Origin, Migration, and Characterization of Gas in the Xinglongtai Area, Liaohe Subbasin (Northeast China): Insight from Geochemical Evidence and Basin Modeling
Abstract
:1. Introduction
2. Geological Setting
3. Data and Methods
3.1. Database
3.2. Basin Modeling
4. Results
4.1. Natural Gas Geochemistry
4.1.1. Molecular and Carbon Isotopic Composition of Different Alkane Gases
4.1.2. Correlation between C1/(C2 + C3) and δ13C1
4.1.3. Genetic Types of Natural Gas
4.2. Source Rock Types and Assessment
4.2.1. Organic Matter Richness
4.2.2. Kerogen Type
4.3. Modeling of Gas Generation, Migration, and Accumulation
4.3.1. Hydrocarbon Generation History
4.3.2. Gas Migration and Accumulation History
4.3.3. Contribution of Source Rocks in the Filling of Reservoirs
5. Discussion
5.1. Source of Thermogenic Gas
5.2. Petroleum System
5.3. Implications for Natural Gas Accumulation
5.4. Significance
6. Conclusions
- Within the peripheries of the Xinglongtai structural belt, in the Qingshui and Chenjia Sags, the primary hydrocarbon source beds are the Es4 and Es3 of the Shahejie Fm; Es4 is characterized by Shallow Lake Mudstones (SLM) and dominated by type II organic matter, while Es3 mainly comprises Nearshore Subaqueous Fan Mudstones (NSFM) and Semi-Deep Lake Mudstones (SDLM), primarily contributed by type III and type I organic matter, respectively. These factors play a critical role in determining the genesis type of natural gas and the hydrocarbon-generating capacity of the source rocks.
- The distribution of varied source rocks has a direct bearing on the type of gas discovered within different layers and positions. Inside the Xinglongtai structural belt, the natural gas comprises humic-type and mixed-type gas (a blend of sapropelic and humic-type gases) originating from Es3 NSFM and Es4 SLM. Outside the Xinglongtai structural belt, the natural gas encompasses sapropelic-type gas, humic-type gas, and secondary biodegraded gas. The humic gas derives from Es3 Nearshore Subaqueous Fan Mudstones, whereas the sapropelic gas stems from Es3 SDLM.
- The Xinglongtai structural belt hosts two distinct hydrocarbon accumulation systems, one outside and one inside the buried hill. For the system outside the buried hill, the migration and accumulation of natural gas are guided by a complex fault system within the lacustrine basin. Two separate periods of fault activity not only encouraged the vertical migration and diffusion of natural gas but also disrupted early gas reservoirs, leading to a later-stage consolidation of the natural gas. This system exhibits dual-source directions, dual-source rock types, two migration phases, and late-stage accumulation. Contrastingly, within the buried hill system, the reservoirs nested in the basement are primarily steered by hydrocarbon generation. The further mixing of various genesis types of natural gas within the unconformities and fractures culminates in early-stage accumulation. This system presents dual- source directions, dual-source rock types, a single migration phase, and early-stage accumulation.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Sample ID | Depth (m) | Strata | Mudstone Types | TOC (%) | Pyrolysis Data | ||
---|---|---|---|---|---|---|---|
S1 (mg/g) | S2 (mg/g) | Tmax (°C) | |||||
SG1-1 | 3239 | Es3 | FDM-W | 1.99 | 0.71 | 6.34 | 437 |
SG1-2 | 3372 | Es3 | FDM-W | 1.87 | 0.84 | 5.49 | 439 |
SG1-3 | 3518 | Es3 | FDM-W | 2.21 | 0.7 | 7.33 | 440 |
SG1-4 | 3537 | Es3 | FDM-W | 2.40 | 0.78 | 7.95 | 442 |
SG1-5 | 3752 | Es3 | FDM-W | 1.72 | 1.12 | 4.02 | 441 |
SG1-6 | 3819 | Es3 | FDM-W | 1.64 | 0.78 | 3.48 | 439 |
SG1-7 | 2906 | Es3 | FDM-W | 2.02 | 0.35 | 7.12 | 432 |
SG1-8 | 3464 | Es3 | FDM-W | 1.8 | 0.33 | 5.99 | 437 |
SG1-9 | 3516 | Es3 | FDM-W | 2.22 | 0.48 | 7.4 | 443 |
SG1-10 | 3518 | Es3 | FDM-W | 2.01 | 0.52 | 7.21 | 441 |
SG1-11 | 3520 | Es3 | FDM-W | 1.86 | 0.27 | 5.5 | 437 |
SG1-12 | 3534 | Es3 | FDM-W | 2.38 | 0.42 | 8.74 | 438 |
