Current Progress of Efficient Active Layers for Organic, Chalcogenide and Perovskite-Based Solar Cells: A Perspective
Abstract
:1. Introduction
2. Progress in the Development of Active Layers for Efficient PV Devices
2.1. Organic Solar Cells
2.1.1. Binary, Ternary, and Tandem Organic Solar Cells
Binary OSCs | Jsc (mA/cm2) | Voc (V) | FF | PCE (%) | Stability | Ref. |
---|---|---|---|---|---|---|
PF2:PC71BM | 15.00 | 0.75 | 0.744 | 8.40 | 72% of initial performance, 3.33 h, air | [75] |
DCPY2 | 22.24 | 0.90 | 0.650 | 13.02 | 90% of initial performance, 700 h, 85 °C, air | [77] |
PM6:L8-BO | 26.68 | 0.88 | 0.805 | 19.02 | 70% of initial performance, 130 h, air | [107] |
BTI-2T-CNA:IDIC | 12.90 | 0.89 | 0.581 | 6.70 | - | [108] |
BTP-eC9:BTP-ICBCF3 | 27.40 | 0.85 | 0.778 | 18.20 | - | [109] |
PBDB-TF:HF-PCIC | 17.24 | 0.89 | 0.710 | 10.90 | 90% of initial performance, 700 h, 130 °C, air | [110] |
BTP-O-S | 24.40 | 0.90 | 0.782 | 17.10 | - | [111] |
PM6:L8-BO | 25.81 | 0.90 | 0.801 | 18.69 | 86% of initial performance, 500 h, air | [112] |
PM6:BTP-eC9 | 27.88 | 0.86 | 0.804 | 19.31 | 70% of initial performance, 1000 h, air | [98] |
D18:L8-BO | 26.70 | 0.89 | 0.800 | 19.00 | 74% of initial performance, 200 h, 80 °C, air | [101] |
PEDOT:PSS | 25.70 | 0.87 | 0.791 | 18.03 | 88% of initial performance, 1200 h, air | [113] |
Ternary OSCs | Jsc (mA/cm2) | Voc (V) | FF (%) | PCE (%) | Stability | Ref. |
---|---|---|---|---|---|---|
TO:PEDOT:PSS (S11) | 17.62 | 0.95 | 0.701 | 11.78 | 70% of initial performance, 1008 h, 85 °C, air | [126] |
PM6:PY-V-γ:PFBO-C12 | 25.80 | 0.91 | 0.770 | 18.00 | 80% of initial performance 1000 h, air | [127] |
PEDOT:PSS:LiF | 25.60 | 0.86 | 0.742 | 16.70 | 55% of initial performance, 360 h, air | [128] |
PM6:Y6:7.5%FPDI-2PDI | 27.47 | 0.85 | 0.772 | 18.00 | 55% of initial performance, 30 h, air | [129] |
PM6:M-Cl:O-Cl | 27.40 | 0.87 | 0.762 | 18.10 | - | [130] |
D18:Y6:SN-O | 26.80 | 0.88 | 0.781 | 18.30 | - | [131] |
PBQx-TF:eC9-2Cl:F-BTA3 | 26.70 | 0.88 | 0.809 | 19.00 | - | [105] |
PBDB-T-2F:Y6:SF(BR)4 | 29.31 | 0.89 | 0.800 | 20.87 | - | [132] |
PBQx-TCl:PBDB-TF:eC9-2Cl | 27.15 | 0.89 | 0.811 | 19.51 | - | [133] |
Tandem OSCs (Front/Back Cell) | Jsc (mA/cm2) | Voc (V) | FF | PCE (%) | Stability | Ref. |
---|---|---|---|---|---|---|
PTB7-Th:BTPV-4F/PTB7-Th:BTPV-4F:PC71BM | 14.50 | 1.65 | 0.690 | 16.40 | - | [120] |
PBDT [2F]T:PC71BM/PCE10:PC61BM | 7.10 | 1.61 | 0.705 | 8.30 | - | [138] |
PBDB-T:F-M/PTB7-Th:O6T-4F:PC71BM | 14.35 | 1.64 | 0.737 | 17.36 | 96% of initial performance, 3984 h, air | [139] |
PM7:TfIF-4Cl/PTB7-Th:COi8DFIC:PC71BM | 14.59 | 1.64 | 0.780 | 18.71 | 95% of initial performance 500 h, air | [140] |
PM6:GS-ISO/PM6:BTP-eC9 | 13.14 | 2.01 | 0.768 | 20.27 | 87% of initial performance, 450 h, air | [141] |
2.1.2. Dye-Sensitized Solar Cells
2.1.3. Comparison of J–V Curves and Normalized PCE vs. Time for Different Types of Organic Solar Cells
2.2. Chalcogenide Solar Cells
2.2.1. Binary, Ternary, and Quaternary Chalcogenides
Cadmium Telluride (CdTe)
Cadmium Selenide (CdSe)
Lead Sulfide (PbS)
Copper-Indium-Gallium Selenide (CIGS)
Copper-Zinc-Tin Sulfide (CZTS)
Copper-Zinc-Tin Selenide (CZTSe)
Cadmium-Free Copper Zinc Tin Sulfide (CZTSSe)
2.2.2. Chalcogenide Tandem Solar Cells
2.2.3. New Chalcogenide Materials
2.3. Halide Perovskite Based Solar Cells
2.3.1. Pb-Based Perovskites Active Layers
2.3.2. Partially Pb-Substituted/Pb-Free Perovskite Active Layers
3. Concluding Remarks
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fthenakis, V.M. End-of-Life Management and Recycling of PV Modules. Energy Policy 2000, 28, 1051–1058. [Google Scholar] [CrossRef] [Green Version]
- Carneiro, A.L.; Martins, A.A.; Duarte, V.C.M.; Mata, T.M.; Andrade, L. Energy Consumption and Carbon Footprint of Perovskite Solar Cells. Energy Rep. 2022, 8, 475–481. [Google Scholar] [CrossRef]
- Dissanayake, P.D.; Yeom, K.M.; Sarkar, B.; Alessi, D.S.; Hou, D.; Rinklebe, J.; Noh, J.H.; Ok, Y.S. Environmental Impact of Metal Halide Perovskite Solar Cells and Potential Mitigation Strategies: A Critical Review. Environ. Res. 2023, 219, 115066. [Google Scholar] [CrossRef] [PubMed]
- Mathan Kumar, P.; Das, A.; Seban, L.; Nair, R.G. Fabrication and Life Time of Perovskite Solar Cells. In Perovskite Photovoltaics Basic to Advanced Concepts and Implementation; Academic Press: Cambridge, MA, USA, 2018; pp. 231–287. [Google Scholar] [CrossRef]
- Sundaram, S.; Benson, D.; Mallick, T.K. Overview of the PV Industry and Different Technologies. Sol. Photovolt. Technol. Prod. 2016, 7–22. [Google Scholar] [CrossRef]
- Campbell, P.; Green, M.A. High Performance Light Trapping Textures for Monocrystalline Silicon Solar Cells. Sol. Energy Mater. Sol. Cells 2001, 65, 369–375. [Google Scholar] [CrossRef]
- Khezami, L.; Al Megbel, A.O.; Jemai, A.B.; Ben Rabha, M. Theoretical and Experimental Analysis on Effect of Porous Silicon Surface Treatment in Multicrystalline Silicon Solar Cells. Appl. Surf. Sci. 2015, 353, 106–111. [Google Scholar] [CrossRef]
- Karyaoui, M.; Bardaoui, A.; Ben Rabha, M.; Harmand, J.C.; Amlouk, M. Effect of Rapid Oxidation on Optical and Electrical Properties of Silicon Nanowires Obtained by Chemical Etching. EPJ Appl. Phys. 2012, 58, 20103. [Google Scholar] [CrossRef]
- Tan, H.; Santbergen, R.; Smets, A.H.M.; Zeman, M. Plasmonic Light Trapping in Thin-Film Silicon Solar Cells with Improved Self-Assembled Silver Nanoparticles. Nano Lett. 2012, 12, 4070–4076. [Google Scholar] [CrossRef]
- Wang, Z.; He, J.; Wang, W.; Lin, H.; Xu, Z.; Liu, Q.; Peng, S.; Hou, J.; He, D.; Gao, P. Twenty Percent Efficiency Crystalline Silicon Solar Cells with Solution-Processed Electron-Selective Contacts. ACS Appl. Energy Mater. 2021, 4, 3644–3650. [Google Scholar] [CrossRef]
- Barkhouse, D.A.R.; Gunawan, O.; Gokmen, T.; Todorov, T.K.; Mitzi, D.B. Yield Predictions for Photovoltaic Power Plants:Empirical Validation,Recent Advances and Remaining Uncertainties. Prog. Photovolt. Res. Appl. 2015, 20, 6–11. [Google Scholar] [CrossRef]
- Chavan, K.T.; Chandra, S.; Kshirsagar, A. Half-Metallicity in Smallest Cage-like Cluster of CdTe with Doping of Transition Metal Atoms. Mater. Today Commun. 2022, 30, 103104. [Google Scholar] [CrossRef]
- Chu, T.L.; Chu, S.S. Thin Film II–VI Photovoltaics. Solid. State. Electron. 1995, 38, 533–549. [Google Scholar] [CrossRef]
- Kumarasinghe, P.K.K.; Dissanayake, A.; Pemasiri, B.M.K.; Dassanayake, B.S. Thermally Evaporated CdTe Thin Films for Solar Cell Applications: Optimization of Physical Properties. Mater. Res. Bull. 2017, 96, 188–195. [Google Scholar] [CrossRef]
- Rivera, L.P.; García, E.; Cardona, D.; Pérez-Centeno, A.; Camps, E.; Santana-Aranda, M.A.; Gómez-Rosas, G.; de Moure-Flores, F.; Chávez-Chávez, A.; Quiñones-Galván, J.G. CdTe:Sn Thin Films Deposited by the Simultaneous Laser Ablation of CdTe and Sn Targets. Mater. Res. Express 2020, 7, 015905. [Google Scholar] [CrossRef]
- Camacho-Espinosa, E.; López-Sánchez, A.; Rimmaudo, I.; Mis-Fernández, R.; Peña, J.L. All-Sputtered CdTe Solar Cell Activated with a Novel Method. Sol. Energy 2019, 193, 31–36. [Google Scholar] [CrossRef]
- Ling, J.; Zhang, X.; Mao, T.; Li, L.; Wang, S.; Cao, M.; Zhang, J.; Shi, H.; Huang, J.; Shen, Y.; et al. Electrodeposition of CdTe Thin Films for Solar Energy Water Splitting. Materials 2020, 13, 1536. [Google Scholar] [CrossRef] [Green Version]
- Vaishanav, S.K.; Korram, J.; Pradhan, P.; Chandraker, K.; Nagwanshi, R.; Ghosh, K.K.; Satnami, M.L. Green Luminescent CdTe Quantum Dot Based Fluorescence Nano-Sensor for Sensitive Detection of Arsenic (III). J. Fluoresc. 2017, 27, 781–789. [Google Scholar] [CrossRef] [PubMed]
- Kini, S.; Kulkarni, S.D.; Ganiga, V.; Nagarakshit, T.K.; Chidangil, S. Dual Functionalized, Stable and Water Dispersible CdTe Quantum Dots: Facile, One-Pot Aqueous Synthesis, Optical Tuning and Energy Transfer Applications. Mater. Res. Bull. 2019, 110, 57–66. [Google Scholar] [CrossRef]
- Duan, J.; Song, L.; Zhan, J. One-Pot Synthesis of Highly Luminescent CdTe Quantum Dots by Microwave Irradiation Reduction and Their Hg2+-Sensitive Properties. Nano Res. 2009, 2, 61–68. [Google Scholar] [CrossRef] [Green Version]
