Issues, Challenges, and Future Perspectives of Perovskites for Energy Conversion Applications
Abstract
:1. Introduction
2. Perovskite Materials
3. Operation Mechanism and Evolution of Perovskite Solar Cell
3.1. Inorganic Perovskite Solar Cells
3.2. Hybrid Perovskite Material Solar Cells
3.3. Material Requirements for High Performance Solar Cell Devices
3.4. Tandem Perovskite Solar Cells
4. Perovskite Materials Concern for Solar Cell Applications
4.1. Sn-Based Solar Cells
4.2. Bi-Based Solar Cells
4.3. Sb-Based Solar Cells
4.4. Ge-Based Solar Cells
4.5. Double Perovskite Solar Cells
4.6. Chalcogenide Perovskite Solar Cells
5. Issues and Challenges in Perovskite Solar Cells
5.1. Perovskite Structural Stability Perspective
5.2. Device Fabrication Issues
5.3. Lifetime and Stability under High Temperature and Humidity
5.4. Alternatives to the Toxic Heavy Metal Lead
5.5. Recombination, Optical, and Resistance Losses
5.6. Issues with Large-Area Solar Modules
5.7. Manufacturing Cost
5.7.1. Material Cost Analysis
5.7.2. Panel Cost Analysis
5.7.3. Module Cost Reduction Strategy
6. Potential Applications and Market
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Nunez, C. Learn How Human Use of Fossil Fuel Non-Renewable Energy Resources Coal, Oil, and Natural Gas-Affect Climate Change. National Geographic. 2 April 2019. Available online: https://www.nationalgeographic.com/environment/article/fossil-fuels (accessed on 25 November 2021).
- United Nations Climate Change Conference, Glasgow, UK from 31 October–13 November 2021. Available online: https://earth5r.org/cop26-the-negotiations-explained/ (accessed on 1 January 2022).
- Ballif, C.; Haug, F.J.; Boccard, M.; Verlinden, P.J.; Hahn, G. Status and perspectives of crystalline silicon photovoltaics in research and industry. Nat. Rev. Mater. 2022, 7, 597–616. [Google Scholar] [CrossRef]
- Shockley, W.; Queisser, H.J. Detailed balance limit of efficiency of p-n junction solar cells. J. Appl. Phys. 1961, 32, 510–519. [Google Scholar] [CrossRef]
- MIT News. Explained: Why Perovskites Could Take Solar Cells to New Heights. Available online: https://news.mit.edu/2022/perovskites-solar-cells-explained-0715 (accessed on 1 July 2023).
- Akihiro, K.; Teshima, K.; Shirai, Y.; Miyasaka, T. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 2009, 131, 6050–6051. [Google Scholar]
- Green, M.A.; Ho-Baillie, A.; Snaith, H.J. The emergence of perovskite solar cells. Nat. Photonics 2014, 8, 506–514. [Google Scholar] [CrossRef]
- Snaith, H.J. Perovskites: The emergence of a new era for low-cost, high-efficiency solar cells. J. Phys. Chem. Lett. 2013, 4, 3623–3630. [Google Scholar] [CrossRef]
- Park, N.-G. Perovskite solar cells: An emerging photovoltaic technology. Mater. Today 2015, 18, 65–72. [Google Scholar] [CrossRef]
- Julian, B.; Pellet, N.; Moon, S.-J.; Humphry-Baker, R.; Gao, P.; Nazeeruddin, M.K.; Grätzel, M. Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature 2013, 499, 316–319. [Google Scholar]
- Zhang, W.; Anaya, M.; Lozano, G.; Calvo, M.E.; Johnston, M.B.; Míguez, H.; Snaith, H.J. Highly efficient perovskite solar cells with tunable structural color. Nano Lett. 2015, 15, 1698–1702. [Google Scholar] [CrossRef]
- Wang, R.; Huang, T.; Xue, J.; Tong, J.; Zhu, K.; Yang, Y. Prospects for metal halide perovskite-based tandem solar cells. Nat. Photonics 2021, 15, 411–425. [Google Scholar] [CrossRef]
- National Renewable Energy Laboratory. Best Research-Cell Efficiencies. Available online: https://www.nrel.gov/pv/assets/pdfs/best-research-cell-efficiencies.20200925.pdf (accessed on 1 July 2023).
- Katz, E.A. Perovskite: Name puzzle and German-Russian odyssey of discovery. Helv. Chim. Acta 2020, 103, e2000061. [Google Scholar] [CrossRef]
- Goldschmidt, V.M. Die gesetze der krystallochemie. Naturwissenschaften 1926, 14, 477–485. [Google Scholar] [CrossRef]
- Halasyamani, P.S. Noncentrosymmetric Inorganic Oxide Materials: Synthetic Strategies and Characterization Techniques. In Functional Oxides; O’Hare, D., Walton, R.I., Bruce, D.W., Eds.; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2010; pp. 1–40. ISBN 9780470997505. [Google Scholar]
- Goel, P.; Sundriyal, S.; Shrivastav, V.; Mishra, S.; Dubal, D.P.; Kim, K.-H.; Deep, A. Perovskite materials as superior and powerful platforms for energy conversion and storage applications. Nano Energy 2021, 80, 105552. [Google Scholar] [CrossRef]
- Locock, A.J.; Mitchell, R.H. Perovskite classification: An Excel spreadsheet to determine and depict end-member proportions for the perovskite-and vapnikite-subgroups of the perovskite supergroup. Comput. Geosci. 2018, 113, 106–114. [Google Scholar] [CrossRef]
- Dong, H.; Ran, C.; Gao, W.; Li, M.; Xia, Y.; Huang, W. Metal Halide Perovskite for next-generation optoelectronics: Progresses and prospects. eLight 2023, 3, 3. [Google Scholar] [CrossRef]