SG1-13 | 3536 | Es3 | FDM-W | 2.11 | 0.5 | 7.42 | 440 |
SG1-14 | 3538 | Es3 | FDM-W | 2.48 | 0.74 | 8.6 | 440 |
SG1-15 | 3620 | Es3 | FDM-W | 1.82 | 0.68 | 5.65 | 442 |
SG1-16 | 3622 | Es3 | FDM-W | 1.87 | 0.83 | 5.9 | 439 |
SG1-17 | 3680 | Es3 | FDM-W | 1.63 | 0.55 | 4.67 | 442 |
SG1-18 | 3686 | Es3 | FDM-W | 1.99 | 0.56 | 5.44 | 441 |
SG1-19 | 3692 | Es3 | FDM-W | 1.63 | 0.59 | 4.32 | 439 |
SG1-20 | 3696 | Es3 | FDM-W | 1.72 | 0.44 | 4.59 | 443 |
SG1-21 | 3704 | Es3 | FDM-W | 1.71 | 0.41 | 4.61 | 445 |
SG1-22 | 3710 | Es3 | FDM-W | 1.75 | 0.64 | 4.92 | 442 |
SG1-23 | 3712 | Es3 | FDM-W | 1.71 | 0.44 | 4.19 | 441 |
SG1-24 | 3722 | Es3 | FDM-W | 1.91 | 0.58 | 5.27 | 443 |
SG1-25 | 3728 | Es3 | FDM-W | 1.77 | 0.3 | 4.58 | 442 |
SG1-26 | 3732 | Es3 | FDM-W | 1.63 | 0.47 | 3.92 | 441 |
SG1-27 | 4280 | Es4 | FDM-E | 0.79 | 0.07 | 1 | 442 |
SG1-28 | 4282 | Es4 | FDM-E | 0.67 | 0.03 | 0.72 | 444 |
SG1-29 | 4284 | Es4 | FDM-E | 0.77 | 0.04 | 0.84 | 444 |
SG1-30 | 4286 | Es4 | FDM-E | 0.69 | 0.06 | 0.81 | 440 |
SG1-31 | 4288 | Es4 | FDM-E | 0.91 | 0.13 | 0.88 | 447 |
SG1-32 | 4290 | Es4 | FDM-E | 1.97 | 0.06 | 6.79 | 430 |
SG1-33 | 4292 | Es4 | FDM-E | 1.81 | 0.36 | 2 | 444 |
SG1-34 | 4292 | Es4 | FDM-E | 1.66 | 0.36 | 2 | 444 |
SG1-35 | 4294 | Es4 | FDM-E | 1.8 | 0.21 | 1.58 | 438 |
SG1-36 | 4296 | Es4 | FDM-E | 1.38 | 0.4 | 1.8 | 438 |
SG1-37 | 4298 | Es4 | FDM-E | 1.15 | 0.17 | 1.42 | 435 |
SG1-38 | 4300 | Es4 | FDM-E | 0.82 | 0.08 | 1.14 | 436 |
SG1-39 | 4300 | Es4 | FDM-E | 0.82 | 0.52 | 1.86 | 431 |
SG1-40 | 4302 | Es4 | FDM-E | 1.02 | 0.12 | 1.02 | 438 |
SG1-41 | 4304 | Es4 | FDM-E | 1.77 | 0.29 | 1.53 | 437 |
SG1-42 | 4306 | Es4 | FDM-E | 1.64 | 0.31 | 1.82 | 437 |
SG1-43 | 4308 | Es4 | FDM-E | 1.74 | 0.36 | 1.65 | 444 |
SG1-44 | 4310 | Es4 | FDM-E | 1.59 | 0.3 | 1.56 | 442 |
SG1-45 | 4312 | Es4 | FDM-E | 1.55 | 0.41 | 1.66 | 433 |
SG1-46 | 4314 | Es4 | FDM-E | 1.69 | 0.25 | 1.41 | 444 |
SG1-47 | 4316 | Es4 | FDM-E | 1.59 | 0.32 | 1.39 | 441 |
SG1-48 | 4318 | Es4 | FDM-E | 1.44 | 0.24 | 1.36 | 438 |
SG1-49 | 4320 | Es4 | FDM-E | 1.47 | 0.16 | 1.22 | 445 |
SG1-50 | 4322 | Es4 | FDM-E | 1.46 | 0.24 | 1.34 | 437 |
SG1-51 | 4328 | Es4 | FDM-E | 1.48 | 0.19 | 2.04 | 440 |
S213-1 | 3440 | Es3 | SDLM | 1.2 | 0.23 | 4.9 | 440 |
S213-2 | 3442 | Es3 | SDLM | 1.77 | 0.15 | 5.1 | 437 |
S213-3 | 3450 | Es3 | SDLM | 1.39 | 0.2 | 3.66 | 439 |
S213-4 | 3458 | Es3 | SDLM | 1.99 | 0.24 | 6.07 | 440 |
S213-5 | 3464 | Es3 | SDLM | 1.86 | 0.22 | 5.92 | 438 |
S213-6 | 3472 | Es3 | SDLM | 1.75 | 0.26 | 4.9 | 441 |
S213-7 | 3486 | Es3 | SDLM | 1.64 | 0.2 | 5.5 | 438 |
S213-8 | 3488 | Es3 | SDLM | 2.14 | 0.26 | 6.51 | 440 |
S213-9 | 3496 | Es3 | SDLM | 1.92 | 0.3 | 5.39 | 446 |
S213-10 | 3504 | Es3 | SDLM | 1.89 | 0.75 | 5.31 | 436 |
S213-11 | 3524 | Es3 | SDLM | 1.77 | 0.25 | 6.23 | 441 |
S213-12 | 3526 | Es3 | SDLM | 2.9 | 0.19 | 6.14 | 440 |
S213-13 | 3554 | Es3 | SDLM | 1.72 | 0.23 | 5.92 | 437 |
S213-14 | 3558 | Es3 | SDLM | 2.26 | 0.45 | 6.81 | 438 |
S213-15 | 3568 | Es3 | SDLM | 1.89 | 0.71 | 5.55 | 442 |
S213-16 | 3574 | Es3 | SDLM | 1.74 | 0.35 | 4.78 | 438 |
S213-17 | 3582 | Es3 | SDLM | 2 | 0.56 | 6.28 | 439 |
Q233-1 | 3451 | Es3 | SFM | 2.09 | 0.35 | 6.37 | 434 |
Q233-2 | 3352.25 | Es3 | SFM | 2.27 | 0.28 | 6.5 | 439 |
Q233-3 | 3352.75 | Es3 | SFM | 2.27 | 0.41 | 7.19 | 438 |
Q233-4 | 3353.25 | Es3 | SFM | 2.33 | 0.37 | 7.47 | 436 |
Q233-5 | 3353.75 | Es3 | SFM | 2.19 | 0.32 | 7.06 | 435 |
D306-1 | 3373 | Es3 | SLM | 0.77 | 0.16 | 0.97 | 443 |
D306-2 | 3413 | Es3 | SLM | 1.45 | 1 | 5.77 | 404 |
D306-3 | 3414 | Es3 | SLM | 1.8 | 0.07 | 3.74 | 441 |
SG168-1 | 2913 | Es3 | SDLM | 3.56 | 1.37 | 17.45 | 433 |
SG168-2 | 2919 | Es4 | SDLM | 3.37 | 0.81 | 17.95 | 438 |
SG168-3 | 2925 | Es4 | SDLM | 5.38 | 3.45 | 27.9 | 436 |
SG168-4 | 2931 | Es4 | SDLM | 4.46 | 1.88 | 24.46 | 434 |
SG168-5 | 2937 | Es4 | SDLM | 5.36 | 3.08 | 28.1 | 434 |
