Exploring the Influence of Innovation and Technology on Climate Change
Abstract
:1. Introduction
2. Literature Review
3. Research Methodology
3.1. Sample Description
3.2. Research Design
3.3. Data Analysis
4. Empirical Results and Discussions
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Sörlin, S.; Wormbs, N. Environing technologies: A theory of making environment. Hist. Technol. 2018, 34, 101–125. [Google Scholar] [CrossRef]
- Hejduková, P.; Kureková, L. Water scarcity: Regional analyses in the Czech Republic from 2014 to 2018. Oecon. Copernic. 2020, 11, 161–181. [Google Scholar] [CrossRef]
- Pinkse, J.; Kolk, A. International Business and Global Climate Change, 1st ed.; Routledge: London, UK, 2009. [Google Scholar]
- Shahbaz, M.; Muhammad, A.N.; Hille, E.; Mantu, K.M. UK’s net-zero carbon emissions target: Investigating the potential role of economic growth, financial development, and RD expenditures based on historical data (1870–2017). Technol. Forecast. Soc. Chang. 2020, 161, 120255. [Google Scholar] [CrossRef]
- Chang, Y.F.; Huang, B.N. Factors Leading to Increased Carbon Dioxide Emissions of the APEC Countries: The LMDI Decomposition Analysis. Singap. Econ. Rev. 2020, 1–20, online ready. [Google Scholar] [CrossRef]
- Khan, M.K.; Khan, M.I.; Rehan, M. The relationship between energy consumption, economic growth, and carbon dioxide emissions in Pakistan. Financ. Innov. 2020, 6, 1. [Google Scholar] [CrossRef]
- Tong, T.; Ortiz, J.; Xu, C.; Li, F. Economic growth, energy consumption, and carbon dioxide emissions in the E7 countries: A bootstrap ARDL bound test. Energy Sustain. Soc. 2020, 10, 20. [Google Scholar] [CrossRef]
- Le, T.H.; Nguyen, C.P. Determinants of greenhouse gas emissions revisited: A global perspective. Singap. Econ. Rev. 2022, 1–27, online ready. [Google Scholar] [CrossRef]
- Nkamnebe, A.D. Sustainability marketing in the emerging markets: Imperatives, challenges, and agenda-setting. Int. J. Emerg. Mark. 2011, 6, 217–232. [Google Scholar] [CrossRef]
- Trutnevyte, E.; Hirt, L.; Bauer, N.; Cherp, A.; Hawkes, A.; Edelenbosch, O.Y.; Pedde, S.; Vuuren, D.P. Societal Transformations in Models for Energy and Climate Policy: The Ambitious Next Step. Perspective 2019, 1, 423–433. [Google Scholar] [CrossRef]
- Shi, J.; Wang, Z.; Wang, X. Innovations in the sustainable management of local government liabilities in China. Singap. Econ. Rev. 2018, 63, 819–837. [Google Scholar] [CrossRef]
- Omri, A. Technological innovation and sustainable development: Does the stage of development matter? Environ. Impact Assess. Rev. 2020, 83, 106398. [Google Scholar] [CrossRef]
- United Nations. Kyoto Protocol to the United Nations Framework Convention on Climate Change. 1997. Available online: https://unfccc.int/resource/docs/convkp/conveng.pdf (accessed on 20 September 2022).
- United Nations. UN Paris Agreement, United Nations Treaty Collection. 2015. Available online: https://treaties.un.org/doc/Treaties/2016/02/20160215%2006-03%20PM/Ch_XXVII-7-d.pdf (accessed on 20 September 2022).
- EC (European Commission). The European Green Deal. 2019. Available online: https://ec.europa.eu/info/strategy/priorities-2019-2024/european-green-deal_ro (accessed on 9 December 2022).