- Baeva, M.; Gets, D.; Polushkin, A.; Vorobyov, A.; Goltaev, A.; Neplokh, V.; Mozharov, A.; Krasnikov, D.V.; Nasibulin, A.G.; Mukhin, I.; et al. ITO-free silicon-integrated perovskite electrochemical cell for light-emission and light-detection. Opto-Electron. Adv. 2023, 6, 220154. [Google Scholar] [CrossRef]
- Thomas, S.; Thankappan, A. (Eds.) Perovskite Photovoltaics: Basic to Advanced Concepts and Implementation; Academic Press: Cambridge, MA, USA, 2018; pp. 197–229. [Google Scholar]
- Orrea-Baena, J.-P.; Saliba, M.; Buonassisi, T.; Grätzel, M.; Abate, A.; Tress, W.; Hagfeldt, A. Promises and challenges of perovskite solar cells. Science 2017, 358, 739–744. [Google Scholar] [CrossRef] [PubMed]
- Lin, K.; Xing, J.; Quan, L.N.; García de Arquer, F.P.; Gong, X.; Lu, J.; Xie, L.; Zhao, W.; Zhang, D.; Yan, C.; et al. Perovskite light-emitting diodes with external quantum efficiency exceeding 20 per cent. Nature 2018, 562, 245–248. [Google Scholar] [CrossRef]
- Akkerman, Q.A.; Manna, L. What defines a halide perovskite? ACS Energy Lett. 2020, 5, 604–610. [Google Scholar] [CrossRef]
- Hoefler, S.F.; Trimmel, G.; Rath, T. Progress on lead-free metal halide perovskites for photovoltaic applications: A review. Monatshefte Für Chem. Chem. Mon. 2017, 148, 795–826. [Google Scholar] [CrossRef]
- Ge, C.; Xue, Y.Z.B.; Li, L.; Tang, B.; Hu, H. Recent Progress in 2D/3D Multidimensional Metal Halide Perovskites Solar Cells. Front. Mater. 2020, 7, 601179. [Google Scholar] [CrossRef]
- Zhu, T.; Gong, X. Low-dimensional perovskite materials and their optoelectronics. InfoMat 2021, 3, 1039–1069. [Google Scholar] [CrossRef]
- Green, M.A. Silicon solar cells: Evolution, high-efficiency design and efficiency enhancements. Semicond. Sci. Technol. 1993, 8, 1. [Google Scholar] [CrossRef]
- Im, J.-H.; Lee, C.-R.; Lee, J.-W.; Park, S.-W.; Park, N.-G. 6.5% efficient perovskite quantum-dot-sensitized solar cell. Nanoscale 2011, 3, 4088–4093. [Google Scholar] [CrossRef]
- Kim, H.-S.; Lee, C.-R.; Im, J.-H.; Lee, K.-B.; Moehl, T.; Marchioro, A.; Moon, S.-J.; Humphry-Baker, R.; Yum, J.-H.; Moser, J.E.; et al. Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Sci. Rep. 2012, 2, 591. [Google Scholar] [CrossRef] [PubMed]
- Heo, J.-H.; Im, S.-H.; Noh, J.-H.; Mandal, T.N.; Lim, C.-S.; Chang, J.-A.; Lee, Y.-H.; Kim, H.-S.; Sarkar, A.; Nazeeruddin, M.K.; et al. Efficient inorganic–organic hybrid heterojunction solar cells containing perovskite compound and polymeric hole conductors. Nat. Photonics 2013, 7, 486–491. [Google Scholar] [CrossRef]
- Noh, J.-H.; Im, S.-H.; Heo, J.-H.; Mandal, T.N.; Seok, S.-I. Chemical management for colorful, efficient, and stable inorganic–organic hybrid nanostructured solar cells. Nano Lett. 2013, 13, 1764–1769. [Google Scholar] [CrossRef]
- Zhang, W.; Saliba, M.; Moore, D.T.; Pathak, S.K.; Hörantner, M.T.; Stergiopoulos, T.; Stranks, S.D.; Eperon, G.E.; Alexander-Webber, J.A.; Abate, A.; et al. Ultrasmooth organic–inorganic perovskite thin-film formation and crystallization for efficient planar heterojunction solar cells. Nat. Commun. 2015, 6, 6142. [Google Scholar] [CrossRef] [PubMed]
- Chang, Y.H.; Park, C.-H.; Matsuishi, K. First-principles study of the Structural and the electronic properties of the Lead-Halide-based inorganic-organic perovskites (CH3NH3) PbX3 and CsPbX3 (X = Cl, Br, I). J. Korean Phys. Soc. 2004, 44, 889–893. [Google Scholar]
- Frost, J.M.; Butler, K.T.; Brivio, F.; Hendon, C.H.; van Schilfgaarde, M.; Walsh, A. Atomistic origins of high-performance in hybrid halide perovskite solar cells. Nano Lett. 2014, 14, 2584–2590. [Google Scholar] [CrossRef]
- Brivio, F.; Walker, A.B.; Walsh, A. Structural and electronic properties of hybrid perovskites for high-efficiency thin-film photovoltaics from first-principles. Apl Mater. 2013, 1, 042111. [Google Scholar] [CrossRef]
- Umari, P.; Mosconi, E.; De Angelis, F. Relativistic GW calculations on CH3NH3PbI3 and CH3NH3SnI3 perovskites for solar cell applications. Sci. Rep. 2014, 4, 4467. [Google Scholar] [CrossRef]
- Jeon, N.-J.; Noh, J.-H.; Kim, Y.-C.; Yang, W.-S.; Ryu, S.-C.; Seok, S.-I. Solvent engineering for high-performance inorganic–organic hybrid perovskite solar cells. Nat. Mater. 2014, 13, 897–903. [Google Scholar] [CrossRef]
- Zhou, H.; Chen, Q.; Li, G.; Luo, S.; Song, T.-B.; Duan, H.-S.; Hong, Z.; Jingbi You, J.; Liu, Y.; Yang, Y. Interface engineering of highly efficient perovskite solar cells. Science 2014, 345, 542–546. [Google Scholar] [CrossRef]
- Shin, S.-S.; Yeom, E.-J.; Yang, W.-S.; Hur, S.; Kim, M.-G.; Im, J.; Seo, J.-W.; Noh, J.-H.; Seok, S.-I. Colloidally prepared La-doped BaSnO3 electrodes for efficient, photostable perovskite solar cells. Science 2017, 356, 167–171. [Google Scholar] [CrossRef] [PubMed]
- Yin, W.-J.; Yang, J.-H.; Kang, J.-G.; Yan, Y.; Wei, S.-H. Halide perovskite materials for solar cells: A theoretical review. J. Mater. Chem. A 2015, 3, 8926–8942. [Google Scholar] [CrossRef]
- Wang, Y.; Duan, C.; Lv, P.; Ku, Z.; Lu, J.; Huang, F.; Cheng, Y.-B. Printing strategies for scaling-up perovskite solar cells. Natl. Sci. Rev. 2021, 8, nwab075. [Google Scholar] [CrossRef]