SG168-6 | 2955 | Es4 | SDLM | 4.93 | 2.38 | 30.06 | 443 |
SG168-7 | 2961 | Es4 | SDLM | 4.61 | 2.35 | 28.79 | 441 |
SG168-8 | 2967 | Es4 | SDLM | 4.62 | 2.44 | 28.62 | 441 |
SG168-9 | 2973 | Es4 | SDLM | 6.11 | 4.18 | 42.04 | 441 |
SG168-10 | 2979 | Es4 | SDLM | 4.46 | 4.07 | 27.3 | 438 |
SG168-11 | 2985 | Es4 | SDLM | 3.5 | 3.6 | 23.28 | 438 |
SG168-12 | 2991 | Es4 | SDLM | 4.31 | 5.8 | 31.66 | 436 |
SG168-13 | 2997 | Es4 | SDLM | 4 | 3.88 | 29.58 | 435 |
SG168-14 | 3003 | Es4 | SDLM | 3.92 | 2.68 | 27.84 | 439 |
SG168-15 | 3009 | Es4 | SDLM | 3.18 | 1.76 | 22.94 | 441 |
SG168-16 | 3015 | Es4 | SDLM | 2.44 | 2.01 | 17.82 | 438 |
SG168-17 | 3021 | Es4 | SDLM | 3.02 | 2.48 | 22 | 438 |
SG168-18 | 3027 | Es4 | SDLM | 2.96 | 1.85 | 14.24 | 435 |
SG168-19 | 3033 | Es4 | SDLM | 3.62 | 2.67 | 22.04 | 439 |
SG168-20 | 3039 | Es4 | SDLM | 3.8 | 1.88 | 24.2 | 439 |
SG168-21 | 3045 | Es4 | SDLM | 3.71 | 2.09 | 20.94 | 440 |
SG168-22 | 3051 | Es4 | SDLM | 3.56 | 1.38 | 19.62 | 439 |
SG168-23 | 3057 | Es4 | SDLM | 1.55 | 1.19 | 7.37 | 434 |
SG168-24 | 3063 | Es4 | SDLM | 1.65 | 0.55 | 6.65 | 438 |
SG168-25 | 3069 | Es4 | SDLM | 2.98 | 1.52 | 16.8 | 436 |
SG168-26 | 3075 | Es4 | SDLM | 1.1 | 0.27 | 3.86 | 435 |
SG168-27 | 3081 | Es4 | SDLM | 1.07 | 0.36 | 3.22 | 434 |
SG168-28 | 3087 | Es4 | SDLM | 2.82 | 1.83 | 14.89 | 439 |
SG168-29 | 3093 | Es4 | SDLM | 2.25 | 1.2 | 11.38 | 436 |
SG168-30 | 3099 | Es4 | SDLM | 1.75 | 0.41 | 6.55 | 435 |
SG168-31 | 3105 | Es4 | SDLM | 1.5 | 0.61 | 7.97 | 434 |
SG168-32 | 3111 | Es4 | SDLM | 1.76 | 0.51 | 8.18 | 443 |
SG168-33 | 3117 | Es4 | SDLM | 2.31 | 0.65 | 13.64 | 440 |
SG168-34 | 3123 | Es4 | SDLM | 2.61 | 0.98 | 13.72 | 440 |
SG168-35 | 3129 | Es4 | SDLM | 2.22 | 0.87 | 10.27 | 438 |
SG168-36 | 3135 | Es4 | SDLM | 1.53 | 0.46 | 6.49 | 438 |
SG168-37 | 3141 | Es4 | SDLM | 2.09 | 0.71 | 9.99 | 439 |
SG168-38 | 3147 | Es4 | SDLM | 2.51 | 0.79 | 9.21 | 438 |
SG168-39 | 3153 | Es4 | SDLM | 2.14 | 0.43 | 7.83 | 436 |
SG168-40 | 3159 | Es4 | SDLM | 3.22 | 0.87 | 12.99 | 440 |
SG168-41 | 3165 | Es4 | SDLM | 3.91 | 1.68 | 18.6 | 440 |
SG168-42 | 3171 | Es4 | SDLM | 3.15 | 1.08 | 14.3 | 443 |
SG168-43 | 3177 | Es4 | SDLM | 4.08 | 1.48 | 17.72 | 442 |
SG168-44 | 3183 | Es4 | SDLM | 3.34 | 1.42 | 13.43 | 442 |
SG168-45 | 3189 | Es4 | SDLM | 4.16 | 2.77 | 20.69 | 440 |
SG168-46 | 3195 | Es4 | SDLM | 4.05 | 2.6 | 19.85 | 441 |
SG168-47 | 3201 | Es4 | SDLM | 5.13 | 3.35 | 25.52 | 441 |
SG168-48 | 3207 | Es4 | SDLM | 5.05 | 1.87 | 28.1 | 444 |
SG168-49 | 3213 | Es4 | SDLM | 4.94 | 1.87 | 25.17 | 441 |
SG168-50 | 3219 | Es4 | SDLM | 4.73 | 1.02 | 29.57 | 439 |
SG168-51 | 3225 | Es4 | SDLM | 2.88 | 1.39 | 14.8 | 442 |
SG168-52 | 3231 | Es4 | SDLM | 3.91 | 0.97 | 20.04 | 442 |
SG168-53 | 3237 | Es4 | SDLM | 3.78 | 1.43 | 28.87 | 442 |
SG168-54 | 3243 | Es4 | SDLM | 4.75 | 1.47 | 27.6 | 441 |
SG168-55 | 3249 | Es4 | SDLM | 3.59 | 1.05 | 20.38 | 440 |
MS1-1 | 3160 | Es3 | SDLM | 1.68 | 0.103 | 4.77 | 436 |
MS1-2 | 3182 | Es3 | SDLM | 1.82 | 0.35 | 4.77 | 439 |
MS1-3 | 3202 | Es3 | SDLM | 1.85 | 0.26 | 6.49 | 437 |
MS1-4 | 3222 | Es3 | SDLM | 2.61 | 0.54 | 5.87 | 439 |
MS1-5 | 3238 | Es3 | SDLM | 1.78 | 0.42 | 5.59 | 440 |
MS1-6 | 3262 | Es3 | SDLM | 1.66 | 0.35 | 5.56 | 439 |
MS1-7 | 3281 | Es3 | SDLM | 2.15 | 0.44 | 9.87 | 440 |
MS1-8 | 3299 | Es3 | SDLM | 1.81 | 0.38 | 6.05 | 440 |
MS1-9 | 3319 | Es3 | SDLM | 1.93 | 0.31 | 7.16 | 441 |
MS1-10 | 3340 | Es3 | SDLM | 1.94 | 0.46 | 5.65 | 438 |
MS1-11 | 3360 | Es3 | SDLM | 2.13 | 0.46 | 4.51 | 438 |
MS1-12 | 3382 | Es3 | SDLM | 2.17 | 0.98 | 8.03 | 441 |
MS1-13 | 3399 | Es3 | SDLM | 3.01 | 1.06 | 6.65 | 440 |
MS1-14 | 3410 | Es3 | SDLM | 2.26 | 0.34 | 5.45 | 440 |
MS1-15 | 3450 | Es3 | SDLM | 2.47 | 0.33 | 6.92 | 442 |
MS1-16 | 3470 | Es3 | SDLM | 2.21 | 0.51 | 8.09 | 439 |
MS1-17 | 3477 | Es3 | SDLM | 2.01 | 0.29 | 4.24 | 442 |
MS1-18 | 3596 | Es3 | NSFM | 2.09 | 0.41 | 3.33 | 444 |