- Rangel-Cárdenas, J.; Sobral, H. Optical Absorption Enhancement in CdTe Thin Films by Microstructuration of the Silicon Substrate. Materials 2017, 10, 607. [Google Scholar] [CrossRef] [Green Version]
- Kavanagh, S.R.; Walsh, A.; Scanlon, D.O. Rapid Recombination by Cadmium Vacancies in CdTe. ACS Energy Lett. 2021, 6, 1392–1398. [Google Scholar] [CrossRef]
- Mendoza-Pérez, R.; Aguilar-Hernández, J.; Sastre-Hernández, J.; Ximello-Quiebras, N.; Contreras-Puente, G.; Santana-Rodríguez, G.; Vigil-Galán, O.; Moreno-García, E.; Morales-Acevedo, A. Photoluminescence Characteristics of CdS Layers Deposited in a Chemical Bath and Their Correlation to CdS/CdTe Solar Cell Performance. Sol. Energy 2006, 80, 682–686. [Google Scholar] [CrossRef]
- Morales-Acevedo, A. Thin Film CdS/CdTe Solar Cells: Research Perspectives. Sol. Energy 2006, 80, 675–681. [Google Scholar] [CrossRef]
- O’Regan, B.; Grätzel, M. A Low-Cost, High-Efficiency Solar Cell Based on Dye-Sensitized Colloidal TiO2 Films. Nature 1991, 353, 737–740. [Google Scholar] [CrossRef]
- Parisi, M.L.; Maranghi, S.; Basosi, R. The Evolution of the Dye Sensitized Solar Cells from Grätzel Prototype to Up-Scaled Solar Applications: A Life Cycle Assessment Approach. Renew. Sustain. Energy Rev. 2014, 39, 124–138. [Google Scholar] [CrossRef]
- Azaid, A.; Raftani, M.; Alaqarbeh, M.; Kacimi, R.; Abram, T.; Khaddam, Y.; Nebbach, D.; Sbai, A.; Lakhlifi, T.; Bouachrine, M. New Organic Dye-Sensitized Solar Cells Based on the D-A-π-A Structure for Efficient DSSCs: DFT/TD-DFT Investigations. RSC Adv. 2022, 12, 30626–30638. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.P.; Li, C.T.; Ho, K.C. Use of Organic Materials in Dye-Sensitized Solar Cells. Mater. Today 2017, 20, 267–283. [Google Scholar] [CrossRef]
- Kwaku Asiam, F.; Mahbubur Rahman, M.; Kumar Kaliamurthy, A.; Muthu, S.; Yadagiri, B.; Cheol Kang, H.; Chen, C.; Yoo, K.; Lee, J.-J. Role of Pi-Electron Density at the Interface of Small Molecule-Sensitized Solar Cells. J. Phys. Chem. C 2023, 127, 3928–3939. [Google Scholar] [CrossRef]
- Soonmin, H.; Hardani; Nandi, P.; Mwankemwa, B.S.; Malevu, T.D.; Malik, M.I. Overview on Different Types of Solar Cells: An Update. Appl. Sci. 2023, 13, 2051. [Google Scholar] [CrossRef]
- Crisp, R.W.; Kirkwood, N.; Grimaldi, G.; Kinge, S.; Siebbeles, L.D.A.; Houtepen, A.J. Highly Photoconductive InP Quantum Dots Films and Solar Cells. ACS Appl. Energy Mater. 2018, 1, 6569–6576. [Google Scholar] [CrossRef] [Green Version]
- Wu, J.; Li, M.-H.; Jiang, Y.; Xu, Q.; Xian, L.; Guo, H.; Wan, J.; Wen, R.; Fang, Y.; Xie, D.; et al. Carrier Management via Integrating InP Quantum Dots into Electron Transport Layer for Efficient Perovskite Solar Cells. ACS Nano 2022, 16, 15063–15071. [Google Scholar] [CrossRef]
- Pidluzhna, A.; Stakhira, P.; Baryshnikov, G.; Zavaraki, A.J.; Ågren, H. InP/ZnS Quantum Dots Synthesis and Photovoltaic Application. Appl. Nanosci. 2022, 13, 4969–4975. [Google Scholar] [CrossRef]
- Halder, G.; Ghosh, D.; Ali, M.Y.; Sahasrabudhe, A.; Bhattacharyya, S. Interface Engineering in Quantum-Dot-Sensitized Solar Cells. Langmuir 2018, 34, 10197–10216. [Google Scholar] [CrossRef]
- Young Kim, J.; Lee, J.-W.; Suk Jung, H.; Shin, H.; Park, N.-G. High-Efficiency Perovskite Solar Cells. Chem. Rev. 2020, 120, 7867–7918. [Google Scholar] [CrossRef]
- Mehrabian, M.; Dalir, S.; Mahmoudi, G.; Miroslaw, B.; Babashkina, M.G.; Dektereva, A.V.; Safin, D.A. A Highly Stable All-Inorganic CsPbBr3 Perovskite Solar Cell. Eur. J. Inorg. Chem. 2019, 2019, 3699–3703. [Google Scholar] [CrossRef]
- Valluvar Oli, A.; Li, Z.; Chen, Y.; Ivaturi, A. Near-Ultraviolet Indoor Black Light-Harvesting Perovskite Solar Cells. ACS Appl. Energy Mater. 2022, 5, 14669–14679. [Google Scholar] [CrossRef]
- Al-Ahmed, A.; Afzaal, M.; Mahar, N.; Khan, F.; Pandey, S.; Zahir, M.H.; Al-Suliman, F.A. The Synergy of Lead Chalcogenide Nanocrystals in Polymeric Bulk Heterojunction Solar Cells. ACS Omega 2022, 7, 45981–45990. [Google Scholar] [CrossRef]
- Tao, S.; Schmidt, I.; Brocks, G.; Jiang, J.; Tranca, I.; Meerholz, K.; Olthof, S. Absolute Energy Level Positions in Tin- and Lead-Based Halide Perovskites. Nat. Commun. 2019, 10, 2560. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Song, H.; Lin, Y.; Zhou, M.; Rao, H.; Pan, Z.; Zhong, X. Zn-Cu-In-S-Se Quinary “Green” Alloyed Quantum-Dot-Sensitized Solar Cells with a Certified Efficiency of 14.4%. Angew. Chemie-Int. Ed. 2021, 60, 6137–6144. [Google Scholar] [CrossRef]
- Min, H.; Lee, D.Y.; Kim, J.; Kim, G.; Lee, K.S.; Kim, J.; Paik, M.J.; Kim, Y.K.; Kim, K.S.; Kim, M.G.; et al. Perovskite Solar Cells with Atomically Coherent Interlayers on SnO2 Electrodes. Nature 2021, 598, 444–450. [Google Scholar] [CrossRef]
- Park, J.; Kim, J.; Yun, H.-S.; Paik, M.J.; Noh, E.; Mun, H.J.; Kim, M.G.; Shin, T.J.; Seok, S. Il Controlled Growth of Perovskite Layers with Volatile Alkylammonium Chlorides. Nature 2023, 616, 724–730. [Google Scholar] [CrossRef]
- Sulaman, M.; Yang, S.; Imran, A.; Zhang, Z.; Bukhtiar, A.; Ge, Z.; Song, Y.; Sun, F.; Jiang, Y.; Tang, L.; et al. Two Bulk-Heterojunctions Made of Blended Hybrid Nanocomposites for High-Performance Broadband, Self-Driven Photodetectors. ACS Appl. Mater. Interfaces 2023, 15, 25671–25683. [Google Scholar] [CrossRef]
- Sulaman, M.; Yang, S.; Song, Y.; Bukhtiar, A.; Hu, J.; Zhang, Z.; Jiang, Y.; Cui, Y.; Tang, L.; Zou, B. Hybrid Nanocomposites of All-Inorganic Halide Perovskites with Polymers for High-Performance Field-Effect-Transistor-Based Photodetectors: An Experimental and Simulation Study. Adv. Mater. Interfaces 2022, 9, 2200017. [Google Scholar] [CrossRef]
- Sulaman, M.; Yang, S.Y.; Zhang, Z.H.; Imran, A.; Bukhtiar, A.; Ge, Z.H.; Tang, Y.; Jiang, Y.R.; Tang, L.B.; Zou, B.S. Lead-Free Tin-Based Perovskites Nanocrystals for High-Performance Self-Driven Bulk-Heterojunction Photodetectors. Mater. Today Phys. 2022, 27, 100829. [Google Scholar] [CrossRef]
- Sulaman, M.; Yang, S.; Bukhtiar, A.; Tang, P.; Zhang, Z.; Song, Y.; Imran, A.; Jiang, Y.; Cui, Y.; Tang, L.; et al. Hybrid Bulk-Heterojunction of Colloidal Quantum Dots and Mixed-Halide Perovskite Nanocrystals for High-Performance Self-Powered Broadband Photodetectors. Adv. Funct. Mater. 2022, 32, 2201527. [Google Scholar] [CrossRef]
- Dastgeer, G.; Khan, M.F.; Nazir, G.; Afzal, A.M.; Aftab, S.; Naqvi, B.A.; Cha, J.; Min, K.A.; Jamil, Y.; Jung, J.; et al. Temperature-Dependent and Gate-Tunable Rectification in a Black Phosphorus/WS2 van Der Waals Heterojunction Diode. ACS Appl. Mater. Interfaces 2018, 10, 13150–13157. [Google Scholar] [CrossRef]
- Perveen, A.; Hussain, S.; Xu, Y.; Raza, A.; Saeed, F.; Din, N.; Subramanian, A.; Khan, Q.; Lei, W. Solution Processed and Highly Efficient UV-Photodetector Based on CsPbBr3 Perovskite-Polymer Composite Film. J. Photochem. Photobiol. A Chem. 2022, 426, 113764. [Google Scholar] [CrossRef]
- Sulaman, M.; Sulaman, M.; Song, Y.; Yang, S.; Yang, S.; Saleem, M.I.; Li, M.; Perumal Veeramalai, C.; Zhi, R.; Jiang, Y.; et al. Interlayer of PMMA Doped with Au Nanoparticles for High-Performance Tandem Photodetectors: A Solution to Suppress Dark Current and Maintain High Photocurrent. ACS Appl. Mater. Interfaces 2020, 12, 26153–26160. [Google Scholar] [CrossRef]
- Saleem, M.I.; Yang, S.; Zhi, R.; Sulaman, M.; Chandrasekar, P.V.; Jiang, Y.; Tang, Y.; Batool, A.; Zou, B. Surface Engineering of All-Inorganic Perovskite Quantum Dots with Quasi Core–Shell Technique for High-Performance Photodetectors. Adv. Mater. Interfaces 2020, 7, 2000360. [Google Scholar] [CrossRef]
- Saleem, M.I.; Sulaman, M.; Batool, A.; Bukhtiar, A.; Khalid, S. Suppression of Mid-Gap Trap State in CsPbBr3 Nanocrystals with Br-Passivation for Self-Powered Photodetector. Energy Technol. 2023, 11, 2300013. [Google Scholar] [CrossRef]
- Pv-Magazine KAUST Claims 33.2% Efficiency for Perovskite/Silicon Tandem Solar Cell. Available online: https://www.pv-magazine.com/2023/04/13/kaust-claims-33-2-efficiency-for-perovskite-silicon-tandem-solar-cell/ (accessed on 15 June 2023).