- Dolge, K.; Blumberga, D. Economic growth in contrast to GHG emission reduction measures in the Green Deal context. Ecol. Indic. 2021, 130, 108153. [Google Scholar] [CrossRef]
- Alvarez-Herranz, A.; Balsalobre-Lorente, D.; Shahbaz, M.; Cantos, J.M. Energy innovation and renewable energy consumption in the correction of air pollution levels. Energy Policy 2017, 105, 386–397. [Google Scholar] [CrossRef]
- Afrifa, G.A.; Tingbani, I.; Yamoah, F.; Appiah, G. Innovation input, governance, and climate change: Evidence from emerging countries. Technol. Forecast. Soc. Chang. 2020, 161, 120256. [Google Scholar] [CrossRef]
- Szopik-Depczyńska, K. Effects of Innovation Activity in Industrial Enterprises in Eastern Poland. Oecon. Copernic. 2015, 6, 53–65. [Google Scholar] [CrossRef]
- Lopes de Sousa Jabbour, A.B.; Jabbour, C.J.C.; Godinho Filho, M.; Roubaud, D. Industry 4.0 and the circular economy: A proposed research agenda and original roadmap for sustainable operations. Ann. Oper. Res. 2018, 270, 273–286. [Google Scholar] [CrossRef]
- Quetglas, G.M.; Ortega, A. Digitalisation with Decarbonisation, Digitalisation with Decarbonisation, Working Paper, Elcano Royal Institute. 2021. Available online: http://www.realinstitutoelcano.org/wps/portal/rielcano_en/contenido?WCM_GLOBAL_CONTEXT=/elcano/elcano_in/zonas_in/wp8-2021-martin-ortega-digitalisation-with-decarbonisation (accessed on 21 December 2022).
- Puertas, R.; Marti, L. Eco-innovation and determinants of GHG emissions in OECD countries. J. Clean. Prod. 2021, 319, 128739. [Google Scholar] [CrossRef]
- Huber, J. Technological environmental innovations (TEIs) in a chain-analytical and life-cycle-analytical perspective. J. Clean. Prod. 2008, 16, 1980–1986. [Google Scholar] [CrossRef]
- Bakhtina, V.A. Innovation and its potential in the context of the ecological component of sustainable development. Sustain. Account. Manag. Policy J. 2011, 2, 248–262. [Google Scholar] [CrossRef]
- Corfe, S. 4IR and the Environment. How the Fourth Industrial Revolution Can Curb Air Pollution and Decarbonise the Economy, The Social Market Foundation. 2020. Available online: https://www.smf.co.uk/wp-content/uploads/2020/01/4IR-and-the-Environment-Report.pdf (accessed on 25 April 2023).
- Deloitte, Reducing Carbon, Fueling Growth: Lowering Emissions in the Chemical Industry. 2022. Available online: https://www2.deloitte.com/content/dam/insights/articles/us175422_erandi-realizing-a-lower-carbon-future-state-for-the-chemical-industry/DI_ERandI-Realizing-a-lower-carbon-future-state-for-the-chemical-industry.pdf (accessed on 30 April 2023).
- International Council of Chemical Association. Avoiding Greenhouse Gas Emissions. The Essential Role of Chemicals. 2017. Available online: https://icca-chem.org/wp-content/uploads/2020/05/ICCA_17-Case-Studies_Technical-Reports_WEB.pdf (accessed on 30 April 2023).
- European Environment Agency. Air Pollution Still Too High in Most EU Member States. 2021. Available online: https://www.eea.europa.eu/highlights/air-pollution-still-too-high-1 (accessed on 30 April 2023).
- Broström, A.; Karlsson, S. Mapping research on R&D, innovation and productivity: A study of an academic endeavor. Econ. Innov. New Technol. 2017, 26, 6–20. [Google Scholar] [CrossRef]
- Amesho, K.T.T.; Edoun, E.I.; Naidoo, V.; Pooe, S. Sustainable competitive advantage through technology and innovation systems in the local government authorities. Afr. Public Serv. Deliv. Perform. Rev. 2022, 10, a573. [Google Scholar] [CrossRef]
- Healy, S.A. Science, technology, and future sustainability. Futures 1995, 27, 611–625. [Google Scholar] [CrossRef]
- Pegkas, P.; Staikouras, C.; Tsamadias, C. Does research and development expenditure impact innovation? Evidence from the European Union countries. J. Policy Model. 2019, 41, 1005–1025. [Google Scholar] [CrossRef]
- Reid, D.M. Absorptive capacity and innovation in China. Int. J. Emerg. Mark. 2019, 14, 134–154. [Google Scholar] [CrossRef]