- Saki, Z.; Byranvand, M.M.; Taghavinia, N.; Kedia, M.; Saliba, M. Solution-processed perovskite thin-films: The journey from lab- to large-scale solar cells. Energy Environ. Sci. 2021, 14, 5690. [Google Scholar] [CrossRef]
- Chen, C.-S.; Ran, C.; Yao, Q.; Wang, J.; Guo, C.; Gu, L.; Han, H.; Wang, X.; Chao, L.; Xia, Y.; et al. Screen-Printing Technology for Scale Manufacturing of Perovskite Solar Cells. Adv. Sci. 2023, 2303992. [Google Scholar] [CrossRef] [PubMed]
- Swarnkar, A.; Marshall, A.R.; Sanehira, E.M.; Chernomordik, B.D.; Moore, D.T.; Christians, J.A.; Chakrabarti, T.; Luther, J.M. Quantum dot–induced phase stabilization of α-CsPbI3 perovskite for high-efficiency photovoltaics. Science 2016, 354, 92–95. [Google Scholar] [CrossRef]
- Wang, P.; Zhang, X.; Zhou, Y.; Jiang, Q.; Ye, Q.; Chu, Z.; Li, X.; Yang, X.; Yin, Z.; You, J. Solvent-controlled growth of inorganic perovskite films in dry environment for efficient and stable solar cells. Nat. Commun. 2018, 9, 2225. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, T.; Kan, M.; Zhao, Y. Bifunctional stabilization of all-inorganic α-CsPbI3 perovskite for 17% efficiency photovoltaics. J. Am. Chem. Soc. 2018, 140, 12345–12348. [Google Scholar] [CrossRef]
- Liu, C.; Li, W.; Zhang, C.; Ma, Y.; Fan, J.; Mai, Y. All-inorganic CsPbI2Br perovskite solar cells with high efficiency exceeding 13%. J. Am. Chem. Soc. 2018, 140, 3825–3828. [Google Scholar] [CrossRef]
- Liu, C.; Li, W.; Li, H.; Wang, H.; Zhang, C.; Yang, Y.; Gao, X.; Xue, Q.; Yip, H.-L.; Fan, J.; et al. Structurally Reconstructed CsPbI2Br Perovskite for Highly Stable and Square-Centimeter All-Inorganic Perovskite Solar Cells. Adv. Energy Mater. 2019, 9, 1803572. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, J.; Zhou, Y.; Liu, H.; Xue, Q.; Li, X.; Chueh, C.-C.; Yip, H.-L.; Zhu, Z.; Jen, A.K.Y. Highly efficient all-inorganic perovskite solar cells with suppressed non-radiative recombination by a Lewis base. Nat. Commun. 2020, 11, 177. [Google Scholar]
- Luévano-Hipólito, E.; Quintero-Lizárraga, O.L.; Torres-Martínez, L.M. A Critical Review of the Use of Bismuth Halide Perovskites for CO2 Photoreduction: Stability Challenges and Strategies Implemented. Catalysts 2022, 12, 1410. [Google Scholar] [CrossRef]
- Chen, X.; Jia, M.; Xu, W.; Pan, G.; Zhu, J.; Tian, Y.; Wu, D.; Li, X.; Shi, Z. Recent Progress and Challenges of Bismuth-Based Halide Perovskites for Emerging Optoelectronic Applications. Adv. Opt. Mater. 2022, 11, 2202153. [Google Scholar]
- Stoumpos, C.C.; Malliakas, C.D.; Kanatzidis, M.G. Semiconducting tin and lead iodide perovskites with organic cations: Phase transitions, high mobilities, and near-infrared photoluminescent properties. Inorg. Chem. 2013, 52, 9019–9038. [Google Scholar] [PubMed]
- Xing, G.; Mathews, N.; Lim, S.S.; Yantara, N.; Liu, X.; Sabba, D.; Grätzel, M.; Mhaisalkar, S.; Sum, T.C. Low-temperature solution-processed wavelength-tunable perovskites for lasing. Nat. Mater. 2014, 13, 476–480. [Google Scholar] [CrossRef]
- Miyata, A.; Mitioglu, A.; Plochocka, P.; Portugall, O.; Wang, J.T.-W.; Stranks, S.D.; Snaith, H.J.; Nicholas, R.J. Direct measurement of the exciton binding energy and effective masses for charge carriers in organic–inorganic tri-halide perovskites. Nat. Phys. 2015, 11, 582–587. [Google Scholar]
- Noda-Yamamuro, N.; Matsuo, T.; Suga, H. Dielectric study of CH3NH3PbX3 (X = Cl, Br, I). J. Phys. Chem. Solids 1992, 53, 935–939. [Google Scholar] [CrossRef]
- Sanehira, E.M.; Marshall, A.R.; Christians, J.A.; Harvey, S.P.; Ciesielski, P.N.; Wheeler, L.M.; Schulz, P.; Lin, L.Y.; Beard, M.C.; Luther, J.M. Enhanced mobility CsPbI3 quantum dot arrays for record-efficiency, high-voltage photovoltaic cells. Sci. Adv. 2017, 3, eaao4204. [Google Scholar]
- Christians, J.A.; Fung, R.C.M.; Kamat, P.V. An inorganic hole conductor for organo-lead halide perovskite solar cells. Improved hole conductivity with copper iodide. J. Am. Chem. Soc. 2014, 136, 758–764. [Google Scholar]
- Subbiah, A.S.; Halder, A.; Ghosh, S.; Mahuli, N.; Hodes, G.; Sarkar, S.K. Inorganic hole conducting layers for perovskite-based solar cells. J. Phys. Chem. Lett. 2014, 5, 1748–1753. [Google Scholar] [PubMed]
- Qin, P.; Tanaka, S.; Ito, S.; Tetreault, N.; Manabe, K.; Nishino, H.; Nazeeruddin, M.K.; Grätzel, M. Inorganic hole conductor-based lead halide perovskite solar cells with 12.4% conversion efficiency. Nat. Commun. 2014, 5, 3834. [Google Scholar] [PubMed]
- Yin, X.; Chen, P.; Que, M.; Xing, Y.; Que, W.; Niu, C.; Shao, J. Highly efficient flexible perovskite solar cells using solution-derived NiOx hole contacts. ACS Nano 2016, 10, 3630–3636. [Google Scholar]
- Ruhle, S. Tabulated values of the Shockley–Queisser limit for single junction solar cell. Sol. Energy 2016, 130, 139–147. [Google Scholar] [CrossRef]
- Nazeeruddinand, M.K.; Snaith, H. Methylammonium lead triiodide perovskite solar cells: A new paradigm in photovoltaics. Mrs Bull. 2015, 40, 641–645. [Google Scholar] [CrossRef]