- Lee, W.; Son, H.J.; Lee, D.K.; Kim, B.; Kim, H.; Kim, K.; Ko, M.J. Suppression of Photocorrosion in CdS/CdSe Quantum Dot-Sensitized Solar Cells: Formation of a Thin Polymer Layer on the Photoelectrode Surface. Synth. Met. 2013, 165, 60–63. [Google Scholar] [CrossRef]
- Zhan, L.; Yin, S.; Li, Y.; Li, S.; Chen, T.; Sun, R.; Min, J.; Zhou, G.; Zhu, H.; Chen, Y.; et al. Multiphase Morphology with Enhanced Carrier Lifetime via Quaternary Strategy Enables High-Efficiency, Thick-Film, and Large-Area Organic Photovoltaics. Adv. Mater. 2022, 34, 2206269. [Google Scholar] [CrossRef]
- Zheng, X.; Zuo, L.; Zhao, F.; Li, Y.; Chen, T.; Shan, S.; Yan, K.; Pan, Y.; Xu, B.; Li, C.-Z.; et al. High-Efficiency ITO-Free Organic Photovoltaics with Superior Flexibility and Upscalability. Adv. Mater. 2022, 34, 2200044. [Google Scholar] [CrossRef]
- Zuo, L.; Jo, S.B.; Li, Y.; Meng, Y.; Stoddard, R.J.; Liu, Y.; Lin, F.; Shi, X.; Liu, F.; Hillhouse, H.W. Dilution Effect for Highly Efficient Multiple-Component Organic Solar Cells. Nat. Nanotechnol. 2022, 17, 53–60. [Google Scholar] [CrossRef]
- Kim, T.; Kim, J.-H.; Kang, T.E.; Lee, C.; Kang, H.; Shin, M.; Wang, C.; Ma, B.; Jeong, U.; Kim, T.-S.; et al. Flexible, Highly Efficient All-Polymer Solar Cells. Nat. Commun. 2015, 6, 8547. [Google Scholar] [CrossRef] [Green Version]
- Inganäs, O. Organic Photovoltaics over Three Decades. Adv. Mater. 2018, 30, 1800388. [Google Scholar] [CrossRef]
- Wöhrle, D.; Meissner, D. Organic Solar Cells. Adv. Mater. 1991, 3, 129–138. [Google Scholar] [CrossRef]
- Chamberlain, G.A. Organic Solar Cells: A Review. Sol. Cells 1983, 8, 47–83. [Google Scholar] [CrossRef]
- Yeh, N.; Yeh, P. Organic Solar Cells: Their Developments and Potentials. Renew. Sustain. Energy Rev. 2013, 21, 421–431. [Google Scholar] [CrossRef]
- Morel, D.L.; Ghosh, A.K.; Feng, T.; Stogryn, E.L.; Purwin, P.E.; Shaw, R.F.; Fishman, A.C. High-efficiency Organic Solar Cells. Appl. Phys. Lett. 1978, 32, 495–497. [Google Scholar] [CrossRef]
- Ghosh, A.K.; Feng, T. Merocyanine Organic Solar Cells. J. Appl. Phys. 1978, 49, 5982–5989. [Google Scholar] [CrossRef]
- Tang, C.W. Two-layer Organic Photovoltaic Cell. Appl. Phys. Lett. 1986, 48, 183–185. [Google Scholar] [CrossRef]
- Antoniadis, H.; Hsieh, B.R.; Abkowitz, M.A.; Jenekhe, S.A.; Stolka, M. Photovoltaic and Photoconductive Properties of Aluminum/Poly (p-Phenylene Vinylene) Interfaces. Synth. Met. 1994, 62, 265–271. [Google Scholar] [CrossRef]
- Marks, R.N.; Halls, J.J.M.; Bradley, D.D.C.; Friend, R.H.; Holmes, A.B. The Photovoltaic Response in Poly (p-Phenylene Vinylene) Thin-Film Devices. J. Phys. Condens. Matter 1994, 6, 1379. [Google Scholar] [CrossRef]
- Smilowitz, L.; Sariciftci, N.S.; Wu, R.; Gettinger, C.; Heeger, A.J.; Wudl, F. Photoexcitation Spectroscopy of Conducting-PolymerC60 Composites: Photoinduced Electron Transfer. Phys. Rev. B 1993, 47, 13835–13842. [Google Scholar] [CrossRef]
- Sariciftci, N.S.; Smilowitz, L.; Heeger, A.J.; Wudl, F. Photoinduced Electron Transfer from a Conducting Polymer to Buckminsterfullerene. Science 1992, 258, 1474–1476. [Google Scholar] [CrossRef]
- Morita, S.; Kiyomatsu, S.; Yin, X.H.; Zakhidov, A.A.; Noguchi, T.; Ohnishi, T.; Yoshino, K. Doping Effect of Buckminsterfullerene in Poly (2,5-dialkoxy-p-phenylene Vinylene). J. Appl. Phys. 1993, 74, 2860–2865. [Google Scholar] [CrossRef]
- Roman, L.S.; Mammo, W.; Pettersson, L.A.A.; Andersson, M.R.; Inganäs, O. High Quantum Efficiency Polythiophene. Adv. Mater. 1998, 10, 774–777. [Google Scholar] [CrossRef]
- Halls, J.J.M.; Pichler, K.; Friend, R.H.; Moratti, S.C.; Holmes, A.B. Exciton Diffusion and Dissociation in a Poly (P-phenylenevinylene)/C60 Heterojunction Photovoltaic Cell. Appl. Phys. Lett. 1996, 68, 3120–3122. [Google Scholar] [CrossRef]
- Yang, C.Y.; Heeger, A.J. Morphology of Composites of Semiconducting Polymers Mixed with C60. Synth. Met. 1996, 83, 85–88. [Google Scholar] [CrossRef]
- Yu, G.; Gao, J.; Hummelen, J.C.; Wudl, F.; Heeger, A.J. Polymer Photovoltaic Cells: Enhanced Efficiencies via a Network of Internal Donor-Acceptor Heterojunctions. Science 1995, 270, 1789–1791. [Google Scholar] [CrossRef] [Green Version]
- Gnida, P.; Amin, M.F.; Pajak, A.K.; Jarzabek, B. Polymers in High-Efficiency Solar Cells: The Latest Reports. Polymers 2022, 14, 1946. [Google Scholar] [CrossRef]
- Labiod, A.; Ibraikulov, O.A.; Dabos-Seignon, S.; Ferry, S.; Heinrich, B.; Méry, S.; Fall, S.; Tchognia Nkuissi, H.J.; Heiser, T.; Cabanetos, C.; et al. Photo-Degradation in Bulk Heterojunction Organic Solar Cells Using a Fullerene or a Non-Fullerene Derivative Electron Acceptor. Org. Electron. 2022, 107, 106549. [Google Scholar] [CrossRef]
- Kaim, A.; Piotrowski, P.; Zarębska, K.; Bogdanowicz, K.A.; Przybył, W.; Kwak, A.; Skompska, M.; Gnida, P.; Schab-Balcerzak, E.; Iwan, A. Thermal Imaging and Deep Optical and Electrochemical Study of C70 Fullerene Derivatives with Thiophene, Pyrrolidine or Indene Moieties along with Electropolymerization with Thiophene Substituted Imine: Blends with P3HT and PTB7. Electrochim. Acta 2022, 426, 140741. [Google Scholar] [CrossRef]
- Liang, S.; Xiao, C.; Xie, C.; Liu, B.; Fang, H.; Li, W. 13% Single-Component Organic Solar Cells Based on Double-Cable Conjugated Polymers with Pendent Y-Series Acceptors. Adv. Mater. 2023, 35, e2300629. [Google Scholar] [CrossRef]
- Shaheen, S.E.; Brabec, C.J.; Sariciftci, N.S.; Padinger, F.; Fromherz, T.; Hummelen, J.C. 2.5% Efficient Organic Plastic Solar Cells. Appl. Phys. Lett. 2001, 78, 841–843. [Google Scholar] [CrossRef]
- Levitsky, A.; Schneider, S.A.; Rabkin, E.; Toney, M.F.; Frey, G.L. Bridging the Thermodynamics and Kinetics of Temperature-Induced Morphology Evolution in Polymer/Fullerene Organic Solar Cell Bulk Heterojunction. Mater. Horizons 2021, 8, 1272–1285. [Google Scholar] [CrossRef]
- Sprau, C.; Kattenbusch, J.; Li, Y.; Müller, E.; Gerthsen, D.; Berger, R.; Michels, J.J.; Colsmann, A. Revisiting Solvent Additives for the Fabrication of Polymer:Fullerene Solar Cells: Exploring a Series of Benzaldehydes. Sol. RRL 2021, 5, 2100238. [Google Scholar] [CrossRef]
- Grodniski, D.C.; Benatto, L.; Gonçalves, J.P.; de Oliveira, C.C.; Pacheco, K.R.M.; Adad, L.B.; Coturi, V.M.; Roman, L.S.; Koehler, M. High Photothermal Conversion Efficiency for Semiconducting Polymer/Fullerene Nanoparticles and Its Correlation with Photoluminescence Quenching. RSC Chem. Biol. 2022, 4, 486–503. [Google Scholar] [CrossRef]
- Li, S.; Hamada, F.; Nishikubo, R.; Saeki, A. Quantifying the Optimal Thickness in Polymer:Fullerene Solar Cells from the Analysis of Charge Transport Dynamics and Photoabsorption. Sustain. Energy Fuels 2022, 6, 756–765. [Google Scholar] [CrossRef]
- Hoppe, H.; Sariciftci, N.S. Organic Solar Cells: An Overview. J. Mater. Res. 2004, 19, 1924–1945. [Google Scholar] [CrossRef] [Green Version]
- Hou, J.; Inganäs, O.; Friend, R.H.; Gao, F. Organic Solar Cells Based on Non-Fullerene Acceptors. Nat. Mater. 2018, 17, 119–128. [Google Scholar] [CrossRef] [PubMed]
- Kietzke, T. Recent Advances in Organic Solar Cells. Adv. Optoelectron. 2007, 2007, 40285. [Google Scholar] [CrossRef] [Green Version]
- Kim, H.U.; Kim, J.-H.; Kang, H.; Grimsdale, A.C.; Kim, B.J.; Yoon, S.C.; Hwang, D.-H. Naphthalene-, Anthracene-, and Pyrene-Substituted Fullerene Derivatives as Electron Acceptors in Polymer-Based Solar Cells. ACS Appl. Mater. Interfaces 2014, 6, 20776–20785. [Google Scholar] [CrossRef] [PubMed]
- Zhao, G.; He, Y.; Xu, Z.; Hou, J.; Zhang, M.; Min, J.; Chen, H.-Y.; Ye, M.; Hong, Z.; Yang, Y.; et al. Effect of Carbon Chain Length in the Substituent of PCBM-like Molecules on Their Photovoltaic Properties. Adv. Funct. Mater. 2010, 20, 1480–1487. [Google Scholar] [CrossRef]
- Mikroyannidis, J.A.; Kabanakis, A.N.; Sharma, S.S.; Sharma, G.D. A Simple and Effective Modification of PCBM for Use as an Electron Acceptor in Efficient Bulk Heterojunction Solar Cells. Adv. Funct. Mater. 2011, 21, 746–755. [Google Scholar] [CrossRef]
- Xu, X.; Yu, T.; Bi, Z.; Ma, W.; Li, Y.; Peng, Q. Realizing Over 13% Efficiency in Green-Solvent-Processed Nonfullerene Organic Solar Cells Enabled by 1,3,4-Thiadiazole-Based Wide-Bandgap Copolymers. Adv. Mater. 2018, 30, 1703973. [Google Scholar] [CrossRef]
- Lin, Y.; Zhao, F.; He, Q.; Huo, L.; Wu, Y.; Parker, T.C.; Ma, W.; Sun, Y.; Wang, C.; Zhu, D.; et al. High-Performance Electron Acceptor with Thienyl Side Chains for Organic Photovoltaics. J. Am. Chem. Soc. 2016, 138, 4955–4961. [Google Scholar] [CrossRef]
- Li, T.; Dai, S.; Ke, Z.; Yang, L.; Wang, J.; Yan, C.; Ma, W.; Zhan, X. Fused Tris (Thienothiophene)-Based Electron Acceptor with Strong Near-Infrared Absorption for High-Performance As-Cast Solar Cells. Adv. Mater. 2018, 30, 1705969. [Google Scholar] [CrossRef]
- Liu, Q.; Jiang, Y.; Jin, K.; Qin, J.; Xu, J.; Li, W.; Xiong, J.; Liu, J.; Xiao, Z.; Sun, K.; et al. 18% Efficiency Organic Solar Cells. Sci. Bull. 2020, 65, 272–275. [Google Scholar] [CrossRef]
- Zhang, S.; Ye, L.; Hou, J. Breaking the 10% Efficiency Barrier in Organic Photovoltaics: Morphology and Device Optimization of Well-Known PBDTTT Polymers. Adv. Energy Mater. 2016, 6, 1502529. [Google Scholar] [CrossRef]