- Lv, L.; Yin, Y.; Wang, Y. The Impact of R&D input on technological innovation: Evidence from South Asian and Southeast Asian Countries. Discret. Dyn. Nat. Soc. 2020, 2020, 6408654. [Google Scholar] [CrossRef]
- Blanford, G.J. R&D investment strategy for climate change. Energy Econ. 2009, 31, 27–36. [Google Scholar] [CrossRef]
- Fernández, F.Y.; López, F.M.A.; Blanco, O.B. Innovation for sustainability: The impact of R&D spending on CO2 emissions. J. Clean. Prod. 2018, 172, 3459–3467. [Google Scholar] [CrossRef]
- Evana, E.; Lindrianasari, L.; Majidah, R. R&D intensity, industrial sensitivity, and carbon emissions disclosure in Indonesia. Indones. J. Sustain. Account. Manag. 2021, 5, 1–16. [Google Scholar] [CrossRef]
- Miskiewicz, R. The impact of innovation and information technology on greenhouse gas emissions: A case of the Visegrád countries. J. Risk. Financ. Manag. 2021, 14, 59. [Google Scholar] [CrossRef]
- Sahu, S.K.; Mehta, D. Determinants of energy and CO2 emission intensities: A study of manufacturing firms in India. Singap. Econ. Rev. 2018, 63, 389–407. [Google Scholar] [CrossRef]
- Caldeira, K.; Jain, A.K.; Hoffert, M.I. Climate sensitivity uncertainty and the need for energy without CO2 emission. Science 2003, 299, 2052–2054. [Google Scholar] [CrossRef] [PubMed]
- Hoffert, M.I.; Caldeira, K.; Benford, G.; Criswell, D.R.; Green, C.; Herzog, H.; Wigley, T.M.L. Advanced technology paths to global climate stability: Energy for a greenhouse planet. Science 2002, 298, 981–986. [Google Scholar] [CrossRef] [PubMed]
- Churchill, S.A.; Inekwe, J.; Smyth, R.; Zhang, X. R&D intensity and carbon emissions in the G7 1870–2014. Energy Econ. 2019, 80, 30–37. [Google Scholar] [CrossRef]
- Petrovic, P.; Lobanov, M.M. The impact of R&D expenditures on CO2 emissions: Evidence from sixteen OECD countries. J. Clean. Prod. 2020, 248, 119187. [Google Scholar] [CrossRef]
- Lee, K.H.; Min, B.; Yook, K.H. The impacts of carbon (CO2) emissions and environmental research and development (R&D) investment on firm performance. Int. J. Prod. Econ. 2015, 167, 1–11. [Google Scholar] [CrossRef]
- Melnyk, S.A.; Sroufe, R.P.; Calantone, R. Assessing the impact of environmental management systems on corporate and environmental performance. J. Oper. Manag. 2003, 21, 329–351. [Google Scholar] [CrossRef]
- Sambasivan, M.; Bah, S.; Jo-Ann, H. Making the case for operating “Green”: Impact of environmental proactivity on multiple performance outcomes of Malaysian firms. J. Clean. Prod. 2013, 42, 69–82. [Google Scholar] [CrossRef]
- Lee, K.H.; Min, B. Green R&D for eco-innovation and its impact on carbon emissions and firm performance. J. Clean. Prod. 2015, 108, 534–542. [Google Scholar] [CrossRef]
- Lee, S.; Tae, S. Development of a decision support model based on machine learning for applying greenhouse gas reduction technology. Sustainability 2020, 12, 3582. [Google Scholar] [CrossRef]
- Koçak, E.; Ulucak, Z.Ș. The effect of energy R&D expenditures on CO2 emission reduction: Estimation of the STIRPAT model for OECD countries. Environ. Sci. Pollut. Res. 2019, 26, 14328–14338. [Google Scholar] [CrossRef]
- Xin, D.; Ahmad, M.; Khattak, S.I. Impact of innovation in climate change mitigation technologies related to chemical industry on carbon dioxide emissions in the United States. J. Clean. Prod. 2022, 379, 134746. [Google Scholar] [CrossRef]
- Bendig, D.; Kleine-Stegemann, L.; Gisa, K. The green manufacturing framework—A systematic literature review. Clean. Eng. Technol. 2023, 13, 100613. [Google Scholar] [CrossRef]
- Reis, J.; Amorim, M.; Melao, N.; Matos, P. Digital transformation: A literature review and guidelines for future research. In Trends and Advances in Information Systems and Technologies, Proceedings of the World Conference on Information Systems and Technologies, Naples, Italy, 27–29 March 2018; Rocha, Á., Adeli, H., Reis, L.P., Costanzo, S., Eds.; Springer: Cham, Switzerland, 2018; pp. 411–421. [Google Scholar]
