155833
Chicago/Turabian StyleTan, Yetuo, Yongming Zhi, Zhengbin Luo, Honggang Fan, Jun Wan, and Tao Zhang. 2023. "Optimal Scheduling of Virtual Power Plant with Flexibility Margin Considering Demand Response and Uncertainties" Energies 16, no. 15: 5833. https://doi.org/10.3390/en16155833
APA StyleTan, Y., Zhi, Y., Luo, Z., Fan, H., Wan, J., & Zhang, T. (2023). Optimal Scheduling of Virtual Power Plant with Flexibility Margin Considering Demand Response and Uncertainties. Energies, 16(15), 5833. https://doi.org/10.3390/en16155833