- Fu, Y.; Lee, T.H.; Chin, Y.-C.; Pacalaj, R.A.; Labanti, C.; Park, S.Y.; Dong, Y.; Cho, H.W.; Kim, J.Y.; Minami, D.; et al. Molecular Orientation-Dependent Energetic Shifts in Solution-Processed Non-Fullerene Acceptors and Their Impact on Organic Photovoltaic Performance. Nat. Commun. 2023, 14, 1870. [Google Scholar] [CrossRef]
- Wang, Y.; Lee, J.; Hou, X.; Labanti, C.; Yan, J.; Mazzolini, E.; Parhar, A.; Nelson, J.; Kim, J.-S.; Li, Z. Recent Progress and Challenges toward Highly Stable Nonfullerene Acceptor-Based Organic Solar Cells. Adv. Energy Mater. 2021, 11, 2003002. [Google Scholar] [CrossRef]
- Lan, W.; Gu, J.; Wu, S.; Peng, Y.; Zhao, M.; Liao, Y.; Xu, T.; Wei, B.; Ding, L.; Zhu, F. Toward Improved Stability of Nonfullerene Organic Solar Cells: Impact of Interlayer and Built-in Potential. EcoMat 2021, 3, e12134. [Google Scholar] [CrossRef]
- Wang, X.; Zhao, C.X.; Xu, G.; Chen, Z.K.; Zhu, F. Degradation Mechanisms in Organic Solar Cells: Localized Moisture Encroachment and Cathode Reaction. Sol. Energy Mater. Sol. Cells 2012, 104, 1–6. [Google Scholar] [CrossRef]
- Fu, J.; Fong, P.W.K.; Liu, H.; Huang, C.-S.; Lu, X.; Lu, S.; Abdelsamie, M.; Kodalle, T.; Sutter-Fella, C.M.; Yang, Y.; et al. 19.31% Binary Organic Solar Cell and Low Non-Radiative Recombination Enabled by Non-Monotonic Intermediate State Transition. Nat. Commun. 2023, 14, 1760. [Google Scholar] [CrossRef]
- Tarique, W.B.; Uddin, A. A Review of Progress and Challenges in the Research Developments on Organic Solar Cells. Mater. Sci. Semicond. Process. 2023, 163, 107541. [Google Scholar] [CrossRef]
- Adnan, M.; Irshad, Z.; Hussain, R.; Lee, W.; Kim, M.; Lim, J. Efficient Ternary Active Layer Materials for Organic Photovoltaics. Sol. Energy 2023, 257, 324–343. [Google Scholar] [CrossRef]
- Li, D.; Deng, N.; Fu, Y.; Guo, C.; Zhou, B.; Wang, L.; Zhou, J.; Liu, D.; Li, W.; Wang, K.; et al. Fibrillization of Non-Fullerene Acceptors Enables 19% Efficiency Pseudo-Bulk Heterojunction Organic Solar Cells. Adv. Mater. 2023, 35, 2208211. [Google Scholar] [CrossRef]
- Zhang, Y.; Lang, Y.; Li, G. Recent Advances of Non-Fullerene Organic Solar Cells: From Materials and Morphology to Devices and Applications. EcoMat 2023, 5, e12281. [Google Scholar] [CrossRef]
- Gu, X.; Lai, X.; Zhang, Y.; Wang, T.; Tan, W.L.; McNeill, C.R.; Liu, Q.; Sonar, P.; He, F.; Li, W.; et al. Organic Solar Cell With Efficiency Over 20% and VOC Exceeding 2.1 V Enabled by Tandem with All-Inorganic Perovskite and Thermal Annealing-Free Process. Adv. Sci. 2022, 9, e2200445. [Google Scholar] [CrossRef] [PubMed]
- Zhu, L.; Zhang, M.; Xu, J.; Li, C.; Yan, J.; Zhou, G.; Zhong, W.; Hao, T.; Song, J.; Xue, X.; et al. Single-Junction Organic Solar Cells with over 19% Efficiency Enabled by a Refined Double-Fibril Network Morphology. Nat. Mater. 2022, 21, 656–663. [Google Scholar] [CrossRef]
- Cui, Y.; Xu, Y.; Yao, H.; Bi, P.; Hong, L.; Zhang, J.; Zu, Y.; Zhang, T.; Qin, J.; Ren, J.; et al. Single-Junction Organic Photovoltaic Cell with 19% Efficiency. Adv. Mater. 2021, 33, 2102420. [Google Scholar] [CrossRef]
- Green, M.A.; Dunlop, E.D.; Siefer, G.; Yoshita, M.; Kopidakis, N.; Bothe, K.; Hao, X. Solar Cell Efficiency Tables (Version 61). Prog. Photovolt. Res. Appl. 2023, 31, 3–16. [Google Scholar] [CrossRef]
- Ding, G.; Chen, T.; Wang, M.; Xia, X.; He, C.; Zheng, X.; Li, Y.; Zhou, D.; Lu, X.; Zuo, L.; et al. Solid Additive-Assisted Layer-by-Layer Processing for 19% Efficiency Binary Organic Solar Cells. Nano-Micro Lett. 2023, 15, 92. [Google Scholar] [CrossRef]
- Balakirev, D.O.; Mannanov, A.L.; Emelianov, N.A.; Sukhorukova, P.K.; Kalinichenko, A.K.; Troshin, P.A.; Paraschuk, D.Y.; Ponomarenko, S.A.; Luponosov, Y.N. Star-Shaped Benzotriindole-Based Donor Compounds for All–Small–Molecule Non-Fullerene Organic Solar Cells. Dye. Pigment. 2023, 216, 111343. [Google Scholar] [CrossRef]
- Shi, Y.; Zhu, L.; Yan, Y.; Xie, M.; Liang, G.; Qiao, J.; Zhang, J.; Hao, X.; Lu, K.; Wei, Z. Small Energetic Disorder Enables Ultralow Energy Losses in Non-Fullerene Organic Solar Cells. Adv. Energy Mater. 2023, 13, 2300458. [Google Scholar] [CrossRef]
- Zhan, L.; Li, S.; Zhang, S.; Chen, X.; Lau, T.-K.; Lu, X.; Shi, M.; Li, C.-Z.; Chen, H. Enhanced Charge Transfer between Fullerene and Non-Fullerene Acceptors Enables Highly Efficient Ternary Organic Solar Cells. ACS Appl. Mater. Interfaces 2018, 10, 42444–42452. [Google Scholar] [CrossRef]
- Hai, J.; Song, Y.; Li, L.; Liu, X.; Shi, X.; Huang, Z.; Qian, G.; Lu, Z.; Yu, J.; Hu, H.; et al. High-Efficiency Organic Solar Cells Enabled by Chalcogen Containing Branched Chain Engineering: Balancing Short-Circuit Current and Open-Circuit Voltage, Enhancing Fill Factor. Adv. Funct. Mater. 2023, 33, 2213429. [Google Scholar] [CrossRef]
- Xu, X.; Jing, W.; Meng, H.; Guo, Y.; Yu, L.; Li, R.; Peng, Q. Sequential Deposition of Multicomponent Bulk Heterojunctions Increases Efficiency of Organic Solar Cells. Adv. Mater. 2023, 35, e2208997. [Google Scholar] [CrossRef]
- Zhang, G.; Chen, Q.; Zhang, Z.; Fang, J.; Zhao, C.; Wei, Y.; Li, W. Co-La-Based Hole-Transporting Layers for Binary Organic Solar Cells with 18.82% Efficiency. Angew. Chemie-Int. Ed. 2023, 62, e202216304. [Google Scholar] [CrossRef]
- Cheng, P.; Li, G.; Zhan, X.; Yang, Y. Next-Generation Organic Photovoltaics Based on Non-Fullerene Acceptors. Nat. Photonics 2018, 12, 131–142. [Google Scholar] [CrossRef]
- Rafique, S.; Abdullah, S.M.; Sulaiman, K.; Iwamoto, M. Fundamentals of Bulk Heterojunction Organic Solar Cells: An Overview of Stability/Degradation Issues and Strategies for Improvement. Renew. Sustain. Energy Rev. 2018, 84, 43–53. [Google Scholar] [CrossRef]
- Halls, J.J.M.; Walsh, C.A.; Greenham, N.C.; Marseglia, E.A.; Friend, R.H.; Moratti, S.C.; Holmes, A.B. Efficient Photodiodes from Interpenetrating Polymer Networks. Nature 1995, 376, 498–500. [Google Scholar] [CrossRef]
- He, C.; Bi, Z.; Chen, Z.; Guo, J.; Xia, X.; Lu, X.; Min, J.; Zhu, H.; Ma, W.; Zuo, L.; et al. Compromising Charge Generation and Recombination with Asymmetric Molecule for High-Performance Binary Organic Photovoltaics with over 18% Certified Efficiency. Adv. Funct. Mater. 2022, 32, 2112511. [Google Scholar] [CrossRef]
- Yao, J.; Ding, S.; Zhang, R.; Bai, Y.; Zhou, Q.; Meng, L.; Solano, E.; Steele, J.A.; Roeffaers, M.B.J.; Gao, F.; et al. Fluorinated Perylene-Diimides: Cathode Interlayers Facilitating Carrier Collection for High-Performance Organic Solar Cells. Adv. Mater. 2022, 34, 2203690. [Google Scholar] [CrossRef]
- Heeger, A.J. 25th Anniversary Article: Bulk Heterojunction Solar Cells: Understanding the Mechanism of Operation. Adv. Mater. 2014, 26, 10–28. [Google Scholar] [CrossRef]
- Wang, Z.; Gao, K.; Kan, Y.; Zhang, M.; Qiu, C.; Zhu, L.; Zhao, Z.; Peng, X.; Feng, W.; Qian, Z.; et al. The Coupling and Competition of Crystallization and Phase Separation, Correlating Thermodynamics and Kinetics in OPV Morphology and Performances. Nat. Commun. 2021, 12, 332. [Google Scholar] [CrossRef]
- Dey, S. Recent Progress in Molecular Design of Fused Ring Electron Acceptors for Organic Solar Cells. Small 2019, 15, 1900134. [Google Scholar] [CrossRef]
- Fu, H.; Wang, Z.; Sun, Y. Advances in Non-Fullerene Acceptor Based Ternary Organic Solar Cells. Sol. RRL 2018, 2, 1700158. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, Y.; Fang, J.; Lu, K.; Wang, Z.; Ma, W.; Wei, Z. Conjugated Polymer–Small Molecule Alloy Leads to High Efficient Ternary Organic Solar Cells. J. Am. Chem. Soc. 2015, 137, 8176–8183. [Google Scholar] [CrossRef]
- Cheng, P.; Li, Y.; Zhan, X. Efficient Ternary Blend Polymer Solar Cells with Indene-C60 Bisadduct as an Electron-Cascade Acceptor. Energy Environ. Sci. 2014, 7, 2005–2011. [Google Scholar] [CrossRef]
- Lu, L.; Chen, W.; Xu, T.; Yu, L. High-Performance Ternary Blend Polymer Solar Cells Involving both Energy Transfer and Hole Relay Processes. Nat. Commun. 2015, 6, 7327. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, B.; Sun, H.; Lee, J.-W.; Jiang, Z.; Qiao, J.; Wang, J.; Yang, J.; Feng, K.; Liao, Q.; An, M.; et al. Efficient and Stable Organic Solar Cells Enabled by Multicomponent Photoactive Layer Based on One-Pot Polymerization. Nat. Commun. 2023, 14, 967. [Google Scholar] [CrossRef]
- Yu, H.; Wang, Y.; Zou, X.; Yin, J.; Shi, X.; Li, Y.; Zhao, H.; Wang, L.; Ng, H.M.; Zou, B.; et al. Improved Photovoltaic Performance and Robustness of All-Polymer Solar Cells Enabled by a Polyfullerene Guest Acceptor. Nat. Commun. 2023, 14, 2323. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Wang, L.; Zhao, H.; Chen, P.; Xie, X. High-Performance Inverted Ternary Organic Solar Cells Using Solution-Processed Tin Oxide as the Electron Transport Layer. Org. Electron. 2023, 120, 106828. [Google Scholar] [CrossRef]
- Liu, M.; Ge, X.; Jiang, X.; Chen, D.; Guo, F.; Gao, S.; Peng, Q.; Zhao, L.; Zhang, Y. 18% Efficiency of Ternary Organic Solar Cells Enabled by Integrating a Fused Perylene Diimide Guest Acceptor. Nano Energy 2023, 112, 108501. [Google Scholar] [CrossRef]