- Calic, G.; Shevchenko, A.; Ghasemaghaei, M.; Bontis, N.; Ozmen Tokcan, Z. From sustainability constraints to innovation: Enhancing innovation by simultaneously attending to sustainability and commercial imperatives. Sustain. Account. Manag. Policy J. 2020, 11, 695–715. [Google Scholar] [CrossRef]
- Arya, B.; Horak, S.; Bacouel-Jentjens, S.; Ismail, K. Leading entrepreneurial sustainability initiatives in emerging economies. Int. J. Emerg. Mark. 2023, 18, 64–85. [Google Scholar] [CrossRef]
- Furlan Matos Alves, M.W.; Lopes de Sousa Jabbour, A.B.; Kannan, D.; Chiappetta Jabbour, C.J. Contingency theory, climate change, and low-carbon operations management. Supply Chain. Manag. 2017, 22, 223–236. [Google Scholar] [CrossRef]
- Khair, M.N.K.; Lee, K.E.; Mokhtar, M.; Goh, C.T.; Singh, H.; Chan, P.W. Assessing responsible care implementation for sustainability in Malaysian chemical industries. Int. J. Workplace Health Manag. 2021, 14, 542–554. [Google Scholar] [CrossRef]
- World Bank. Technology Adoption by Firms in Developing Countries. 2022. Available online: https://www.worldbank.org/en/topic/competitiveness/publication/technology-adoption-by-firms-in-developing-countries (accessed on 20 May 2023).
- Mertz, O.; Halsnæs, K.; Olesen, J.E.; Rasmussen, K. Adaptation to Climate Change in Developing Countries. Environ. Manag. 2009, 43, 743–752. [Google Scholar] [CrossRef]
- Stanwick, P.; Stanwick, S. The relationship between corporate social performance and organizational size, financial performance, and environmental performance: An empirical examination. J. Bus. Ethics 1998, 17, 195–204. [Google Scholar] [CrossRef]
- European Environment Agency. Industrial Pollution Country Profiles. 2020. Available online: https://www.eea.europa.eu/themes/industry (accessed on 30 August 2022).
- Intergovernmental Panel on Climate Change. Climate Change 2013: The Physical Science Basis, Working Group, I Contribution to the IPCC Fifth Assessment Report; Cambridge University Press: Cambridge, UK, 2013; Available online: www.ipcc.ch/report/ar5/wg1 (accessed on 10 May 2022).
- EMIS. Emerging Markets Group’s EMIS Platform Database. Available online: https://www.emis.com/industries/Chemicals (accessed on 4 August 2021).
- Dragomir, V.; Gorgan, C.; Calu, D.A.; Dumitru, M. The relevance and comparability of corporate financial reporting regarding renewable energy production in Europe. Renew. Energy Focus 2022, 41, 206–215. [Google Scholar] [CrossRef]
- Makido, Y.; Dhakal, S.; Yamagata, Y. Relationship between urban form and CO2 emissions: Evidence from fifty Japanese cities. Urban. Clim. 2012, 2, 55–67. [Google Scholar] [CrossRef]
- Cifci, E.; Oliver, M.E. Reassessing the links between GHG emissions, economic growth, and the UNFCCC: A Difference-in-Differences Approach. Sustainability 2018, 10, 334. [Google Scholar] [CrossRef]
- Wang, B.; Cui, C.Q.; Li, Z.P. Influence factors and forecast of carbon emission in China: Structure adjustment for emission peak. Earth Environ. Sci. 2018, 113, 012197. [Google Scholar] [CrossRef]
- Imasiku, K.; Thomas, V.; Ntagwirumugara, E. Unraveling Green Information Technology Systems as a Global Greenhouse Gas Emission Game-Changer. Adm. Sci. 2019, 9, 43. [Google Scholar] [CrossRef]
- De Coninck, H.; Fischer, C.; Newell, R.G.; Ueno, T. International technology-oriented agreements to address climate change. Energy Policy 2008, 36, 335–356. [Google Scholar] [CrossRef]
- Jensen, P.H.; Webster, E. Another look at the relationship between innovation proxies. Aust. Econ. Pap. 2009, 48, 252–269. [Google Scholar] [CrossRef]
- Potters, L. Innovation Input and Innovation Output: Differences among Sectors. IIPTS Working Papers on Corporate R&D and Innovation, 10, European Commission, Joint Research Centre (JRC), Seville. 2009. Available online: http://iri.jrc.es/ (accessed on 10 May 2023).