- Yuan, H.; Debroye, E.; Janssen, K.; Naiki, H.; Steuwe, C.; Lu, G.; Moris, M.; Orgiu, E.; Uji-i, H.; De Schryver, F.; et al. Degradation of Methylammonium Lead Iodide Perovskite Structures through Light and Electron Beam Driven Ion Migration. J. Phys. Chem. Lett. 2016, 7, 561–566. [Google Scholar] [CrossRef]
- Juarez-Perez, E.J.; Ono, L.K.; Qi, Y. Thermal degradation of formamidinium based lead halide perovskites into sym-triazine and hydrogen cyanide observed by coupled thermogravimetry-mass spectrometry analysis. J. Mater. Chem. A 2019, 7, 16912–16919. [Google Scholar] [CrossRef]
- Yadegarifard, A.; Lee, H.; Seok, H.-J.; Kim, I.; Ju, B.-K.; Kim, H.-K.; Lee, D.-K. FA/Cs-based mixed Pb–Sn perovskite solar cells: A review of recent advances in stability and efficiency. Nano Energy 2023, 112, 108481. [Google Scholar] [CrossRef]
- Li, M.; Sun, R.; Chang, J.; Dong, J.; Tian, Q.; Wang, H.; Li, Z.; Yang, P.; Shi, H.; Yang, C.; et al. Orientated crystallization of FA-based perovskite via hydrogen-bonded polymer network for efficient and stable solar cells. Nat. Commun. 2023, 14, 573. [Google Scholar] [CrossRef]
- Zhao, Y.; Tan, H.; Yuan, H.; Yang, Z.; Fan, J.Z.; Kim, J.-H.; Voznyy, O.; Gong, X.; Quan, L.N.; Tan, C.S.; et al. Perovskite seeding growth of formamidinium-lead-iodide-based perovskites for efficient and stable solar cells. Nat. Commun. 2018, 9, 1607. [Google Scholar] [CrossRef]
- Pellet, N.; Gao, P.; Gregori, G.; Yang, T.Y.; Nazeeruddin, M.K.; Maier, J.; Gratzel, M. Mixed-Organic-Cation Perovskite Photovoltaics for Enhanced Solar-Light Harvesting. Angew. Chem. Int. Ed. 2014, 53, 3151–3157. [Google Scholar] [CrossRef]
- Lee, J.W.; Seol, D.J.; Cho, A.N.; Park, N.G. High-Efficiency Perovskite Solar Cells Based on the Black Polymorph of HC(NH2)2PbI3. Adv. Mater. 2014, 26, 4991–4998. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.W.; Kim, D.H.; Kim, H.S.; Seo, S.W.; Cho, S.M.; Park, N.G. Formamidinium and Cesium Hybridization for Photo- and Moisture-Stable Perovskite Solar Cell. Adv. Energy Mater. 2015, 5, 1501310. [Google Scholar] [CrossRef]
- Kim, M.; Kim, G.-H.; Lee, T.K.; Choi, I.W.; Choi, H.W.; Jo, Y.; Yoon, Y.J.; Kim, J.W.; Lee, J.; Huh, D.; et al. Methylammonium Chloride Induces Intermediate Phase Stabilization for Efficient Perovskite Solar Cells. Joule 2019, 3, 2179–2192. [Google Scholar] [CrossRef]
- Yao, Q.; Xue, Q.; Li, Z.; Zhang, K.; Zhang, T.; Li, N.; Yang, S.; Brabec, C.J.; Yip, H.-L.; Cao, Y. Graded 2D/3D Perovskite Heterostructure for Efficient and Operationally Stable MA-Free Perovskite Solar Cells. Adv. Mater. 2020, 32, 2000571. [Google Scholar] [CrossRef]
- Wang, Y.; Mahmoudi, T.; Hahn, Y.-B. Highly stable and Efficient Perovskite Solar Cells Based on FAMA-Perovskite-Cu:NiO Composites with 20.7% Efficiency and 80.5% Fill Factor. Adv. Energy Mater. 2020, 10, 2000967. [Google Scholar] [CrossRef]
- Wang, Q.; Tang, W.; Chen, Y.; Qiu, W.; Wu, Y.; Peng, Q. Over 25% efficiency and stable bromine-free RbCsFAMA-based quadruple cation perovskite solar cells enabled by an aromatic zwitterion. J. Mater. Chem. A 2023, 11, 1170. [Google Scholar] [CrossRef]
- Wang, Y.; Li, W.; Zhang, T.Y.; Li, D.H.; Kan, M.; Wang, X.T.; Liu, X.M.; Wang, T.; Zhao, Y.X. Highly efficient (110) orientated FA-MA mixed cation perovskite solar cells via functionalized carbon nanotube and methylammonium chloride additive. Small Methods 2019, 4, 1900511. [Google Scholar] [CrossRef]
- Jeon, N.J.; Noh, J.H.; Yang, W.S.; Kim, Y.C.; Ryu, S.; Seo, S.; Seok, S.I. Compositional engineering of perovskite materials for high-performance solar cells. Nature 2015, 517, 476–480. [Google Scholar] [CrossRef]
- Wu, Y.; Yang, X.; Chen, W.; Yue, Y.; Cai, M.; Xie, F.; Bi, E.; Islam, A.; Han, L. Perovskite solar cells with 18.21% efficiency and area over 1cm2 fabricated by heterojunction engineering. Nat. Energy 2016, 1, 16148. [Google Scholar] [CrossRef]
- Li, F.; Hou, X.; Wang, Z.; Cui, X.; Xie, G.; Yan, F.; Zhao, X.-Z.; Tai, Q. FA/MA Cation Exchange for Efficient and Reproducible Tin-Based Perovskite Solar Cells. ACS Appl. Mater. Interfaces 2021, 13, 40656–40663. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Wang, W. High-efficiency and stable FA0.75MA0.25SnI3 perovskite solar cells with large-size crystal grains prepared by doping with multifunctional chloride salt. New J. Chem. 2023, 47, 15666–15676. [Google Scholar] [CrossRef]
- Zhao, Z.; Gu, F.; Li, Y.; Sun, W.; Ye, S.; Rao, H.; Liu, Z.; Bian, Z.; Huang, C. Mixed-organic-cation tin iodide for lead-free perovskite solar cells with an efficiency of 8.12%. Adv. Sci. 2017, 4, 1700204. [Google Scholar] [CrossRef] [PubMed]
- Jin, Z.; Yu, B.B.; Liao, M.; Liu, D.; Xiu, J.; Zhang, Z.; Lifshitz, E.; Tang, J.; Song, H.; He, Z. Enhanced efficiency and stability in Sn-based perovskite solar cells with secondary crystallization growth. J. Energy Chem. 2021, 54, 414–421. [Google Scholar] [CrossRef]