- Lv, J.; Yang, Q.; Deng, W.; Chen, H.; Kumar, M.; Zhao, F.; Lu, S.; Hu, H.; Kan, Z. Isomeric Acceptors Incorporation Enables 18.1% Efficiency Ternary Organic Solar Cells with Reduced Trap-Assisted Charge Recombination. Chem. Eng. J. 2023, 465, 142822. [Google Scholar] [CrossRef]
- Xu, R.; Jiang, Y.; Liu, F.; Su, W.; Liu, W.; Xu, S.; Fan, H.; Jiang, C.; Zong, Q.; Zhang, W.; et al. Efficient Ternary Organic Solar Cells Enabled by Asymmetric Nonfullerene Electron Acceptor with Suppressed Nonradiative Recombination. Chem. Eng. J. 2023, 464, 142507. [Google Scholar] [CrossRef]
- Ram, K.S.; Singh, J. Over 20% Efficient and Stable Non-Fullerene-Based Ternary Bulk-Heterojunction Organic Solar Cell with WS2 Hole-Transport Layer and Graded Refractive Index Antireflection Coating. Adv. Theory Simul. 2020, 3, 2000047. [Google Scholar] [CrossRef]
- Bi, P.; Wang, J.; Cui, Y.; Zhang, J.; Zhang, T.; Chen, Z.; Qiao, J.; Dai, J.; Zhang, S.; Hao, X. Enhancing Photon Utilization Efficiency for High-Performance Organic Photovoltaic Cells via Regulating Phase-Transition Kinetics. Adv. Mater. 2023, 35, e2210865. [Google Scholar] [CrossRef]
- Jia, Z.; Qin, S.; Meng, L.; Ma, Q.; Angunawela, I.; Zhang, J.; Li, X.; He, Y.; Lai, W.; Li, N.; et al. High Performance Tandem Organic Solar Cells via a Strongly Infrared-Absorbing Narrow Bandgap Acceptor. Nat. Commun. 2021, 12, 178. [Google Scholar] [CrossRef] [PubMed]
- Lu, S.; Ouyang, D.; Choy, W.C.H. Recent Progress of Interconnecting Layer for Tandem Organic Solar Cells. Sci. China Chem. 2017, 60, 460–471. [Google Scholar] [CrossRef]
- Guo, B.; Li, W.; Luo, G.; Guo, X.; Yao, H.; Zhang, M.; Hou, J.; Li, Y.; Wong, W.-Y. Exceeding 14% Efficiency for Solution-Processed Tandem Organic Solar Cells Combining Fullerene-and Nonfullerene-Based Subcells with Complementary Absorption. ACS Energy Lett. 2018, 3, 2566–2572. [Google Scholar] [CrossRef]
- Li, Y.; Huang, W.; Zhao, D.; Wang, L.; Jiao, Z.; Huang, Q.; Wang, P.; Sun, M.; Yuan, G. Recent Progress in Organic Solar Cells: A Review on Materials from Acceptor to Donor. Molecules 2022, 27, 1800. [Google Scholar] [CrossRef] [PubMed]
- Almuqoddas, E.; Neophytou, M.; Widianto, E.; Nursam, N.M.; Shobih; Pranoto, L.M.; Firdaus, Y. Semi-Transparent Fullerene-Based Tandem Solar Cells with Excellent Light Utilization Efficiency Enabled by Careful Selection of Sub-Cells. Org. Electron. 2022, 109, 106633. [Google Scholar] [CrossRef]
- Meng, L.; Zhang, Y.; Wan, X.; Li, C.; Zhang, X.; Wang, Y.; Ke, X.; Xiao, Z.; Ding, L.; Xia, R.; et al. Organic and Solution-Processed Tandem Solar Cells with 17.3% Efficiency. Science 2018, 361, 1094–1098. [Google Scholar] [CrossRef] [Green Version]
- Liu, G.; Xia, R.; Huang, Q.; Zhang, K.; Hu, Z.; Jia, T.; Liu, X.; Yip, H.-L.; Huang, F. Tandem Organic Solar Cells with 18.7% Efficiency Enabled by Suppressing the Charge Recombination in Front Sub-Cell. Adv. Funct. Mater. 2021, 31, 2103283. [Google Scholar] [CrossRef]
- Zheng, Z.; Wang, J.; Bi, P.; Ren, J.; Wang, Y.; Yang, Y.; Liu, X.; Zhang, S.; Hou, J. Tandem Organic Solar Cell with 20.2% Efficiency. Joule 2022, 6, 171–184. [Google Scholar] [CrossRef]
- Grätzel, M. Photoelectrochemical Cells. Nature 2001, 414, 338–344. [Google Scholar] [CrossRef]
- Kalyanasundaram, K.; Grätzel, M. Applications of Functionalized Transition Metal Complexes in Photonic and Optoelectronic Devices. Coord. Chem. Rev. 1998, 177, 347–414. [Google Scholar] [CrossRef]
- Grätzel, M. Dye-Sensitized Solar Cells. J. Photochem. Photobiol. C Photochem. Rev. 2003, 4, 145–153. [Google Scholar] [CrossRef]
- Grobelny, A.; Shen, Z.; Eickemeyer, F.T.; Antariksa, N.F.; Zapotoczny, S.; Zakeeruddin, S.M.; Grätzel, M. A Molecularly Tailored Photosensitizer with an Efficiency of 13.2% for Dye-Sensitized Solar Cells. Adv. Mater. 2023, 35, 2207785. [Google Scholar] [CrossRef] [PubMed]
- Ren, Y.; Cao, Y.; Zhang, D.; Zakeeruddin, S.M.; Hagfeldt, A.; Wang, P.; Grätzel, M. A Blue Photosensitizer Realizing Efficient and Stable Green Solar Cells via Color Tuning by the Electrolyte. Adv. Mater. 2020, 32, 2000193. [Google Scholar] [CrossRef]
- Dou, J.; Chen, Q. MOFs in Emerging Solar Cells. Chin. J. Chem. 2023, 41, 695–709. [Google Scholar] [CrossRef]
- Bandara, T.M.W.J.; Hansadi, J.M.C.; Bella, F. A Review of Textile Dye-Sensitized Solar Cells for Wearable Electronics. Ionics 2022, 28, 2563–2583. [Google Scholar] [CrossRef]
- Devadiga, D.; Selvakumar, M.; Shetty, P.; Santosh, M.S. The Integration of Flexible Dye-Sensitized Solar Cells and Storage Devices towards Wearable Self-Charging Power Systems: A Review. Renew. Sustain. Energy Rev. 2022, 159, 112252. [Google Scholar] [CrossRef]
- Barbato, M.; Artegiani, E.; Bertoncello, M.; Meneghini, M.; Ortolani, L.; Zanoni, E.; Meneghesso, G. CdTe Solar Cells: Technology, Operation and Reliability. J. Phys. D Appl. Phys. 2021, 54, 333002. [Google Scholar] [CrossRef]
- Sameera, J.N.; Islam, M.A.; Islam, S.; Hossain, T.; Sobayel, M.K.; Akhtaruzzaman, M.; Amin, N.; Rashid, M.J. Cubic Silicon Carbide (3C–SiC) as a Buffer Layer for High Efficiency and Highly Stable CdTe Solar Cell. Opt. Mater. 2022, 123, 111911. [Google Scholar] [CrossRef]
- Buitrago, E.; Novello, A.M.; Meyer, T. Third-Generation Solar Cells: Toxicity and Risk of Exposure. Helv. Chim. Acta 2020, 103, e2000074. [Google Scholar] [CrossRef]
- Rimmaudo, I.; Salavei, A.; Artegiani, E.; Menossi, D.; Giarola, M.; Mariotto, G.; Gasparotto, A.; Romeo, A. Improved Stability of CdTe Solar Cells by Absorber Surface Etching. Sol. Energy Mater. Sol. Cells 2017, 162, 127–133. [Google Scholar] [CrossRef]
- Zhang, H.; Cheng, K.; Hou, Y.M.; Fang, Z.; Pan, Z.X.; Wu, W.J.; Hua, J.L.; Zhong, X.H. Efficient CdSe Quantum Dot-Sensitized Solar Cells Prepared by a Postsynthesis Assembly Approach. Chem. Commun. 2012, 48, 11235–11237. [Google Scholar] [CrossRef] [PubMed]
- Zheng, S.; Chen, J.; Johansson, E.M.J.; Zhang, X. PbS Colloidal Quantum Dot Inks for Infrared Solar Cells. iScience 2020, 23, 101753. [Google Scholar] [CrossRef]
- Sun, B.; Johnston, A.; Xu, C.; Wei, M.; Huang, Z.; Jiang, Z.; Zhou, H.; Gao, Y.; Dong, Y.; Ouellette, O.; et al. Monolayer Perovskite Bridges Enable Strong Quantum Dot Coupling for Efficient Solar Cells. Joule 2020, 4, 1542–1556. [Google Scholar] [CrossRef]
- Aldakov, D.; Lefrançois, A.; Reiss, P. Ternary and Quaternary Metal Chalcogenide Nanocrystals: Synthesis, Properties and Applications. J. Mater. Chem.C 2013, 1, 3756–3776. [Google Scholar] [CrossRef]
- Ramanujam, J.; Singh, U.P. Copper Indium Gallium Selenide Based Solar Cells—A Review. Energy Environ. Sci. 2017, 10, 1306–1319. [Google Scholar] [CrossRef]
- Belghachi, A.; Limam, N. Effect of the Absorber Layer Band-Gap on CIGS Solar Cell. Chin. J. Phys. 2017, 55, 1127–1134. [Google Scholar] [CrossRef]
- Bouich, A.; Ullah, S.; Ullah, H.; Mari, B.; Hartiti, B.; Ebn Touhami, M.; Santos, D.M.F. Deposit on Different Back Contacts: To High-Quality CuInGaS2 Thin Films for Photovoltaic Application. J. Mater. Sci. Mater. Electron. 2019, 30, 20832–20839. [Google Scholar] [CrossRef]
- Stuckelberger, M.E.; Nietzold, T.; West, B.M.; Farshchi, R.; Poplavskyy, D.; Bailey, J.; Lai, B.; Maser, J.M.; Bertoni, M.I. How Does CIGS Performance Depend on Temperature at the Microscale? IEEE J. Photovoltaics 2018, 8, 278–287. [Google Scholar] [CrossRef]
- Vaillon, R.; Parola, S.; Lamnatou, C.; Chemisana, D. Solar Cells Operating under Thermal Stress. Cell Reports Phys. Sci. 2020, 1, 100267. [Google Scholar] [CrossRef]
- Nakamura, M.; Yamaguchi, K.; Kimoto, Y.; Yasaki, Y.; Kato, T.; Sugimoto, H. Cd-Free Cu(In,Ga)(Se,S)2 Thin-Film Solar Cell with Record Efficiency of 23.35%. IEEE J. Photovoltaics 2019, 9, 1863–1867. [Google Scholar] [CrossRef]
- Kwak, J.I.; Nam, S.H.; Kim, L.; An, Y.J. Potential Environmental Risk of Solar Cells: Current Knowledge and Future Challenges. J. Hazard. Mater. 2020, 392, 122297. [Google Scholar] [CrossRef]
- Nakamura, M.; Tada, K.; Kinoshita, T.; Bessho, T.; Nishiyama, C.; Takenaka, I.; Kimoto, Y.; Higashino, Y.; Sugimoto, H.; Segawa, H. Perovskite/CIGS Spectral Splitting Double Junction Solar Cell with 28% Power Conversion Efficiency. iScience 2020, 23, 101817. [Google Scholar] [CrossRef] [PubMed]
- Theelen, M.; Foster, C.; Steijvers, H.; Barreau, N.; Vroon, Z.; Zeman, M. The Impact of Atmospheric Species on the Degradation of CIGS Solar Cells. Sol. Energy Mater. Sol. Cells 2015, 141, 49–56. [Google Scholar] [CrossRef]
- Ito, K. (Ed.) Copper Zinc Tin Sulfide-Based Thin Film Solar Cells, 1st ed.; John Wiley and Sons Ltd.: Hoboken, NJ, USA, 2015; ISBN 9781118437872. [Google Scholar]
- Sravani, L.; Routray, S.; Pradhan, K.P.; Piedrahita, M.C. Kesterite Thin-Film Solar Cell: Role of Grain Boundaries and Defects in Copper–Zinc–Tin–Sulfide and Copper–Zinc–Tin–Selenide. Phys. Status Solidi Appl. Mater. Sci. 2021, 218, 2100039. [Google Scholar] [CrossRef]
- Sun, K.; Yan, C.; Liu, F.; Huang, J.; Zhou, F.; Stride, J.A.; Green, M.; Hao, X. Over 9% Efficient Kesterite Cu2ZnSnS4 Solar Cell Fabricated by Using Zn1−xCdxS Buffer Layer. Adv. Energy Mater. 2016, 6, 4–9. [Google Scholar] [CrossRef]