- Pan, J.; Lin, G.; Xiao, W. The heterogeneity of innovation, government R&D support and enterprise innovation performance. Res. Int. Bus. Financ. 2022, 62, 101741. [Google Scholar] [CrossRef]
- Wang, H.; Sawur, Y. The Relationships between Government Subsidies, Innovation Input, and Innovation Output: Evidence from the New Generation of Information Technology Industry in China. Sustainability 2022, 14, 14043. [Google Scholar] [CrossRef]
- UNESCO Glossary. 2021. Available online: http://uis.unesco.org/en/glossary-term/machinery-and-equipment-capital-rd-expenditures (accessed on 20 September 2022).
- Chong, A.; Zanforlin, L. Technology and Epidemics. IMF Staff Pap. 2002, 49, 426–455. [Google Scholar] [CrossRef]
- King, A.; Lenox, M. Exploring the locus of profitable pollution reduction. Manag. Sci. 2002, 48, 289–299. [Google Scholar] [CrossRef]
- McGuire, J.B.; Sundgren, A.; Schneeweis, T. Corporate social responsibility and firm financial performance source. Acad. Manag. J. 1988, 31, 854–872. [Google Scholar] [CrossRef]
- Seifert, B.; Morris, S.A.; Bartkus, B.R. Comparing big givers and small givers: Financial correlates of corporate philanthropy. J. Bus. Ethics 2003, 45, 195–211. [Google Scholar] [CrossRef]
- Mahoney, L.; LaGore, W.; Scazzero, J.A. Corporate social performance, financial performance for firms that restate earnings. Issues Soc. Environ. Account. 2008, 2, 104–130. [Google Scholar] [CrossRef]
- Nechita, E.; Manea, C.L.; Nichita, E.M.; Irimescu, A.M.; Manea, D. Is financial information influencing the reporting on SDGs? Empirical evidence from Central and Eastern European chemical companies. Sustainability 2020, 12, 9251. [Google Scholar] [CrossRef]
- Levin, A.; Lin, C.F.; James Chu, C.S. Unit root tests in panel data: Asymptotic and finite-sample properties. J. Econom. 2002, 108, 1–24. [Google Scholar] [CrossRef]
- Im, K.S.; Persaran, M.H.; Shin, Y. Testing for unit roots in heterogeneous panels. J. Econom. 2003, 115, 53–74. [Google Scholar] [CrossRef]
- Apostu, S.A.; Tiron-Tudor, A.; Socol, A.; Ivan, O.R.; Mihăescu, C.; Gogu, E. Determinants of foreign direct investment in the least developed countries: Static and dynamic panel data evidence. Econ. Comput. Econ. Cybern. Stud. Res. 2022, 56, 21–36. [Google Scholar] [CrossRef]
- Baltagi, B. Econometric Analysis of Panel Data; Wiley: New York, NY, USA, 2008. [Google Scholar]
- Hausman, J.A. Specification tests in econometrics. Econometrica 1978, 46, 1251–1271. [Google Scholar] [CrossRef]
- Wooldridge, J.M. Econometric Analysis of Cross Section and Panel Data; MIT Press: Cambridge, MA, USA, 2002. [Google Scholar]
- Pesaran, M.H.; Ullah, A.; Yamagata, T. A Bias-Adjusted LM Test of Error Cross-Section Independence. Economet. J. 2008, 11, 105–127. [Google Scholar] [CrossRef]
- Greene, W.H. Econometric Analysis, 5th ed.; Prentice Hall: Upper Saddle River, NJ, USA, 2003. [Google Scholar]
- De Wachter, S.; Harris, R.D.; Tzavalis, E. Panel data unit roots tests: The role of serial correlation and the time dimension. J. Stat. Plan. Inference 2007, 137, 230–244. [Google Scholar] [CrossRef]
- Hang, G.; Jiang, Y. The Relationship between CO2 Emissions, Economic Scale, Technology, Income and Population in China. Procedia Environ. Sci. 2011, 11, 1183–1188. [Google Scholar] [CrossRef]
- Simboli, A.; Taddeo, R.; Morgante, A. Value and wastes in manufacturing. An overview and a new perspective based on eco-efficiency. Adm. Sci. 2014, 4, 173–191. [Google Scholar] [CrossRef]
- WRI and WBCSD The Greenhouse Gas Protocol. A Corporate Accounting and Reporting Standard. 2004. Available online: https://ghgprotocol.org/sites/default/files/standards/ghg-protocol-revised.pdf (accessed on 20 September 2022).