- Kim, M.; Kim, G.H.; Oh, K.S.; Jo, Y.; Yoon, H.; Kim, K.H.; Lee, H.; Kim, J.Y.; Kim, D.S. High-Temperature–Short-Time Annealing Process for High-Performance Large-Area Perovskite Solar Cells. ACS Nano 2017, 11, 6057–6064. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Q.; Chu, Z.; Wang, P.; Yang, X.; Liu, H.; Wang, Y.; Yin, Z.; Wu, J.; Zhang, X.; You, J. Planar-Structure Perovskite Solar Cells with Efficiency beyond 21%. Adv. Mater. 2017, 29, 1703852. [Google Scholar] [CrossRef]
- Tan, H.; Jain, A.; Voznyy, O.; Lan, X.; Garcia de Arquer, F.P.; Fan, J.Z.; Quintero-Bermudez, R.; Yuan, M.; Zhang, B.; Zhao, Y.; et al. Efficient and stable solution-processed planar perovskite solar cells via contact passivation. Science 2017, 355, 722–726. [Google Scholar] [CrossRef]
- Du, J.; Feng, L.; Guo, X.; Huang, X.; Lin, Z.; Su, J.; Hao, Y. Enhanced efficiency and stability of planar perovskite solar cells by introducing amino acid to SnO2/perovskite interface. J. Power Sources 2020, 455, 227974. [Google Scholar] [CrossRef]
- Bu, T.; Wu, L.; Liu, X.; Yang, X.; Zhou, P.; Yu, X.; Qin, T.; Shi, J.; Wang, S.; Li, S.; et al. Synergic interface optimization with green solvent engineering in mixed perovskite solar cells. Adv. Energy Mater. 2017, 7, 1700576. [Google Scholar] [CrossRef]
- Jeon, N.J.; Na, H.; Jung, E.H.; Yang, T.; Lee, Y.G.; Kim, G.; Shin, H.; Seok, S.I.; Lee, J.; Seo, J. A fluorene-terminated hole-transporting material for highly efficient and stable perovskite solar cells. Nat. Energy 2018, 3, 682–689. [Google Scholar] [CrossRef]
- Yoo, J.J.; Wieghold, S.; Sponseller, M.C.; Chua, M.R.; Bertram, S.N.; Hartono, N.T.P.; Tresback, J.S.; Hansen, E.C.; Correa-Baena, J.-P.; Bulović, V.; et al. An interface stabilized perovskite solar cell with high stabilized efficiency and low voltage loss. Energy Environ. Sci. 2019, 12, 2192–2199. [Google Scholar] [CrossRef]
- Al-Ashouri, A.; Magomedov, A.; Roß, M.; Jošt, M.; Talaikis, M.; Chistiakova, G.; Bertram, T.; Márquez, J.A.; Köhnen, E.; Kasparavičius, E.; et al. Conformal monolayer contacts with lossless interfaces for perovskite single junction and monolithic tandem solar cells. Energy Environ. Sci. 2019, 12, 3356–3369. [Google Scholar] [CrossRef]
- Kim, D.-H.; Muzzillo, C.P.; Tong, J.; Palmstrom, A.F.; Larson, B.W.; Choi, C.-S.; Harvey, S.P.; Glynn, S.; Whitaker, J.B.; Zhang, F.; et al. Bimolecular Additives Improve Wide-Band-Gap Perovskites for Efficient Tandem Solar Cells with CIGS. Joule 2019, 3, 1734–1745. [Google Scholar] [CrossRef]
- Tong, J.; Song, Z.; Kim, D.H.; Chen, X.; Chen, C.; Palmstrom, A.F.; Ndione, P.F.; Reese, M.O.; Dunfield, S.P.; Reid, O.G.; et al. Carrier lifetimes of >1 μs in Sn-Pb perovskites enable efficient all-perovskite tandem solar cells. Science 2019, 364, 475–479. [Google Scholar] [CrossRef]
- Xiao, K.; Lin, Y.-H.; Zhang, M.; Oliver, R.D.J.; Wang, X.; Liu, Z.; Luo, X.; Li, J.; Lai, D.; Luo, H.; et al. Scalable processing for realizing 21.7%-efficient all-perovskite tandem solar modules. Science 2022, 376, 762–767. [Google Scholar] [CrossRef]
- Kim, H.-S.; Lee, J.-W.; Yantara, N.; Boix, P.P.; Kulkarni, S.A.; Mhaisalkar, S.; Gratzel, M.; Park, N.G. High efficiency solid-state sensitized solar cell-based on submicrometer rutile TiO2 nanorod and CH3NH3PbI3 perovskite sensitizer. Nano Lett. 2013, 13, 2412–2417. [Google Scholar] [CrossRef]
- Etgar, L.; Gao, P.; Xue, Z.; Peng, Q.; Chandiran, A.K.; Liu, B.; Nazeeruddin, M.K.; Grätzel, M. Mesoscopic CH3NH3PbI3/TiO2 heterojunction solar cells. J. Am. Chem. Soc. 2012, 134, 17396–17399. [Google Scholar] [CrossRef]
- Cho, H.; Jeong, S.-H.; Park, M.-H.; Kim, Y.-H.; Wolf, C.; Lee, C.-L.; Heo, J.-H.; Sadhanala, A.; Myoung, N.; Yoo, S.-H.; et al. Overcoming the electroluminescence efficiency limitations of perovskite light-emitting diodes. Science 2015, 350, 1222–1225. [Google Scholar] [CrossRef]
- Gauthron, K.; Lauret, J.S.; Doyennette, L.; Lanty, G.; Al Choueiry, A.; Zhang, S.J.; Brehier, A.; Largeau, L.; Mauguin, O.; Bloch, J.; et al. Optical spectroscopy of two-dimensional layered (C6H5C2H4-NH3)2-PbI4 perovskite. Opt. Express 2010, 18, 5912–5919. [Google Scholar] [CrossRef]
- Chen, Q.; Zhou, H.; Hong, Z.; Luo, S.; Duan, H.-S.; Wang, H.-H.; Liu, Y.; Li, G.; Yang, Y. Planar heterojunction perovskite solar cells via vapor-assisted solution process. J. Am. Chem. Soc. 2014, 136, 622–625. [Google Scholar] [CrossRef] [PubMed]
- Baikie, T.; Fang, Y.; Kadro, J.M.; Schreyer, M.; Wei, F.; Mhaisalkar, S.G.; Graetzel, M.; White, T.J. Synthesis and crystal chemistry of the hybrid perovskite (CH3NH3) PbI3 for solid-state sensitised solar cell applications. J. Mater. Chem. A 2013, 1, 5628–5641. [Google Scholar] [CrossRef]
- Sum, T.C.; Mathews, N. Advancements in perovskite solar cells: Photophysics behind the photovoltaics. Energy Environ. Sci. 2014, 7, 2518–2534. [Google Scholar] [CrossRef]