- Pal, K.; Singh, P.; Bhaduri, A.; Thapa, K.B. Current Challenges and Future Prospects for a Highly Efficient (>20%) Kesterite CZTS Solar Cell: A Review. Sol. Energy Mater. Sol. Cells 2019, 196, 138–156. [Google Scholar] [CrossRef]
- Wei, Y.; Zhuang, D.; Zhao, M.; Gong, Q.; Sun, R.; Ren, G.; Wu, Y.; Zhang, L.; Lyu, X.; Peng, X.; et al. An Investigation on the Relationship between Open Circuit Voltage and Grain Size for CZTSSe Thin Film Solar Cells Fabricated by Selenization of Sputtered Precursors. J. Alloys Compd. 2019, 773, 689–697. [Google Scholar] [CrossRef]
- Li, J.; Huang, Y.; Huang, J.; Liang, G.; Zhang, Y.; Rey, G.; Guo, F.; Su, Z.; Zhu, H.; Cai, L.; et al. Defect Control for 12.5% Efficiency Cu2ZnSnSe4 Kesterite Thin-Film Solar Cells by Engineering of Local Chemical Environment. Adv. Mater. 2020, 32, e2005268. [Google Scholar] [CrossRef] [PubMed]
- Dwivedi, S.K.; Tripathi, S.K.; Tiwari, D.C.; Chauhan, A.S.; Dwivedi, P.K.; Eswara Prasad, N. Low Cost Copper Zinc Tin Sulphide (CZTS) Solar Cells Fabricated by Sulphurizing Sol-Gel Deposited Precursor Using 1,2-Ethanedithiol (EDT). Sol. Energy 2021, 224, 210–217. [Google Scholar] [CrossRef]
- Liu, Y.; Hu, C.; Qi, Y.; Zhou, W.; Kou, D.; Zhou, Z.; Han, L.; Meng, Y.; Yuan, S.; Wu, S. Li/Ag Co-Doping Synergistically Boosts the Efficiency of Kesterite Solar Cells Through Effective SnZn Defect Passivation. Adv. Mater. Interfaces 2022, 9, 2201677. [Google Scholar] [CrossRef]
- Romeo, A.; Artegiani, E. CdTe-Based Thin Film Solar Cells: Past, Present and Future. Energies 2021, 14, 1684. [Google Scholar] [CrossRef]
- Ward, J.S.; Ramanathan, K.; Hasoon, F.S.; Coutts, T.J.; Keane, J.; Contreras, M.A.; Moriarty, T.; Noufi, R. A 21·5% Efficient Cu(In,Ga)Se2 Thin-Film Concentrator Solar Cell. Prog. Photovolt. Res. Appl. 2002, 10, 41–46. [Google Scholar] [CrossRef]
- Yan, C.; Huang, J.; Sun, K.; Johnston, S.; Zhang, Y.; Sun, H.; Pu, A.; He, M.; Liu, F.; Eder, K.; et al. Cu2ZnSnS4 Solar Cells with over 10% Power Conversion Efficiency Enabled by Heterojunction Heat Treatment. Nat. Energy 2018, 3, 764–772. [Google Scholar] [CrossRef]
- Giraldo, S.; Saucedo, E.; Neuschitzer, M.; Oliva, F.; Placidi, M.; Alcobé, X.; Izquierdo-Roca, V.; Kim, S.; Tampo, H.; Shibata, H.; et al. How Small Amounts of Ge Modify the Formation Pathways and Crystallization of Kesterites. Energy Environ. Sci. 2018, 11, 582–593. [Google Scholar] [CrossRef] [Green Version]
- Wang, W.; Winkler, M.T.; Gunawan, O.; Gokmen, T.; Todorov, T.K.; Zhu, Y.; Mitzi, D.B. Device Characteristics of CZTSSe Thin-Film Solar Cells with 12.6% Efficiency. Adv. Energy Mater. 2014, 4, 1301465. [Google Scholar] [CrossRef]
- Moon, S.H.; Park, S.J.; Kim, S.H.; Lee, M.W.; Han, J.; Kim, J.Y.; Kim, H.; Hwang, Y.J.; Lee, D.K.; Min, B.K. Monolithic DSSC/CIGS Tandem Solar Cell Fabricated by a Solution Process. Sci. Rep. 2015, 5, srep08970. [Google Scholar] [CrossRef] [Green Version]
- Hadipour, A.; de Boer, B.; Blom, P.W.M. Device Operation of Organic Tandem Solar Cells. Org. Electron. 2008, 9, 617–624. [Google Scholar] [CrossRef] [Green Version]
- Enam, F.M.T.; Rahman, K.S.; Kamaruzzaman, M.I.; Sobayel, K.; Chelvanathan, P.; Bais, B.; Akhtaruzzaman, M.; Alamoud, A.R.M.; Amin, N. Design Prospects of Cadmium Telluride/Silicon (CdTe/Si) Tandem Solar Cells from Numerical Simulation. Optik 2017, 139, 397–406. [Google Scholar] [CrossRef]
- Hosokawa, H.; Tamaki, R.; Sawada, T.; Okonogi, A.; Sato, H.; Ogomi, Y.; Hayase, S.; Okada, Y.; Yano, T. Solution-Processed Intermediate-Band Solar Cells with Lead Sulfide Quantum Dots and Lead Halide Perovskites. Nat. Commun. 2019, 10, 4–6. [Google Scholar] [CrossRef] [Green Version]
- Andruszkiewicz, A.; Zhang, X.; Johansson, M.B.; Yuan, L.; Johansson, E.M.J. Perovskite and Quantum Dot Tandem Solar Cells with Interlayer Modification for Improved Optical Semitransparency and Stability. Nanoscale 2021, 13, 6234–6240. [Google Scholar] [CrossRef]
- Todorov, T.; Gershon, T.; Gunawan, O.; Sturdevant, C.; Guha, S. Perovskite-Kesterite Monolithic Tandem Solar Cells with High Open-Circuit Voltage. Appl. Phys. Lett. 2014, 105, 173902. [Google Scholar] [CrossRef]
- Saha, U.; Alam, M.K. Proposition and Computational Analysis of a Kesterite/Kesterite Tandem Solar Cell with Enhanced Efficiency. RSC Adv. 2017, 7, 4806–4814. [Google Scholar] [CrossRef] [Green Version]
- Song, Z.; Chen, C.; Li, C.; Awni, R.A.; Zhao, D.; Yan, Y. Wide-Bandgap, Low-Bandgap, and Tandem Perovskite Solar Cells. Semicond. Sci. Technol. 2019, 34, 093001. [Google Scholar] [CrossRef]
- Gu, S.; Lin, R.; Han, Q.; Gao, Y.; Tan, H.; Zhu, J. Tin and Mixed Lead–Tin Halide Perovskite Solar Cells: Progress and Their Application in Tandem Solar Cells. Adv. Mater. 2020, 32, e1907392. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; Huang, T.; Xue, J.; Tong, J.; Zhu, K.; Yang, Y. Prospects for Metal Halide Perovskite-Based Tandem Solar Cells. Nat. Photonics 2021, 15, 411–425. [Google Scholar] [CrossRef]
- Fang, Z.; Zeng, Q.; Zuo, C.; Zhang, L.; Xiao, H.; Cheng, M.; Hao, F.; Bao, Q.; Zhang, L.; Yuan, Y.; et al. Perovskite-Based Tandem Solar Cells. Sci. Bull. 2021, 66, 621–636. [Google Scholar] [CrossRef]
- Shen, H.; Duong, T.; Peng, J.; Jacobs, D.; Wu, N.; Gong, J.; Wu, Y.; Karuturi, S.K.; Fu, X.; Weber, K.; et al. Mechanically-Stacked Perovskite/CIGS Tandem Solar Cells with Efficiency of 23.9% and Reduced Oxygen Sensitivity. Energy Environ. Sci. 2018, 11, 394–406. [Google Scholar] [CrossRef]
- Li, H.; Zhang, W. Perovskite Tandem Solar Cells: From Fundamentals to Commercial Deployment. Chem. Rev. 2020, 120, 9835–9950. [Google Scholar] [CrossRef] [PubMed]
- Al-Ashouri, A.; Magomedov, A.; Roß, M.; Jošt, M.; Talaikis, M.; Chistiakova, G.; Bertram, T.; Márquez, J.A.; Köhnen, E.; Kasparavičius, E.; et al. Conformal Monolayer Contacts with Lossless Interfaces for Perovskite Single Junction and Monolithic Tandem Solar Cells. Energy Environ. Sci. 2019, 12, 3356–3369. [Google Scholar] [CrossRef] [Green Version]
- Jošt, M.; Köhnen, E.; Al-Ashouri, A.; Bertram, T.; Tomšič, Š.; Magomedov, A.; Kasparavicius, E.; Kodalle, T.; Lipovšek, B.; Getautis, V.; et al. Perovskite/CIGS Tandem Solar Cells: From Certified 24.2% toward 30% and Beyond. ACS Energy Lett. 2022, 7, 1298–1307. [Google Scholar] [CrossRef]
- Manekkathodi, A.; Chen, B.; Kim, J.; Baek, S.W.; Scheffel, B.; Hou, Y.; Ouellette, O.; Saidaminov, M.I.; Voznyy, O.; Madhavan, V.E.; et al. Solution-Processed Perovskite-Colloidal Quantum Dot Tandem Solar Cells for Photon Collection beyond 1000 Nm. J. Mater. Chem. A 2019, 7, 26020–26028. [Google Scholar] [CrossRef]
- Xiao, K.; Lin, R.; Han, Q.; Hou, Y.; Qin, Z.; Nguyen, H.T.; Wen, J.; Wei, M.; Yeddu, V.; Saidaminov, M.I.; et al. All-Perovskite Tandem Solar Cells with 24.2% Certified Efficiency and Area over 1 cm2 Using Surface-Anchoring Zwitterionic Antioxidant. Nat. Energy 2020, 5, 870–880. [Google Scholar] [CrossRef]
- Jang, Y.H.; Lee, J.M.; Seo, J.W.; Kim, I.; Lee, D.K. Monolithic Tandem Solar Cells Comprising Electrodeposited CuInSe2 and Perovskite Solar Cells with a Nanoparticulate ZnO Buffer Layer. J. Mater. Chem. A 2017, 5, 19439–19446. [Google Scholar] [CrossRef]
- Madan, J.; Singh, K.; Pandey, R. Comprehensive Device Simulation of 23.36% Efficient Two-Terminal Perovskite-PbS CQD Tandem Solar Cell for Low-Cost Applications. Sci. Rep. 2021, 11, 19829. [Google Scholar] [CrossRef] [PubMed]
- Makita, K.; Kamikawa, Y.; Mizuno, H.; Oshima, R.; Shoji, Y.; Ishizuka, S.; Müller, R.; Beutel, P.; Lackner, D.; Benick, J.; et al. III-V//CuxIn1−yGaySe2 Multijunction Solar Cells with 27.2% Efficiency Fabricated Using Modified Smart Stack Technology with Pd Nanoparticle Array and Adhesive Material. Prog. Photovolt. Res. Appl. 2021, 29, 887–898. [Google Scholar] [CrossRef]
- Grassman, T.J.; Chmielewski, D.J.; Carnevale, S.D.; Carlin, J.A.; Ringel, S.A. GaAs0.75 P0.25/Si Dual-Junction Solar Cells Grown by MBE and MOCVD. IEEE J. Photovolt. 2016, 6, 326–331. [Google Scholar] [CrossRef]
- Greenaway, A.L.; Loutris, A.L.; Heinselman, K.N.; Melamed, C.L.; Schnepf, R.R.; Tellekamp, M.B.; Woods-Robinson, R.; Sherbondy, R.; Bardgett, D.; Bauers, S.; et al. Combinatorial Synthesis of Magnesium Tin Nitride Semiconductors. J. Am. Chem. Soc. 2020, 142, 8421–8430. [Google Scholar] [CrossRef] [PubMed]
- Sun, W.; Bartel, C.J.; Arca, E.; Bauers, S.R.; Matthews, B.; Orvañanos, B.; Chen, B.R.; Toney, M.F.; Schelhas, L.T.; Tumas, W.; et al. A Map of the Inorganic Ternary Metal Nitrides. Nat. Mater. 2019, 18, 732–739. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Choi, J.W.; Shin, B.; Gorai, P.; Hoye, R.L.Z.; Palgrave, R. Emerging Earth-Abundant Solar Absorbers. ACS Energy Lett. 2022, 7, 1553–1557. [Google Scholar] [CrossRef]
- Javaid, K.; Wu, W.; Wang, J.; Fang, J.; Zhang, H.; Gao, J.; Zhuge, F.; Liang, L.; Cao, H. Band Offset Engineering in ZnSnN2-Based Heterojunction for Low-Cost Solar Cells. ACS Photonics 2018, 5, 2094–2099. [Google Scholar] [CrossRef]
- Lei, H.; Chen, J.; Tan, Z.; Fang, G. Review of Recent Progress in Antimony Chalcogenide-Based Solar Cells: Materials and Devices. Sol. RRL 2019, 3, 1900026. [Google Scholar] [CrossRef]