MS1-19 | 3621 | Es3 | NSFM | 1.71 | 0.49 | 3.46 | 446 |
MS1-20 | 3670 | Es3 | NSFM | 2.34 | 0.63 | 3.03 | 448 |
MS1-21 | 3702 | Es3 | NSFM | 1.64 | 0.43 | 1.89 | 448 |
MS1-22 | 3720 | Es3 | NSFM | 1.91 | 0.34 | 3.59 | 447 |
MS1-23 | 3755 | Es3 | NSFM | 1.81 | 0.56 | 2.23 | 446 |
MS1-24 | 3740 | Es3 | NSFM | 1.72 | 0.48 | 2.74 | 447 |
MS1-25 | 3826 | Es3 | NSFM | 1.63 | 0.51 | 1.47 | 448 |
MS1-26 | 3872 | Es3 | NSFM | 1.93 | 0.56 | 2.11 | 450 |
MS1-27 | 3901 | Es3 | NSFM | 1.57 | 0.72 | 1.86 | 449 |
MS1-28 | 3925 | Es3 | NSFM | 2.16 | 0.65 | 1.99 | 442 |
MS1-29 | 3948 | Es3 | NSFM | 1.66 | 0.92 | 2.61 | 438 |
MS1-30 | 3970 | Es3 | NSFM | 2.45 | 0.81 | 1.42 | 450 |
MS1-31 | 4011 | Es3 | NSFM | 1.73 | 1.06 | 2.02 | 442 |
MS1-32 | 4025 | Es3 | NSFM | 1.78 | 0.84 | 2.02 | 446 |
MS1-33 | 4070 | Es3 | NSFM | 1.61 | 0.78 | 1.88 | 445 |
MS1-34 | 4090 | Es3 | NSFM | 1.68 | 0.84 | 1.56 | 442 |
MS1-35 | 4121 | Es3 | NSFM | 2.27 | 0.58 | 1.17 | 445 |
MS1-36 | 4141 | Es3 | NSFM | 1.64 | 1.97 | 2.68 | 435 |
MS1-37 | 4202 | Es3 | NSFM | 1.94 | 0.66 | 1.56 | 437 |
MS1-38 | 4221 | Es3 | NSFM | 1.57 | 2.36 | 2.48 | 439 |
MS1-39 | 4260 | Es3 | NSFM | 1.72 | 0.71 | 1.27 | 437 |
MS1-40 | 4256 | Es3 | NSFM | 1.67 | 0.69 | 0.94 | 436 |
MS1-41 | 4286 | Es3 | NSFM | 1.97 | 0.98 | 1.58 | 440 |
MS1-42 | 4340 | Es3 | NSFM | 1.73 | 0.92 | 1.33 | 438 |
MS1-43 | 4420 | Es3 | NSFM | 1.72 | 1.52 | 1.31 | 441 |
MS1-44 | 4461 | Es3 | NSFM | 1.68 | 0.65 | 0.95 | 434 |
MS1-45 | 4485 | Es3 | NSFM | 1.67 | 0.64 | 0.96 | 450 |
MS1-46 | 4499 | Es3 | NSFM | 1.53 | 0.84 | 0.95 | 436 |
MS1-47 | 4526 | Es3 | NSFM | 1.69 | 1.41 | 2.22 | 446 |
MS1-48 | 4545 | Es3 | NSFM | 1.81 | 0.68 | 0.87 | 440 |
MS1-49 | 4580 | Es3 | NSFM | 1.73 | 1.35 | 1.62 | 442 |
MS1-50 | 4600 | Es3 | NSFM | 1.75 | 0.39 | 1.35 | 437 |
MS1-51 | 4620 | Es3 | NSFM | 1.82 | 0.31 | 0.74 | 437 |
MS1-52 | 4641 | Es3 | NSFM | 1.77 | 0.83 | 1.27 | 443 |
MS1-53 | 4652 | Es3 | NSFM | 2.18 | 0.66 | 0.65 | 448 |
MT1-1 | 4226 | Es3 | NSFM | 1.45 | 0.735 | 2.175 | 395 |
MT1-2 | 4302 | Es3 | NSFM | 1.9 | 0.833 | 2.527 | 400 |
MT1-3 | 4320 | Es3 | NSFM | 1.36 | 0.6164 | 2.0536 | 399 |
MT1-4 | 4344 | Es3 | NSFM | 1.78 | 0.5958 | 2.4742 | 400 |
MT1-5 | 4378 | Es3 | NSFM | 2.1 | 0.85 | 2.73 | 399 |
MT1-6 | 4392 | Es3 | NSFM | 1.97 | 0.9984 | 2.5216 | 398 |
MT1-7 | 4422 | Es3 | NSFM | 1.93 | 0.6989 | 2.4511 | 399 |
MT1-8 | 4500 | Es3 | NSFM | 1.72 | 0.654 | 1.806 | 392 |
MT1-9 | 4518 | Es3 | NSFM | 1.4 | 0.338 | 1.302 | 392 |
MT1-10 | 4544 | Es3 | NSFM | 2.11 | 0.7037 | 2.8063 | 432 |
MT1-11 | 4694 | Es3 | NSFM | 1.85 | 0.384 | 1.776 | 395 |
MT1-12 | 4720 | Es3 | NSFM | 1.77 | 0.2708 | 1.6992 | 393 |
MT1-13 | 4736 | Es3 | NSFM | 1.76 | 0.3456 | 1.6544 | 388 |
MT1-14 | 4798 | Es3 | NSFM | 1.97 | 0.4879 | 1.8321 | 395 |
MT1-15 | 4844 | Es3 | NSFM | 2.07 | 0.5542 | 1.9458 | 392 |
MT1-16 | 5104.4 | Es3 | NSFM | 1.29 | 0.0091 | 0.2709 | 554 |
MT1-17 | 5105.5 | Es3 | NSFM | 1.11 | 0.0147 | 0.2553 | 568 |
MT1-18 | 5107 | Es3 | NSFM | 1.2 | 0.016 | 0.324 | 550 |
MT1-19 | 5734 | Es3 | NSFM | 1.31 | 0.24 | 0.47 | 379 |
MT1-20 | 5782 | Es3 | NSFM | 1.046 | 0.26 | 0.51 | 376 |
Sample ID | Strata | Compimemts (%) | δ13C (‰, VPDB) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
N2 | CO2 | CH4 | C2H6 | C3H8 | iC4H10 | nC4H10 | δ13CC02 | δ13C1 | δ13C2 | δ13C3 | δiC4 | δnC4 | ||
X1 | Ed | / | / | 97.64 | 1.04 | 0 | 0.25 | 0.1 | / | −44.0 | / | / | / | / |
X2 | Ed | 0.12 | 0.16 | 98.64 | 0.74 | 0.02 | 0.31 | 0 | / | −42.4 | −22.1 | −7.0 | / | / |
X3 | Ed | 0.09 | 0.34 | 98.42 | 0.75 | 0.04 | 0.29 | 0.01 | −12.3 | −43.3 | −22.5 | −14.5 | −26.9 | −19.4 |
X4 | Ed | 0.15 | 0 | 98.3 | 1.37 | 0.02 | 0.13 | 0 | / | −44.4 | −25.8 | −9.6 | −26.9 | / |
X5 | Ed | 0.1 | 0 | 98.18 | 1.3 | 0.07 | 0.25 | 0.02 | / | −43.2 | −25.1 | −13.5 | −28.0 | / |
X6 | Ed | 0.06 | 0.18 | 98.39 | 0.97 | 0.05 | 0.19 | 0.01 | −18.3 | −43.8 | −25.5 | −18.7 | −25.2 | −21.0 |