- Ponseca, C.S., Jr.; Savenije, T.J.; Abdellah, M.; Zheng, K.; Yartsev, A.; Pascher, T.; Harlang, T.; Chabera, P.; Pullerits, T.; Stepanov, A.; et al. Organometal halide perovskite solar cell materials rationalized: Ultrafast charge generation, high and microsecond-long balanced mobilities, and slow recombination. J. Am. Chem. Soc. 2014, 136, 5189–5192. [Google Scholar] [CrossRef]
- Mosconi, E.; Amat, A.; Nazeeruddin, M.K.; Grätzel, M.; De Angelis, F. First-principles modeling of mixed halide organometal perovskites for photovoltaic applications. J. Phys. Chem. C 2013, 117, 13902–13913. [Google Scholar] [CrossRef]
- Koutselas, I.B.; Ducasse, L.; Papavassiliou, G.C. Electronic properties of three-and low-dimensional semiconducting materials with Pb halide and Sn halide units. J. Phys. Condens. Matter 1996, 8, 1217–1227. [Google Scholar] [CrossRef]
- Zhang, M.; Yu, H.; Lyu, M.; Wang, Q.; Yun, J.-H.; Wang, L. Composition-dependent photoluminescence intensity and prolonged recombination lifetime of perovskite CH3NH3PbBr(3−x)Clx films. Chem. Commun. 2014, 50, 11727–11730. [Google Scholar] [CrossRef]
- Cai, B.; Xing, Y.; Yang, Z.; Zhang, W.-H.; Qiu, J. High performance hybrid solar cells sensitized by organolead halide perovskites. Energy Environ. Sci. 2013, 6, 1480–1485. [Google Scholar] [CrossRef]
- Zhang, J.; Yin, C.; Yang, F.; Yao, Y.; Yuan, F.; Chen, H.; Wang, R.; Bai, S.; Tu, G.; Hou, L. Highly Luminescent and Stable CsPbI3 Perovskite Nanocrystals with Sodium Dodecyl Sulfate Ligand Passivation for Red-Light-Emitting Diodes. J. Phys. Chem. Lett. 2021, 12, 2437–2443. [Google Scholar] [CrossRef]
- Cheng, Y.; Ding, L. Perovskite/Si Tandem Solar Cells: Fundamentals, Advances, Challenges, and Novel Applications. Sus. Mat. 2021, 1, 324–344. [Google Scholar] [CrossRef]
- Mailoa, J.P.; Bailie, C.D.; Johlin, E.C.; Hoke, E.T.; Akey, A.J.; Nguyen, W.H.; McGehee, M.D.; Buonassisi, T. A 2-terminal perovskite/silicon multijunction solar cell enabled by a silicon tunnel junction. Appl. Phys. Lett. 2015, 106, 121105. [Google Scholar] [CrossRef]
- Tandem Solar Cell Achieves 32.5 Percent Efficiency. Science Daily. 19 December 2022. Available online: https://www.sciencedaily.com/releases/2022/12/221219164845.htm (accessed on 12 July 2023).
- Oxford PV Sets New Solar Cell World Record. Oxford PV. 24 May 2023. Available online: https://www.oxfordpv.com/news/oxford-pv-sets-new-solar-cell-world-record (accessed on 12 July 2023).
- KAUST Claims 33.7% Efficiency for Perovskite/Silicon Tandem Solar Cell. PV Magazine. 30 May 2023. Available online: https://www.pv-magazine.com/2023/05/30/kaust-claims-33-7-efficiency-for-perovskite-silicon-tandem-solar-cell/ (accessed on 12 July 2023).
- LONGI. 2023. Available online: https://www.longi.com/en/news/new-conversion-efficiency/ (accessed on 12 July 2023).
- Chin, X.Y.; Turkay, D.; Steele, J.A.; Tabean, S.; Eswara, S.; Mensi, M.; Fiala, P.; Wolff, C.M.; Paracchino, A.; Artuk, K.; et al. Interface passivation for 31.25%-efficient perovskite/silicon tandem solar cells. Science 2023, 381, 59–63. [Google Scholar] [CrossRef] [PubMed]
- Lee, B.-H.; Stoumpos, C.C.; Zhou, N.; Hao, F.; Malliakas, C.; Yeh, C.Y.; Marks, T.J.; Kanatzidis, M.G.; Chang, R.P.H. Air-stable molecular semiconducting iodosalts for solar cell applications: Cs2SnI6 as a hole conductor. J. Am. Chem. Soc. 2014, 136, 15379–15385. [Google Scholar] [CrossRef]
- Maughan, A.E.; Ganose, A.M.; Bordelon, M.M.; Miller, E.M.; Scanlon, D.O.; Neilson, J.R. Defect tolerance to intolerance in the vacancy-ordered double perovskite semiconductors Cs2SnI6 and Cs2TeI6. J. Am. Chem. Soc. 2016, 138, 8453–8464. [Google Scholar] [CrossRef] [PubMed]
- Kaltzoglou, A.; Antoniadou, M.; Kontos, A.G.; Stoumpos, C.C.; Perganti, D.; Siranidi, E.; Raptis, V.; Trohidou, K.; Psycharis, V.; Kanatzidis, M.G.; et al. Optical-vibrational properties of the Cs2SnX6 (X = Cl, Br, I) defect perovskites and hole-transport efficiency in dye-sensitized solar cells. J. Phys. Chem. C 2016, 120, 11777–11785. [Google Scholar] [CrossRef]
- Kadro, J.M.; Pellet, N.; Giordano, F.; Ulianov, A.; Müntener, O.; Maier, J.; Grätzel, M.; Hagfeldt, A. Proof-of-concept for facile perovskite solar cell recycling. Energy Environ. Sci. 2016, 9, 3172–3179. [Google Scholar] [CrossRef]
- Tsai, C.-M.; Mohanta, N.; Wang, C.-Y.; Lin, Y.-P.; Yang, Y.-W.; Wang, C.-L.; Hung, C.-H.; Diau, E.W.-G. Formation of Stable Tin Perovskites Co-crystallized with Three Halides for Carbon-Based Mesoscopic Lead-Free Perovskite Solar Cells. Angew. Chem. Int. Ed. 2017, 56, 13819–13823. [Google Scholar] [CrossRef] [PubMed]
- Sabba, D.; Mulmudi, H.K.; Prabhakar, R.R.; Krishnamoorthy, T.; Baikie, T.; Boix, P.P.; Mhaisalkar, S.; Mathews, N. Impact of anionic Br–substitution on open circuit voltage in lead free perovskite (CsSnI3−xBrx) solar cells. J. Phys. Chem. C 2015, 119, 1763–1767. [Google Scholar] [CrossRef]
- Dong, H.; Ran, C.; Gao, W.; Sun, N.; Liu, X.; Xia, Y.; Chen, Y.; Huang, W. Crystallization Dynamics of Sn-Based Perovskite Thin Films: Toward Efficient and Stable Photovoltaic Devices. Adv. Energy Mater. 2022, 12, 2102213. [Google Scholar] [CrossRef]