- Akshay, V.V.; Benny, S.; Bhat, S.V. Solution-Processed Antimony Chalcogenides Based Thin Film Solar Cells: A Brief Overview of Recent Developments. Sol. Energy 2022, 241, 728–737. [Google Scholar] [CrossRef]
- Ríos-Ramirez, B.; Nair, P.K. On the Stability of Operation of Antimony Sulfide Selenide Thin Film Solar Cells under Solar Radiation. Phys. Status Solidi Appl. Mater. Sci. 2018, 215, 1800479. [Google Scholar] [CrossRef]
- Zakutayev, A.; Major, J.D.; Hao, X.; Walsh, A.; Tang, J.; Todorov, T.K.; Wong, L.H.; Saucedo, E. Emerging Inorganic Solar Cell Efficiency Tables (Version 2). J. Phys. Energy 2021, 3, 032003. [Google Scholar] [CrossRef]
- Chen, C.; Tang, J. Open-Circuit Voltage Loss of Antimony Chalcogenide Solar Cells: Status, Origin, and Possible Solutions. ACS Energy Lett. 2020, 5, 2294–2304. [Google Scholar] [CrossRef]
- Dong, J.; Liu, Y.; Wang, Z.; Zhang, Y. Boosting VOC of Antimony Chalcogenide Solar Cells: A Review on Interfaces and Defects. Nano Sel. 2021, 2, 1818–1848. [Google Scholar] [CrossRef]
- Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T. Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells. J. Am. Chem. Soc. 2009, 131, 6050–6051. [Google Scholar] [CrossRef]
- Tien, C.H.; Lai, H.Y.; Chen, L.C. Methylammonium Halide Salt Interfacial Modification of Perovskite Quantum Dots/Triple-Cation Perovskites Enable Efficient Solar Cells. Sci. Rep. 2023, 13, 5387. [Google Scholar] [CrossRef]
- Dey, A.; Ye, J.; De, A.; Debroye, E.; Ha, S.K.; Bladt, E.; Kshirsagar, A.S.; Wang, Z.; Yin, J.; Wang, Y.; et al. State of the Art and Prospects for Halide Perovskite Nanocrystals. ACS Nano 2021, 15, 10775–10981. [Google Scholar] [CrossRef]
- Feng, B.; Duan, J.; Tao, L.; Zhang, J.; Wang, H. Enhanced Performance in Perovskite Solar Cells via Bromide Ion Substitution and Ethanol Treatment. Appl. Surf. Sci. 2018, 430, 603–612. [Google Scholar] [CrossRef]
- Niu, T.; Lu, J.; Tang, M.-C.; Barrit, D.; Smilgies, D.-M.; Yang, Z.; Li, J.; Fan, Y.; Luo, T.; McCulloch, I.; et al. High Performance Ambient-Air-Stable FAPbI3 Perovskite Solar Cells with Molecule-Passivated Ruddlesden–Popper/3D Heterostructured Film. Energy Environ. Sci. 2018, 11, 3358–3366. [Google Scholar] [CrossRef]
- Jeong, J.; Kim, M.; Seo, J.; Lu, H.; Ahlawat, P.; Mishra, A.; Yang, Y.; Hope, M.A.; Eickemeyer, F.T.; Kim, M.; et al. Pseudo-Halide Anion Engineering for α-FAPbI3 Perovskite Solar Cells. Nature 2021, 592, 381–385. [Google Scholar] [CrossRef]
- Hossain, M.K.; Toki, G.F.I.; Kuddus, A.; Rubel, M.H.K.; Hossain, M.M.; Bencherif, H.; Rahman, M.F.; Islam, M.R.; Mushtaq, M. An Extensive Study on Multiple ETL and HTL Layers to Design and Simulation of High-Performance Lead-Free CsSnCl3-Based Perovskite Solar Cells. Sci. Rep. 2023, 13, 2521. [Google Scholar] [CrossRef]
- Juarez-Perez, E.J.; Wuβler, M.; Fabregat-Santiago, F.; Lakus-Wollny, K.; Mankel, E.; Mayer, T.; Jaegermann, W.; Mora-Sero, I. Role of the Selective Contacts in the Performance of Lead Halide Perovskite Solar Cells. J. Phys. Chem. Lett. 2014, 5, 680–685. [Google Scholar] [CrossRef]
- Li, F.; Zhou, S.; Yuan, J.; Qin, C.; Yang, Y.; Shi, J.; Ling, X.; Li, Y.; Ma, W. Perovskite Quantum Dot Solar Cells with 15.6% Efficiency and Improved Stability Enabled by an α-CsPbI3/FAPbI3 Bilayer Structure. ACS Energy Lett. 2019, 4, 2571–2578. [Google Scholar] [CrossRef]
- Yao, D.; Zhang, C.; Pham, N.D.; Zhang, Y.; Tiong, V.T.; Du, A.; Shen, Q.; Wilson, G.J.; Wang, H. Hindered Formation of Photoinactive δ-FAPbI3 Phase and Hysteresis-Free Mixed-Cation Planar Heterojunction Perovskite Solar Cells with Enhanced Efficiency via Potassium Incorporation. J. Phys. Chem. Lett. 2018, 9, 2113–2120. [Google Scholar] [CrossRef] [PubMed]
- Xue, J.; Lee, J.-W.; Dai, Z.; Wang, R.; Nuryyeva, S.; Liao, M.E.; Chang, S.-Y.; Meng, L.; Meng, D.; Sun, P.; et al. Surface Ligand Management for Stable FAPbI3 Perovskite Quantum Dot Solar Cells. Joule 2018, 2, 1866–1878. [Google Scholar] [CrossRef] [Green Version]
- Sha, W.E.I.; Ren, X.; Chen, L.; Choy, W.C.H. The Efficiency Limit of CH3NH3PbI3 Perovskite Solar Cells. Appl. Phys. Lett. 2015, 106, 221104. [Google Scholar] [CrossRef] [Green Version]
- Masi, S.; Gualdrón-Reyes, A.F.; Mora-Seró, I. Stabilization of Black Perovskite Phase in FAPbI3 and CsPbI3. ACS Energy Lett. 2020, 5, 1974–1985. [Google Scholar] [CrossRef]
- Zhang, H.; Li, Y.; Tan, S.; Chen, Z.; Song, K.; Huang, S.; Shi, J.; Luo, Y.; Li, D.; Meng, Q. High-Efficiency (>20%) Planar Carbon-Based Perovskite Solar Cells through Device Configuration Engineering. J. Colloid Interface Sci. 2022, 608, 3151–3158. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.; Kim, G.H.; Lee, T.K.; Choi, I.W.; Choi, H.W.; Jo, Y.; Yoon, Y.J.; Kim, J.W.; Lee, J.; Huh, D.; et al. Methylammonium Chloride Induces Intermediate Phase Stabilization for Efficient Perovskite Solar Cells. Joule 2019, 3, 2179–2192. [Google Scholar] [CrossRef]
- Yin, J.; Xu, Z.; Hu, Q.; Teobaldi, G.; Liu, L.-M.; Prezhdo, O.V. Tuning Octahedral Tilting by Doping to Prevent Detrimental Phase Transition and Extend Carrier Lifetime in Organometallic Perovskites. J. Am. Chem. Soc. 2023, 145, 5393–5399. [Google Scholar] [CrossRef]
- Wang, A.; Wang, J.; Niu, X.; Zuo, C.; Hao, F.; Ding, L. Inhibiting Octahedral Tilting for Stable CsPbI2Br Solar Cells. InfoMat 2022, 4, 2–9. [Google Scholar] [CrossRef]
- Menahem, M.; Dai, Z.; Aharon, S.; Sharma, R.; Asher, M.; Diskin-Posner, Y.; Korobko, R.; Rappe, A.M.; Yaffe, O. Strongly Anharmonic Octahedral Tilting in Two-Dimensional Hybrid Halide Perovskites. ACS Nano 2021, 15, 10153–10162. [Google Scholar] [CrossRef]
- Lee, J.-H.; Bristowe, N.C.; Ho Lee, J.; Lee, S.-H.; Bristowe, P.D.; Cheetham, A.K.; Myung Jang, H. Resolving the Physical Origin of Octahedral Tilting in Halide Perovskites. Chem. Mater. 2016, 28, 4259–4266. [Google Scholar] [CrossRef] [Green Version]
- Kim, G.; Min, H.; Lee, K.S.; Lee, D.Y.; Yoon, S.M.; Seok, S.I. Impact of Strain Relaxation on Performance of A-Formamidinium Lead Iodide Perovskite Solar Cells. Science 2020, 370, 108–112. [Google Scholar] [CrossRef]
- Zhao, Q.; Hazarika, A.; Schelhas, L.T.; Liu, J.; Gaulding, E.A.; Li, G.; Zhang, M.; Toney, M.F.; Sercel, P.C.; Luther, J.M. Size-Dependent Lattice Structure and Confinement Properties in CsPbI3 Perovskite Nanocrystals: Negative Surface Energy for Stabilization. ACS Energy Lett. 2019, 5, 238–247. [Google Scholar] [CrossRef] [Green Version]
- Doherty, T.A.S.; Nagane, S.; Kubicki, D.J.; Jung, Y.K.; Johnstone, D.N.; Iqbal, A.N.; Guo, D.; Frohna, K.; Danaie, M.; Tennyson, E.M.; et al. Stabilized Tilted-Octahedra Halide Perovskites Inhibit Local Formation of Performance-Limiting Phases. Science 2021, 374, 1598–1605. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; Xue, J.; Meng, L.; Lee, J.W.; Zhao, Z.; Sun, P.; Cai, L.; Huang, T.; Wang, Z.; Wang, Z.K.; et al. Caffeine Improves the Performance and Thermal Stability of Perovskite Solar Cells. Joule 2019, 3, 1464–1477. [Google Scholar] [CrossRef]
- Wang, R.; Xue, J.; Wang, K.L.; Wang, Z.K.; Luo, Y.; Fenning, D.; Xu, G.; Nuryyeva, S.; Huang, T.; Zhao, Y.; et al. Constructive Molecular Configurations for Surface-Defect Passivation of Perovskite Photovoltaics. Science 2019, 366, 1509–1513. [Google Scholar] [CrossRef] [PubMed]
- Xie, H.; Wang, Z.; Chen, Z.; Pereyra, C.; Pols, M.; Gałkowski, K.; Anaya, M.; Fu, S.; Jia, X.; Tang, P.; et al. Decoupling the Effects of Defects on Efficiency and Stability through Phosphonates in Stable Halide Perovskite Solar Cells. Joule 2021, 5, 1246–1266. [Google Scholar] [CrossRef]
- Feng, W.; Tan, Y.; Yang, M.; Jiang, Y.; Lei, B.X.; Wang, L.; Wu, W.Q. Small Amines Bring Big Benefits to Perovskite-Based Solar Cells and Light-Emitting Diodes. Chem 2022, 8, 351–383. [Google Scholar] [CrossRef]
- Yang, T.; Gao, L.; Lu, J.; Ma, C.; Du, Y.; Wang, P.; Ding, Z.; Wang, S.; Xu, P.; Liu, D.; et al. One-Stone-for-Two-Birds Strategy to Attain beyond 25% Perovskite Solar Cells. Nat. Commun. 2023, 14, 839. [Google Scholar] [CrossRef]
- Li, G.; Song, J.; Wu, J.; Song, Z.; Wang, X.; Sun, W.; Fan, L.; Lin, J.; Huang, M.; Lan, Z.; et al. Efficient and STable 2D@3D/2D Perovskite Solar Cells Based on Dual Optimization of Grain Boundary and Interface. ACS Energy Lett. 2021, 6, 3614–3623. [Google Scholar] [CrossRef]
- Campos, T.; Dally, P.; Gbegnon, S.; Blaizot, A.; Trippé-Allard, G.; Provost, M.; Bouttemy, M.; Duchatelet, A.; Garrot, D.; Rousset, J.; et al. Unraveling the Formation Mechanism of the 2D/3D Perovskite Heterostructure for Perovskite Solar Cells Using Multi-Method Characterization. J. Phys. Chem. C 2022, 126, 13527–13538. [Google Scholar] [CrossRef]
- Weidman, M.C.; Seitz, M.; Stranks, S.D.; Tisdale, W.A. Highly Tunable Colloidal Perovskite Nanoplatelets through Variable Cation, Metal, and Halide Composition. ACS Nano 2016, 10, 7830–7839. [Google Scholar] [CrossRef] [Green Version]
- Zhou, T.; Lai, H.; Liu, T.; Lu, D.; Wan, X.; Zhang, X.; Liu, Y.; Chen, Y. Highly Efficient and Stable Solar Cells Based on Crystalline Oriented 2D/3D Hybrid Perovskite. Adv. Mater. 2019, 31, e1901242. [Google Scholar] [CrossRef] [PubMed]