X7 | Ed | 0.01 | 0 | 97.01 | 2.17 | 0.13 | 0.44 | 0.02 | −20.4 | −44.2 | −26.2 | −15.0 | −28.0 | −19.8 |
X8 | Ed | 0.11 | 0 | 97.56 | 1.7 | 0.09 | 0.34 | 0.02 | / | −43.7 | −26.1 | −14.6 | −28.0 | / |
X9 | Ed | 0.11 | 0 | 97.37 | 1.85 | 0.12 | 0.35 | 0.03 | −20.6 | −43.8 | −26.1 | −14.8 | −27.9 | −19.6 |
X10 | Ed | 0.1 | 0.32 | 96.48 | 1.94 | 0.34 | 0.36 | 0.08 | −18.7 | −42.7 | −25.6 | −19.9 | −27.4 | −20.8 |
X11 | Ed | / | / | 98.24 | 0.71 | 0 | 0.09 | 0 | / | −44.9 | / | / | / | / |
X12 | Ed | 0.1 | 0 | 97.54 | 1.84 | 0.09 | 0.34 | 0.01 | −21.1 | −43.6 | −26.0 | −12.8 | −28.1 | |
X13 | Ed | 0.09 | 0.15 | 97.01 | 2.03 | 0.12 | 0.35 | 0.03 | / | −43.7 | −26.1 | −15.0 | −28.2 | −20.4 |
X14 | Ed | 0.15 | 0 | 97.78 | 1.72 | 0.03 | 0.3 | 0 | / | −44.2 | −26.1 | −8.8 | −27.8 | / |
X15 | Ed | 0.17 | 0 | 97.05 | 2.16 | 0.3 | 0.19 | 0.05 | / | −44.4 | −26.6 | −22.0 | −27.1 | −20.6 |
X16 | Ed | 0.05 | 0.33 | 96.53 | 2.29 | 0.13 | 0.39 | 0.02 | / | −42.8 | −26.1 | −13.2 | −28.9 | −17.4 |
X17 | Ed | 0.11 | 0 | 97.64 | 1.85 | 0.06 | 0.32 | 0 | −21.3 | −44.1 | −25.9 | −10.0 | −28.2 | / |
X18 | Ed | 0.26 | 0 | 99.52 | 0.18 | 0.02 | 0.02 | 0.01 | −18.4 | −51.3 | −25.5 | / | / | / |
X19 | Ed | 0.22 | 0 | 97.89 | 1.56 | 0.14 | 0.09 | 0.04 | / | −52.1 | −31.8 | / | / | / |
X20 | Ed | 0.31 | 0 | 99.46 | 0.22 | 0 | 0.01 | −20.8 | −50.6 | −27.7 | / | / | / | |
X21 | Ed | 0.23 | 0 | 97.72 | 1.75 | 0.08 | 0.1 | 0.03 | / | −52.4 | −31.4 | −19.8 | −27.3 | −21.3 |
X22 | Ed | 0.24 | 0 | 97.56 | 1.73 | 0.13 | 0.22 | 0.03 | / | −51.0 | −29.1 | −18.2 | −28.0 | −22.5 |
X23 | Ed | 0.37 | 0 | 99.5 | 0.13 | −20.3 | −51.9 | −34.8 | / | / | / | |||
X24 | Ed | 0.21 | 0 | 97.4 | 1.74 | 0.28 | 0.16 | 0.09 | / | −51.0 | −30.7 | −21.3 | −28.0 | −24.0 |
X25 | Ed | 0.25 | 0.76 | 84.75 | 7.89 | 4.34 | 0.52 | 0.95 | −3.1 | −45.7 | −30.4 | −27.8 | −26.7 | |
X26 | Es1 | 0.13 | 1.5 | 82.46 | 8.81 | 4.59 | 0.58 | 1.09 | −4.2 | −45.4 | −31.1 | −28.0 | −26.8 | |
X27 | Es1 | 2.44 | 19.65 | 77.44 | 0.31 | 0.05 | 0.01 | 0.00 | −0.7 | −28.6 | −18.9 | −18.6 | / | / |
X28 | Es3 | 1.19 | 20.37 | 78.24 | 0.11 | 0.01 | 0.00 | 0.00 | −2.4 | −28.7 | −17.5 | / | / | / |
X29 | Es3 | 2 | 0.16 | 91.77 | 4.8 | 0.7 | 0.12 | 0.26 | −6.0 | −31.0 | −24.8 | −23.8 | −23.9 | |
X30 | Ar | 2.12 | 0.28 | 85.21 | 5.08 | 2.8 | 1.01 | 1.29 | −6.8 | −31.9 | −26.2 | −25.7 | −25.7 | |
X31 | Ar | 1.7 | 0.1 | 90.1 | 4.4 | 1.9 | 0.6 | 0.8 | − | −36.37 | −25.30 | −24.30 | ||
X32 | Ar | 0.83 | 0.45 | 85.7 | 7.14 | 3.16 | 0.84 | 1.04 | −2.7 | −37.2 | −27.0 | −25.9 | −25.6 | |
X33 | Ar | 30.16 | 0.073 | 63.39 | 4.63 | 0.7 | 0.12 | 0.28 | − | −36.3 | −26.6 | −24.5 | −24.0 | |
X34 | Ar | 31.17 | 0.15 | 62.65 | 4.76 | 0.56 | 0.061 | 0.14 | − | −37.2 | −27.2 | −24.7 | −23.1 | |
X35 | Ar | 0.8 | 0.46 | 83.49 | 9 | 3.57 | 0.77 | 0.85 | −11.8 | −36.6 | −27.4 | −25.6 | −25.7 | |
X36 | Ar | 1.31 | 0.19 | 85.51 | 7.37 | 3.31 | 0.77 | 0.9 | − | −36.8 | −27.6 | −25.8 | −24.8 | |
X37 | Ar | / | / | 97.64 | 1.04 | 0 | 0.25 | 0.1 | / | −44.0 | / | / | / | / |
References
- Gawthorpe, R.; Leeder, M. Tectono-sedimentary evolution of active extensional basins. Basin Res. 2000, 12, 195–218. [Google Scholar] [CrossRef]
- Liu, G.; Zeng, L.; Li, H.; Ostadhassan, M.; Rabiei, M. Natural fractures in metamorphic basement reservoirs in the Liaohe Basin, China. Mar. Pet. Geol. 2020, 119, 104479. [Google Scholar] [CrossRef]
- Hou, M.; Cao, H.; Li, H.; Chen, A.; Wei, A.; Chen, Y.; Wang, Y.; Zhou, X.; Ye, T. Characteristics and controlling factors of deep buried-hill reservoirs in the BZ19-6 structural belt, Bohai Sea area. Nat. Gas Ind. B 2019, 6, 305–316. [Google Scholar] [CrossRef]
- Meng, W.; Chen, Z.; Li, P.; Guo, Y.; Gao, X.; Hui, X.; Zhang, Y. Exploration theories and practices of buried-hill reservoirs: A case from Liaohe Depressions. Pet. Explor. Dev. 2009, 36, 136–143. (In Chinese) [Google Scholar]
- Feng, Y.; Liu, G.; Yang, W.; Gong, Y. Characteristics and model of reservoir formation in Xinglongtai oilfield, Liaohe depression. Mar. Geol. Quat. Geol. 2014, 34, 137–143. (In Chinese) [Google Scholar]