- Mohammadian-Sarcheshmeh, H.; Mazloum-Ardakani, M.; Rameez, M.; Shahbazi, S.; Diau, E.W.-G. Application of a natural antioxidant as an efficient strategy to decrease the oxidation in Sn-based perovskites. J. Alloys Compd. 2020, 846, 156351. [Google Scholar] [CrossRef]
- Wang, M.; Wang, W.; Shen, Y.; Cao, K.; Chen, J.; Zhao, X.; Xie, M.; Chen, S. Suppression of Sn2+ oxidation and formation of large-size crystal grains with multifunctional chloride salt for perovskite solar cell applications. J. Mater. Chem. C 2022, 10, 10669–10678. [Google Scholar] [CrossRef]
- Mahmoudi, T.; Rho, W.-Y.; Kohan, M.; Im, Y.H.; Mathur, S.; Hahn, Y.-B. Suppression of Sn2+/Sn4+ oxidation in tin-based perovskite solar cells with graphene-tin quantum dots composites in active layer. Nano Energy 2021, 90 Pt A, 106495. [Google Scholar] [CrossRef]
- Ma, Z.; Peng, S.; Wu, Y.; Fang, X.; Chen, X.; Jia, X.; Zhang, K.; Yuan, N.; Ding, J.; Dai, N. Air-stable layered bismuth-based perovskite-like materials: Structures and semiconductor properties. Phys. B Condens. Matter 2017, 526, 136–142. [Google Scholar] [CrossRef]
- Jain, S.M.; Phuyal, D.; Davies, M.L.; Li, M.; Philippe, B.; De Castro, C.; Qiu, Z.; Kim, J.-H.; Watson, T.; Tsoi, W.C.; et al. An effective approach of vapour assisted morphological tailoring for reducing metal defect sites in lead-free, (CH3NH3)3Bi2I9 bismuth-based perovskite solar cells for improved performance and long-term stability. Nano Energy 2018, 49, 614–624. [Google Scholar] [CrossRef]
- Zhang, Z.; Li, X.; Xia, X.; Wang, Z.; Huang, Z.; Lei, B.; Gao, Y. High-quality (CH3NH3)3Bi2I9 film-based solar cells: Pushing efficiency up to 1.64%. J. Phys. Chem. Lett. 2017, 8, 4300–4307. [Google Scholar] [CrossRef] [PubMed]
- Lan, C.; Liang, G.; Zhao, S.; Lan, H.; Peng, H.; Zhang, D.; Sun, H.; Luo, J.; Fan, P. Lead-free formamidinium bismuth perovskites (FA)3Bi2I9 with low bandgap for potential photovoltaic application. Sol. Energy 2019, 177, 501–507. [Google Scholar] [CrossRef]
- Ahmad, K.; Mobin, S.M. Recent Progress and Challenges in A3Sb2X9-Based Perovskite Solar Cells. ACS Omega 2020, 5, 28404–28412. [Google Scholar] [CrossRef]
- Guo, Y.; Zhao, F.; Yang, P.; Gao, M.; Shen, J.; Tao, J.; Jiang, J.; Chu, J. DMAI-driven all-inorganic antimony-based perovskite-inspired solar cells with record open-circuit voltage. J. Mater. Chem. A 2023, 11, 6474. [Google Scholar] [CrossRef]
- Xiang, S.; Li, W.; Wei, Y.; Liu, J.; Liu, H.; Zhu, L.; Chen, H. The synergistic effect of non-stoichiometry and Sb-doping on air-stable α-CsPbI3 for efficient carbon-based perovskite solar cells. Nanoscale 2018, 10, 9996. [Google Scholar] [CrossRef]
- Al-Anesi, B.; Grandhi, G.K.; Pecoraro, A.; Sugathan, V.; Viswanath, N.S.M.; Ali-Löytty, H.; Liu, M.; Ruoko, T.-P.; Lahtonen, K.; Manna, D.; et al. Antimony-bismuth alloying: The key to a major boost in the efficiency of lead-free perovskite-inspired indoor photovoltaics. ChemRxiv 2023, 2303575. [Google Scholar] [CrossRef]
- Nie, R.; Mehta, A.; Park, B.-W.; Kwon, H.-W.; Im, J.; Seok, S.-I. Mixed sulfur and iodide-based lead-free perovskite solar cells. J. Am. Chem. Soc. 2018, 140, 872–875. [Google Scholar] [CrossRef] [PubMed]
- Grandhi, G.K.; Jagadamma, L.K.; Sugathan, V.; Al-Anesi, B.; Manna, D.; Vivo, P. Lead-free perovskite-inspired semiconductors for indoor light-harvesting—The present and the future. Chem. Commun. 2023, 59, 8616–8625. [Google Scholar] [CrossRef] [PubMed]
- Stoumpos, C.C.; Frazer, L. Hybrid germanium Iodide perovskite semiconductors: Active lone pairs, structural distortion, Direct and Indirect energy gaps, and strong nonlinear optical properties. J. Am. Chem. Soc. 2015, 137, 6804–6819. [Google Scholar] [CrossRef] [PubMed]
- Krishnamoorthy, T.; Ding, H.; Yan, C.; Leong, W.L.; Baikie, T.; Zhang, Z.; Sherburne, M.; Li, S.; Asta, M.; Mathews, N.; et al. Lead-free germanium iodide perovskite materials for photovoltaic applications. J. Mater. Chem. A 2015, 3, 23829–23832. [Google Scholar] [CrossRef]
- Chatterjee, S.; Pal, A.J. Tin (IV) substitution in (CH3NH3)3Sb2I9: Toward low-band-gap defect-ordered hybrid perovskite solar cells. ACS Appl. Mater. Interfaces 2018, 10, 35194–35205. [Google Scholar] [CrossRef]
- Kopacic, I.; Friesenbichler, B.; Hoefler, S.F.; Kunert, B.; Plank, H.; Rath, T.; Trimmel, G. Enhanced performance of germanium halide perovskite solar cells through compositional engineering. ACS Appl. Energy Mater. 2018, 1, 343–347. [Google Scholar] [CrossRef]
- Slavney, A.H.; Leppert, L.; Bartesaghi, D.; Gold-Parker, A.; Toney, M.F.; Savenije, T.J.; Neaton, J.B.; Karunadasa, H.I. Defect-induced band-edge reconstruction of a bismuth-halide double perovskite for visible-light absorption. J. Am. Chem. Soc. 2017, 139, 5015–5018. [Google Scholar] [CrossRef]
- McClure, E.T.; Ball, M.R.; Windl, W.; Woodward, P.M. Cs2AgBiX6 (X = Br, Cl): New visible light absorbing, lead-free halide perovskite semiconductors. Chem. Mater. 2016, 28, 1348–1354. [Google Scholar] [CrossRef]