- Intergovernmental Panel on Climate Change. Guidelines for National Greenhouse Gas Inventories, Chapter 3. Chemical Industry Emissions. 2006. Available online: https://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/3_Volume3/V3_3_Ch3_Chemical_Industry.pdf (accessed on 10 August 2023).
Variables | Acronym | Measurement | Source |
---|---|---|---|
Greenhouse gas emissions | GHG | CO2e | Non-financial reports |
Research and development costs | R&D | Monetary units | Annual reports |
Technical equipment and machinery | TEM | Monetary units | Annual reports |
Annual change in sales | GROWTH | Decimal | Annual reports |
Return on assets | ROA | Decimal | Annual reports |
Variables | Mean | Min. | Max. | Std. Dev. |
---|---|---|---|---|
GHG | 23,106.38 | 0.016 | 424,513.0 | 62,120.66 |
R&D | 1.849 × 109 | 0 | 1.2 × 1010 | 3.14 × 109 |
TEM | 3.88 × 109 | 100,561.6 | 1.99 × 1010 | 4.79 × 109 |
GROWTH | 0.023 | −0.928 | 1.502 | 0.194 |
ROA | 0.056 | −0.233 | 0.293 | 0.063 |
Variables | Levin, Lin, and Chu | ADF-Fisher Chi-Square | PP-Fisher Chi-Square | |||
---|---|---|---|---|---|---|
Statistic | Prob. | Statistic | Prob. | Statistic | Prob. | |
GHG | −2.529 | 0.057 * | 11.272 | 0.337 | 13.934 | 0.176 |
R&D | −2.631 | 0.004 ** | 11.420 | 0.179 | 21.986 | 0.005 ** |
TEM | −0.317 | 0.038 ** | 7.715 | 0.066 * | 8.011 | 0.063 * |
GROWTH | −4.525 | 0.000 *** | 24.361 | 0.007 ** | 42.016 | 0.000 *** |
ROA | −3.328 | 0.0004 *** | 16.974 | 0.075 * | 16.653 | 0.082 |
Test Summary | Statistic | d.f. | Prob. |
---|---|---|---|
Cross-section F | 5.144 | 4.21 | 0.005 |
Cross-section Chi-Square | 20.490 | 4 | 0.000 |
Test Summary | Coefficient | Std. Error | t-Statistic | Prob. |
---|---|---|---|---|
R&D | −9.98 × 10−9 | 1.36 × 10−8 | 6.60 | 0.000 |
TEM | 4.7 × 10−9 | 8.68 × 10−9 | −4.132 | 0.000 |
GROWTH | 2.418 | 215.125 | 0.011 | 0.9911 |
ROA | 2896.851 | 701.023 | −4.132 | 0.000 |
Constant | 252.397 | 68.182 | 3.702 | 0.001 |
R2 | 0.640 | |||
F-statistic | 11.093 | |||
Prob. (F-statistic) | 0.0000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Apostu, S.A.; Nichita, E.M.; Manea, C.L.; Irimescu, A.M.; Vulpoi, M. Exploring the Influence of Innovation and Technology on Climate Change. Energies 2023, 16, 6408. https://doi.org/10.3390/en16176408
Apostu SA, Nichita EM, Manea CL, Irimescu AM, Vulpoi M. Exploring the Influence of Innovation and Technology on Climate Change. Energies. 2023; 16(17):6408. https://doi.org/10.3390/en16176408
Chicago/Turabian StyleApostu, Simona Andreea, Elena Mirela Nichita, Cristina Lidia Manea, Alina Mihaela Irimescu, and Marcel Vulpoi. 2023. "Exploring the Influence of Innovation and Technology on Climate Change" Energies 16, no. 17: 6408. https://doi.org/10.3390/en16176408
APA StyleApostu, S. A., Nichita, E. M., Manea, C. L., Irimescu, A. M., & Vulpoi, M. (2023). Exploring the Influence of Innovation and Technology on Climate Change. Energies, 16(17), 6408. https://doi.org/10.3390/en16176408