- Gao, X.; Pang, X.; Li, X.; CHen, Z.; Shan, J.; Liu, F.; Zou, Z.; Li, W. Characteristics of oil and gas complex formation and the series of oil and gas reservoirs in the submerged mountain tectonic zone of the faulted basin—Taking the Xinglongtai tectonic zone of the western Liaohe depression as an example. Sci. Sin. 2008, 38, 95–102. (In Chinese) [Google Scholar]
- Pei, L.; Wang, X.; Gao, G.; Liu, W. Geochemical heterogeneity, origin and secondary alteration of natural gas inside and outside buried hills of Xinglongtai area, West Sag, Liaohe Depression, Bohai Bay Basin. J. Pet. Sci. Eng. 2022, 208, 109456. [Google Scholar] [CrossRef]
- Pei, L.; Wang, X.; Wang, Q.; Zhang, Q.; Luo, H.; Liu, W. Origin, accumulation and secondary alteration of natural gas around Qingshui Sub-sag, Liaohe Depression, China: Insights from molecular and isotopic composition. Mar. Pet. Geol. 2022, 135, 105390. [Google Scholar] [CrossRef]
- Li, X. Accumulation conditions and key exploration & development technologies of heavy oil in Huanxiling oilfield in Liaohe depression, Bohai Bay Basin. Pet. Res. 2020, 5, 18–38. [Google Scholar]
- Liu, Q.; Wu, X.; Wang, X.; Jin, Z.; Zhu, D.; Meng, Q.; Huang, S.; Liu, J.; Fu, Q. Carbon and hydrogen isotopes of methane, ethane, and propane: A review of genetic identification of natural gas. Earth Sci. Rev. 2019, 190, 247–272. [Google Scholar] [CrossRef]
- Xu, C.; Yu, H.; Wang, J.; Liu, X. Formation conditions and accumulation characteristics of Bozhong 19-6 large condensate gas field in offshore Bohai Bay Basin. Pet. Explor. Dev. 2019, 46, 27–40. [Google Scholar] [CrossRef]
- Wang, Q.; Hao, F.; Niu, C.; Zou, H.; Miao, Q.; Yin, J.; Cao, Y.; Liu, M. Origins and deep petroleum dynamic accumulation in the southwest part of the Bozhong depression, Bohai Bay Basin: Insights from geochemical and geological evidences. Mar. Pet. Geol. 2021, 134, 105347. [Google Scholar] [CrossRef]
- Wang, J.-Y.; Wang, J.-A.; Xiong, L.-P.; Zhang, J.-M. Analysis of factors affecting heat flow density determination in the Liaohe Basin, North China. Tectonophysics 1985, 121, 63–78. [Google Scholar] [CrossRef]
- Qi, J.; Yang, Q. Cenozoic structural deformation and dynamic processes of the Bohai Bay basin province, China. Mar. Pet. Geol. 2010, 27, 757–771. [Google Scholar] [CrossRef]
- Li, M.; Qi, J.; Tong, H.; Yu, F.; Wang, N. Cenozoic fault structure and hydrocarbon accumulation in Western Sag‚Liaohe Depression. Pet. Explor. Dev. 2010, 37, 281–288. (In Chinese) [Google Scholar]
- Hu, L.; Fuhrmann, A.; Poelchau, H.S.; Horsfield, B.; Zhang, Z.; Wu, T.; Chen, Y.; Li, J. Numerical simulation of petroleum generation and migration in the Qingshui sag, western depression of the Liaohe basin, northeast China. AAPG Bull. 2005, 89, 1629–1649. [Google Scholar] [CrossRef]
- Wang, Y.; Hu, Y.; Huang, S.; Kang, W.; Chen, Y. Geological conditions, petential and exploration direction of nature gas in Liaohe Depression, Bohai By Basin. Nutrual Gas Geosci. 2018, 29, 1422–1432. (In Chinese) [Google Scholar]
- Peng, W.; Hu, G.; Feng, Z.; Liu, D.; Wang, Y.; Lv, Y.; Zhao, R. Origin of Paleogene natural gases and discussion of abnormal carbon isotopic composition of heavy alkanes in the Liaohe Basin, NE China. Mar. Pet. Geol. 2018, 92, 670–684. [Google Scholar] [CrossRef]
- Mu, G.; Zhong, N.; Liu, B.; Yu, T.; Liu, Y. The quantitative evaluation method of lacustrine mudstone source rock and its application. Acta Pet. Sin. 2010, 31, 218–224+230. (In Chinese) [Google Scholar]
- Wang, Y.; Chen, J.; Shen, W.; Gao, X.; Li, S. Anomalies of gas molecular and isotopic compositions of terrestrial mud volcanoes caused by post-genetic processes—A case from the mud volcanoes in the Junggar Basin, northwest China. J. Pet. Sci. Eng. 2021, 196, 107698. [Google Scholar] [CrossRef]