- Sutanto, A.A.; Caprioglio, P.; Drigo, N.; Hofstetter, Y.J.; Garcia-Benito, I.; Queloz, V.I.E.; Neher, D.; Nazeeruddin, M.K.; Stolterfoht, M.; Vaynzof, Y.; et al. 2D/3D Perovskite Engineering Eliminates Interfacial Recombination Losses in Hybrid Perovskite Solar Cells. Chem 2021, 7, 1903–1916. [Google Scholar] [CrossRef]
- Cho, Y.; Soufiani, A.M.; Yun, J.S.; Kim, J.; Lee, D.S.; Seidel, J.; Deng, X.; Green, M.A.; Huang, S.; Ho-Baillie, A.W.Y. Mixed 3D–2D Passivation Treatment for Mixed-Cation Lead Mixed-Halide Perovskite Solar Cells for Higher Efficiency and Better Stability. Adv. Energy Mater. 2018, 8, 1703392. [Google Scholar] [CrossRef]
- Al-Ashouri, A.; Köhnen, E.; Li, B.; Magomedov, A.; Hempel, H.; Caprioglio, P.; Márquez, J.A.; Vilches, A.B.M.; Kasparavicius, E.; Smith, J.A.; et al. Monolithic Perovskite/Silicon Tandem Solar Cell with >29% Efficiency by Enhanced Hole Extraction. Science 2020, 370, 1300–1309. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Uddin, M.A.; Chen, B.; Ying, X.; Ni, Z.; Zhou, Y.; Li, M.; Wang, M.; Yu, Z.; Huang, J. Enhancing Photostability of Sn-Pb Perovskite Solar Cells by an Alkylammonium Pseudo-Halogen Additive. Adv. Energy Mater. 2023, 13, 2204115. [Google Scholar] [CrossRef]
- Ren, M.; Qian, X.; Chen, Y.; Wang, T.; Zhao, Y. Potential Lead Toxicity and Leakage Issues on Lead Halide Perovskite Photovoltaics. J. Hazard. Mater. 2022, 426, 127848. [Google Scholar] [CrossRef]
- Torrence, C.E.; Libby, C.S.; Nie, W.; Stein, J.S. Environmental and Health Risks of Perovskite Solar Modules: Case for Better Test Standards and Risk Mitigation Solutions. iScience 2023, 26, 105807. [Google Scholar] [CrossRef] [PubMed]
- Aftab, A.; Ahmad, M.I. A Review of Stability and Progress in Tin Halide Perovskite Solar Cell. Sol. Energy 2021, 216, 26–47. [Google Scholar] [CrossRef]
- Mahmoudi, T.; Rho, W.Y.; Kohan, M.; Im, Y.H.; Mathur, S.; Hahn, Y.B. Suppression of Sn2+/Sn4+ Oxidation in Tin-Based Perovskite Solar Cells with Graphene-Tin Quantum Dots Composites in Active Layer. Nano Energy 2021, 90, 106495. [Google Scholar] [CrossRef]
- Chen, Z.; Liu, M.; Li, Z.; Shi, T.; Yang, Y.; Yip, H.L.; Cao, Y. Stable Sn/Pb-Based Perovskite Solar Cells with a Coherent 2D/3D Interface. iScience 2018, 9, 337–346. [Google Scholar] [CrossRef] [Green Version]
- Ban, H.; Sun, Q.; Zhang, T.; Li, H.; Shen, Y.; Wang, M. Stabilization of Inorganic CsPb0.5Sn0.5I2Br Perovskite Compounds by Antioxidant Tea Polyphenol. Sol. RRL 2020, 4, 1900457. [Google Scholar] [CrossRef]
- Li, C.; Pan, Y.; Hu, J.; Qiu, S.; Zhang, C.; Yang, Y.; Chen, S.; Liu, X.; Brabec, C.J.; Khaja Nazeeruddin, M.; et al. Vertically Aligned 2D/3D Pb–Sn Perovskites with Enhanced Charge Extraction and Suppressed Phase Segregation for Efficient Printable Solar Cells. ACS Energy Lett. 2020, 5, 1386–1395. [Google Scholar] [CrossRef]
- Zhou, X.; Zhang, L.; Wang, X.; Liu, C.; Chen, S.; Zhang, M.; Li, X.; Yi, W.; Xu, B. Highly Efficient and Stable GABr-Modified Ideal-Bandgap (1.35 EV) Sn/Pb Perovskite Solar Cells Achieve 20.63% Efficiency with a Record Small Voc Deficit of 0.33 V. Adv. Mater. 2020, 32, e1908107. [Google Scholar] [CrossRef]
- Sanchez-Diaz, J.; Sánchez, R.S.; Masi, S.; Kreĉmarová, M.; Alvarez, A.O.; Barea, E.M.; Rodriguez-Romero, J.; Chirvony, V.S.; Sánchez-Royo, J.F.; Martinez-Pastor, J.P.; et al. Tin Perovskite Solar Cells with >1300 h of Operational Stability in N2 through a Synergistic Chemical Engineering Approach. Joule 2022, 6, 861–883. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Z.; Jiang, X.; Yu, D.; Yu, N.; Ning, Z.; Mi, Q. Smooth and Compact FASnI3 Films for Lead-Free Perovskite Solar Cells with over 14% Efficiency. ACS Energy Lett. 2022, 7, 2079–2083. [Google Scholar] [CrossRef]
- Yu, B.B.; Chen, Z.; Zhu, Y.; Wang, Y.; Han, B.; Chen, G.; Zhang, X.; Du, Z.; He, Z. Heterogeneous 2D/3D Tin-Halides Perovskite Solar Cells with Certified Conversion Efficiency Breaking 14%. Adv. Mater. 2021, 33, e2102055. [Google Scholar] [CrossRef] [PubMed]
Active Layer | JSC (mA/cm2) | VOC (V) | FF | PCE | Ref. |
---|---|---|---|---|---|
CdTe | 26.30 | 0.81 | 0.808 | 17.3 | [151] |
CdTe | 30.25 | 0.87 | 0.794 | 21.0 | [175] |
CdTe | 31.69 | 0.88 | 0.785 | 22.1 | [106] |
CIGS | 39.80 | 0.72 | 0.765 | 21.8 | [165] |
CIGS | 39.68 | 0.73 | 0.804 | 23.4 | [163] |
CIGS | 39.33 | 0.73 | 0.805 | 23.3 | [176] |
CZTS | 21.77 | 0.71 | 0.826 | 10.0 | [177] |
CZTS | 21.74 | 0.73 | 0.693 | 11.0 | [169] |
CZTSe | 38.30 | 0.46 | 0.663 | 11.8 | [178] |
CZTSe | 37.40 | 0.49 | 0.682 | 12.5 | [172] |
CZTSSe | 35.60 | 0.51 | 0.697 | 12.6 | [174] |
CZTSSe | 35.20 | 0.51 | 0.698 | 12.6 | [179] |
Active Layer | JSC (mA/cm2) | VOC (V) | FF | PCE | Stability | Ref. |
---|---|---|---|---|---|---|
Perovskite/CIGS | 19.2 | 1.68 | 0.719 | 23.3 | 97% of initial performance, 2400 h, air | [193] |
Perovskite/CIGS | 19.24 | 1.77 | 0.729 | 24.2 | - | [194] |
DSSC/CIGS | 14.6 | 1.17 | 0.77 | 13.0 | 67% of initial performance, 12 h | [180] |
Perovskite/PbS | - | - | - | 20.3 | 90% of initial performance, 12.5 h, without encapsulation | [195] |
Perovskite/Perovskite | 16.0 | 2.01 | 0.800 | 25.6 | 88% of initial performance, 500 h, air | [196] |
CuInSe2/Perovskite | 12.9 | 1.34 | 0.635 | 11.0 | ~70% of initial performance, 2400 h, in a desiccator | [197] |
Perovskite/PbS | 16.67 | 1.79 | 0.783 | 23.4 | - | [198] |
GaInP/AlGaAs/CIGS | 11.72 | 2.95 | 0.818 | 29.1 | 90% of initial performance, after 50 cycles of operation | [199] |
GaAs0.75P0.25/Si | 20.47 | 1.91 | 0.798 | 31.3 | - | [200] |
Pb-Based Perovskite Films | ||||||
Active Layer | Jsc (mAcm−2) | Voc (V) | FF | PCE (%) | Stability | Ref. |
FA0.94MA0.06Pb(I0.94,Br0.06)3 | 23.60 | 1.11 | 0.765 | 20.04 | 94% of initial performance, 1000 h, air | [224] |
FAPbI3–40 wt% MACl | 25.92 | 1.13 | 0.820 | 24.02 | 90% of initial performance, 1200 h, air | [225] |
(FAPbI3)1−x(MC)x, x = 0.03 mol% | 26.23 | 1.17 | 0.822 | 25.20 | 80% of initial performance, 1300 h, 85 °C, air | [230] |
FAPbI3–10 mol% RACl | 25.69 | 1.18 | 0.862 | 26.08 | 88% of initial performance, 600 h, air | [42] |
FAPbI3–4 mol% 3AP | 26.04 | 1.18 | 0.822 | 25.30 | 92% of initial efficiency, 5000 h, air | [237] |
2-TMABr–modified (FAPbI3)0.87(MAPbBr3)0.13]0.92(CsPbI3)0.08 | 23.20 | 1.15 | 0.780 | 20.80 | 74% of initial efficiency, 1000 h, air | [242] |
ThMA–modified 2D/3D FA/MA perovskite | 22.88 | 1.16 | 0.810 | 21.49 | 99% of its initial performance, 1680 h, air | [241] |
i-BAI/FAI–modified (FAPbI3)0.85(MAPbBr3)0.15 | ~23 | ~1.18 | ~0.825 | 21.70 | 87% of the original efficiency, 912 h, air | [243] |
Cs0.05(FA0.77MA0.23)0.95Pb(I0.77Br0.23)3/Si PTSC | 19.26 | 1.90 | 0.795 | 29.05 | 95% of the initial performance, 300 h, air | [244] |
MgFx–modified Cs0.05FA0.8MA0.15Pb(I0.755Br0.255)3 | 20.58 | 1.92 | 0.807 | 29.30 | 95% of the initial performance, 1000 h, 85 °C, air | [245] |
Partially Pb-Substituted/Pb-Free Perovskite Films | ||||||
Perovskite Layer | Jsc (mAcm−2) | Voc (V) | FF | PCE (%) | Stability | Ref. |
TP–modified CsPb0.5Sn0.5I2Br | 20.10 | 0.62 | 0.650 | 8.10 | 95% of original performance, ~1440 h, N2–atmosphere | [251] |
(MAPbI3)0.75(FASnI3)0.25–3.75 wt% FPEAI | 28.42 | 0.79 | 0.780 | 17.51 | 90% of the initial performance, 1200 h N2–atmosphere, 70% of initial efficiency, 400 h, air. | [252] |
FA0.7MA0.3Pb0.7Sn0.3I3–12 wt% GABr | 26.61 | 1.02 | 0.760 | 20.63 | 85% of original efficiency, 1000 h, air 80% of original efficiency, 24 h, 80 °C, air | [253] |
OABF4–modified Cs0.2FA0.8Pb0.5Sn0.5I3 | 33.80 | 0.88 | 0.800 | 23.70 | 88% of initial performance, 1000 h, continuous operation at 50 °C, air, tracking under MPP | [245] |
DipI/NaBH4–modified FASnI3 | 22.13 | 0.65 | 0.731 | 10.61 | 96% of initial performance, 1300 h, continuous operation at MPP, N2-atmosphere | [254] |
3T–modified FASnI3 | 20.50 | 0.91 | 0.757 | 14.06 | 100% of original efficiency, >700 h, N2–atmosphere | [255] |
FPEABr–modified 2D/3D FASnI3 (10 mol%) | 24.91 | 0.84 | 0.708 | 14.81 | 80% of initial performance, 432 h, continuous operation, air 60% of initial efficiency, 1 h at 80 °C, air | [256] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Werlinger, F.; Segura, C.; Martínez, J.; Osorio-Roman, I.; Jara, D.; Yoon, S.J.; Gualdrón-Reyes, A.F. Current Progress of Efficient Active Layers for Organic, Chalcogenide and Perovskite-Based Solar Cells: A Perspective. Energies 2023, 16, 5868. https://doi.org/10.3390/en16165868
Werlinger F, Segura C, Martínez J, Osorio-Roman I, Jara D, Yoon SJ, Gualdrón-Reyes AF. Current Progress of Efficient Active Layers for Organic, Chalcogenide and Perovskite-Based Solar Cells: A Perspective. Energies. 2023; 16(16):5868. https://doi.org/10.3390/en16165868
Chicago/Turabian StyleWerlinger, Francisca, Camilo Segura, Javier Martínez, Igor Osorio-Roman, Danilo Jara, Seog Joon Yoon, and Andrés Fabián Gualdrón-Reyes. 2023. "Current Progress of Efficient Active Layers for Organic, Chalcogenide and Perovskite-Based Solar Cells: A Perspective" Energies 16, no. 16: 5868. https://doi.org/10.3390/en16165868