- Wang, X.; Jiang, Z.; Hu, G.; Fan, T.; Wang, J.; Lu, H. Sendimentary facies and evolusion of upper fourth member of paleogene shahejie formation in western sag of Liaohe Basin. J. Jilin Univ. Earth Sci. Ed. 2019, 49, 1222–1234. (In Chinese) [Google Scholar]
- Shabani, F.; Amini, A.; Tavakoli, V.; Chehrazi, A.; Gong, C. 3D basin and petroleum system modelling of the early cretaceous play in the NW Persian Gulf. Geoenergy Sci. Eng. 2023, 226, 211768. [Google Scholar] [CrossRef]
- Baur, F.; Hosford Scheirer, A.; Peters, K.E. Past, present, and future of basin and petroleum system modeling. AAPG Bull. 2018, 102, 549–561. [Google Scholar] [CrossRef]
- Abdel-Fattah, M.I.; Pigott, J.D.; Abd-Allah, Z.M. Integrative 1D-2D basin modeling of the cretaceous Beni Suef basin, Western Desert, Egypt. J. Pet. Sci. Eng. 2017, 153, 297–313. [Google Scholar] [CrossRef]
- Al-Hajeri, M.M.; Al Saeed, M.; Derks, J.; Fuchs, T.; Hantschel, T.; Kauerauf, A.; Neumaier, M.; Schenk, O.; Swientek, O.; Tessen, N. Basin and petroleum system modeling. Oilfield Rev. 2009, 21, 14–29. [Google Scholar]
- Yang, S.; Li, M.; Xiao, H.; Wang, F.; Cai, G.; Huang, S. Prediction and quantification of effective gas source rocks in a lacustrine basin: Western Depression in the Liaohe Subbasin. Pet. Sci. 2023. under review. [Google Scholar]
- Burnham, A.K. A Simple Kinetic Model of Petroleum Formation and Cracking; Lawrence Livermore National Lab.: Livermore, CA, USA, 1989. [Google Scholar]
- Chen, L.; Gan, H.; Zhu, C.; Tian, J. Study on Subsidence History of Weixinan Sag, Beibuwan Basin. J. Xinjiang Pet. Inst. 2002, 14, 12–17. (In Chinese) [Google Scholar]
- Wygrala, B.P. Integrated Study of an Oil Field in the Southern Po Basin, Northern Italy; KFK: Karlsruhe, Germany, 1989; 325p. [Google Scholar]
- Peters, K.E. Guidelines for evaluating petroleum source rock using programmed pyrolysis. AAPG Bull. 1986, 70, 318–329. [Google Scholar]
- Liu, Q.; Jin, Z.; Meng, Q.; Wu, X.; Jia, H. Genetic types of natural gas and filling patterns in Daniudi gas field, Ordos Basin, China. J. Asian Earth Sci. 2015, 107, 1–11. [Google Scholar] [CrossRef]
- Dai, J.; Ni, Y.; Huang, S.; Peng, W.; Han, W.; Gong, D.; Wei, W. Genetic types of gas hydrates in China. Pet. Explor. Dev. 2017, 44, 887–898. [Google Scholar] [CrossRef]
- Chung, H.M.; Gormly, J.R.; Squires, R.M. Origin of gaseous hydrocarbons in subsurface environments: Theoretical considerations of carbon isotope distribution. Chem. Geol. 1988, 71, 97–104. [Google Scholar] [CrossRef]
- Whiticar, M.J. Carbon and hydrogen isotope systematics of bacterial formation and oxidation of methane. Chem. Geol. 1999, 161, 291–314. [Google Scholar] [CrossRef]
- Milkov, A.V.; Etiope, G. Revised genetic diagrams for natural gases based on a global dataset of >20,000 samples. Org. Geochem. 2018, 125, 109–120. [Google Scholar] [CrossRef]
- Liu, W.; Zhang, D.; Gao, B.; Fan, M. Using geochemical tracing system to identify new types of gas sources in marine strata of the Hotan River Gas Field in the Tarim Basin. Sci. China Earth Sci. 2010, 53, 844–853. [Google Scholar] [CrossRef]
- Dai, J.; Li, J.; Luo, X.; Zhang, W.; Hu, G.; Ma, C.; Guo, J.; Ge, S. Stable carbon isotope compositions and source rock geochemistry of the giant gas accumulations in the Ordos Basin, China. Org. Geochem. 2005, 36, 1617–1635. [Google Scholar] [CrossRef]
- Dai, J. Identification of various alkane gases. Sci. Sin. 1992, 2, 185–193. (In Chinese) [Google Scholar]
- Song, Y.; Zhao, M.; Hu, G.; Zhu, G. Progress and prospects of natural gas geochemical research in China. Bull. Mineral. Petrol. Geochem. 2012, 31, 529–542. (In Chinese) [Google Scholar]
- James, A.; Burns, B. Microbial alteration of subsurface natural gas accumulations. AAPG Bull. 1984, 68, 957–960. [Google Scholar]
- Li, M.; Lai, H.; Mao, F.; Liu, G.; Xiao, H.; Tang, Y. Geochemical assessment of source rock within a stratigraphic geochemical framework: Taking termit Basin (Niger) as an example. Earth Sci. 2018, 43, 3603–3615. (In Chinese) [Google Scholar]
- Lai, H.; Li, M.; Liu, J.; Mao, F.; Xiao, H.; He, W.; Yang, L. Organic geochemical characteristics and depositional models of Upper Cretaceous marine source rocks in the Termit Basin, Niger. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2018, 495, 292–308. [Google Scholar] [CrossRef]
- Li, M.; Zhong, N.; Shi, S.; Zhu, L.; Tang, Y. The origin of trimethyldibenzothiophenes and their application as maturity indicators in sediments from the Liaohe Basin, East China. Fuel 2013, 103, 299–307. [Google Scholar] [CrossRef]
- Xie, Y.; Zhu, X.; Zhao, K. Sequence-stratigraphic Framework on Paleogene of the Liaohe Western Depression. Sci. Technol. Rev. 2010, 28, 58–64. (In Chinese) [Google Scholar]
- Yang, T.; Cao, Y.; Liu, H. Highstand sublacustrine fans: The role of a sudden increase in sediment supply. Basin Res. 2023, 35, 1486–1508. [Google Scholar] [CrossRef]
- Yang, T.; Cao, Y.; Wang, Y.; Cai, L.; Liu, H.; Jin, J. Sedimentary characteristics and depositional model of hyperpycnites in the gentle slope of a lacustrine rift basin: A case study from the third member of the Eocene Shahejie Formation, Bonan Sag, Bohai Bay Basin, Eastern China. Basin Res. 2023, 35, 1590–1618. [Google Scholar] [CrossRef]
- Welte, D.; Tissot, P. Petroleum Formation and Occurrence; Springer: Berlin/Heidelberg, Germany, 1984. [Google Scholar]
- Makeen, Y.M.; Abdullah, W.H.; Pearson, M.J.; Hakimi, M.H.; Ayinla, H.A.; Elhassan, O.M.; Abas, A.M. History of hydrocarbon generation, migration and accumulation in the Fula sub-basin, Muglad Basin, Sudan: Implications of a 2D basin modeling study. Mar. Pet. Geol. 2016, 77, 931–941. [Google Scholar] [CrossRef]
Age at the Top (Ma) | Layer Name | PSE | Event Type |
---|---|---|---|
0.0 | N + Q | Overburden Rock | Deposition |
24.6 | / | / | Erosion (after Ed) |
26.6 | Ed | Reservoir Rock | Deposition |
36.0 | / | / | Erosion (after Es1+2) |
36.5 | Es1+2 | Reservoir Rock | Deposition |
38.0 | / | / | Erosion (after Es3) |
38.3 | Es31 | Rock Source | Deposition |
39.0 | Es32 | Source Rock | Deposition |
41.5 | Es33 | Source Rock | Deposition |
43.0 | Es41 | Source Rock | Deposition |
/ | Basement | Reservoir Rock | Deposition |
Formation | TOC | HI | Kerogen Type | Kinetic Model |
---|---|---|---|---|
(%) | (mg HC/g Rock) | |||
SFM | 2.2 | 305 | Type II | (Burnham, 1989 T-II) |
FDM-W | 1.9 | 290 | Type II | (Burnham, 1989 T-II) |
FDM-E | 1.5 | 100 | Type III | (Burnham, 1989 T-III) |
SDLM | 2.2 | 490 | Type I | (Burnham, 1989 T-I) |
SLM | 1.4 | 200 | Type II | (Burnham, 1989 T-II) |
NSFM | 1.6 | 75 | Type III | (Burnham, 1989 T-III) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, S.; Li, M.; Wang, Y.; Xiao, H.; Huang, S.; Kang, W.; Wang, F. Origin, Migration, and Characterization of Gas in the Xinglongtai Area, Liaohe Subbasin (Northeast China): Insight from Geochemical Evidence and Basin Modeling. Energies 2023, 16, 6429. https://doi.org/10.3390/en16186429
Yang S, Li M, Wang Y, Xiao H, Huang S, Kang W, Wang F. Origin, Migration, and Characterization of Gas in the Xinglongtai Area, Liaohe Subbasin (Northeast China): Insight from Geochemical Evidence and Basin Modeling. Energies. 2023; 16(18):6429. https://doi.org/10.3390/en16186429
Chicago/Turabian StyleYang, Sibo, Meijun Li, Yanshan Wang, Hong Xiao, Shuangquan Huang, Wujiang Kang, and Fangzheng Wang. 2023. "Origin, Migration, and Characterization of Gas in the Xinglongtai Area, Liaohe Subbasin (Northeast China): Insight from Geochemical Evidence and Basin Modeling" Energies 16, no. 18: 6429. https://doi.org/10.3390/en16186429
APA StyleYang, S., Li, M., Wang, Y., Xiao, H., Huang, S., Kang, W., & Wang, F. (2023). Origin, Migration, and Characterization of Gas in the Xinglongtai Area, Liaohe Subbasin (Northeast China): Insight from Geochemical Evidence and Basin Modeling. Energies, 16(18), 6429. https://doi.org/10.3390/en16186429