- Wei, F.; Deng, Z.; Sun, S.; Xie, F.; Kieslich, G.; Evans, D.M.; Carpenter, M.A.; Bristowe, P.W.; Cheetham, A.K. The synthesis, structure and electronic properties of a lead-free hybrid inorganic–organic double perovskite (MA)2KBiCl6 (MA = methylammonium). Mater. Horiz. 2016, 3, 328–332. [Google Scholar] [CrossRef]
- Zhao, X.-G.; Yang, J.-H.; Fu, Y.; Yang, D.; Xu, Q.; Yu, L.; Wei, S.-H.; Zhang, L. Design of lead-free inorganic halide perovskites for solar cells via cation-transmutation. J. Am. Chem. Soc. 2017, 139, 2630–2638. [Google Scholar] [CrossRef] [PubMed]
- Tiwari, D.; Hutter, O.S.; Longo, G. Chalcogenide perovskites for photovoltaics: Current status and prospects. J. Phys. Energy 2021, 3, 034010. [Google Scholar] [CrossRef]
- Nishigaki, Y.; Nagai, T.; Nishiwaki, M.; Aizawa, T.; Kozawa, M.; Hanzawa, K.; Kato, Y.; Sai, H.; Hiramatsu, H.; Hosono, H.; et al. Extraordinary strong band-edge absorption in distorted chalcogenide perovskites. Sol. RRL 2020, 4, 1900555. [Google Scholar] [CrossRef]
- Ayaydah, W.; Raddad, E.; Hawash, Z. Sn-Based Perovskite Solar Cells towards High Stability and Performance. Micromachines 2023, 14, 806. [Google Scholar] [CrossRef] [PubMed]
- Xiao, K.; Lin, R.; Han, Q.; Hou, Y.; Qin, Z.; Nguyen, H.T.; Wen, J.; Wei, M.; Yeddu, V.; Saidaminov, M.I.; et al. All-perovskite tandem solar cells with 24.2% certified efficiency and area over 1 cm2 using surface-anchoring zwitterionic antioxidant. Nat. Energy 2020, 5, 870–880. [Google Scholar] [CrossRef]
- Lin, R.; Xu, J.; Wei, M.; Wang, Y.; Qin, Z.; Liu, Z.; Wu, J.; Xiao, K.; Chen, B.; Park, S.M.; et al. All-perovskite tandem solar cells with improved grain surface passivation. Nature 2022, 603, 73–78. [Google Scholar] [CrossRef]
- Wang, M.; Wang, W.; Ma, B.; Shen, W.; Liu, L.; Cao, K.; Chen, S.; Huang, W. Lead-Free Perovskite Materials for Solar Cells. Nano-Micro Lett. 2021, 13, 62. [Google Scholar] [CrossRef]
- Wang, H.; Wang, Y.; Xuan, Z.; Chen, T.; Zhang, J.; Hao, X.; Wu, L.; Constantinou, I.; Zhao, D. Progress in perovskite solar cells towards commercialization—A review. Materials 2021, 14, 6569. [Google Scholar] [CrossRef]
- Yang, F.; Jang, D.; Dong, L.; Qiu, S.; Distler, A.; Li, N.; Brabec, C.J.; Egelhaaf, H.-J. Upscaling Solution-Processed Perovskite Photovoltaics. Adv. Energy Mater. 2021, 11, 2101973. [Google Scholar] [CrossRef]
- Snaith, H.J. Present status and future prospects of perovskite photovoltaics. Nat. Mater. 2018, 17, 372–376. [Google Scholar] [CrossRef]
- Fu, L.; Li, B.; Li, S.; Yin, L. Future Challenges of the Perovskite Materials. In Revolution of Perovskite; Arul, N., Nithya, V., Eds.; Materials Horizons: From Nature to Nanomaterials; Springer: Singapore, 2020; pp. 315–320. [Google Scholar]
- Milić, J.V.; Zakeeruddin, S.M.; Grätzel, M. Layered Hybrid Formamidinium Lead Iodide Perovskites: Challenges and Opportunities. Acc. Chem. Res. 2021, 54, 2729–2740. [Google Scholar] [CrossRef]
- Xiang, W.; Liu, S.F.; Tress, W. A review on the stability of inorganic metal halide perovskites: Challenges and opportunities for stable solar cells. Energy Environ. Sci. 2021, 14, 2090–2113. [Google Scholar] [CrossRef]
- Cheng, Y.; Peng, Y.; Jen, A.K.-Y.; Yip, H.-L. Development and challenges of metal halide perovskite solar modules. Sol. RRL 2022, 6, 2100545. [Google Scholar] [CrossRef]
- Liu, Y.; Akin, S.; Hinderhofer, A.; Eickemeyer, F.T.; Zh, H.; Seo, J.-Y.; Zhang, J.; Schreiber, F.; Zhang, H.; Zakeeruddin, S.M.; et al. Stabilization of highly efficient and stable phase-pure FAPbI3 perovskite solar cells by molecularly tailored 2D-overlayers. Angew. Chem. Int. Ed. 2020, 59, 15688–15694. [Google Scholar] [CrossRef]
- Schmidt-Mende, L.; Dyakonov, V.; Olthof, S.; Ünlü, F.; Lê, K.M.T.; Mathur, S.; Karabanov, A.D.; Lupascu, D.C.; Herz, L.M.; Hinderhofer, A.; et al. Roadmap on organic–inorganic hybrid perovskite semiconductors and devices. APL Mater. 2021, 9, 109202. [Google Scholar] [CrossRef]
- Wang, G.; Liao, L.; Chen, L.; Xu, C.; Yao, Y.; Liu, D.; Li, P.; Deng, J.; Song, Q. Perovskite solar cells fabricated under ambient air at room temperature without any post-treatment. Org. Electron. 2020, 86, 105918. [Google Scholar] [CrossRef]
- Deng, Y.; Van Brackle, C.H.; Dai, X.; Zhao, J.; Chen, B.; Huang, J. Tailoring solvent coordination for high-speed, room-temperature blading of perovskite photovoltaic films. Sci. Adv. 2019, 5, eaax7537. [Google Scholar] [CrossRef]
- Huckaba, A.J.; Lee, Y.; Xia, R.; Paek, S.; Bassetto, V.C.; Oveisi, E.; Lesch, A.; Kinge, S.; Dyson, P.J.; Girault, H.; et al. Inkjet-Printed Mesoporous TiO2 and Perovskite Layers for High Efficiency Perovskite Solar Cells. Energy Technol. 2019, 7, 317–324. [Google Scholar] [CrossRef]
- Ma, L.; Yan, Z.; Zhou, X.; Pi, Y.; Du, Y.; Huang, J.; Wang, K.; Wu, K.; Zhuang, C.; Han, X. A polymer controlled nucleation route towards the generalized growth of organic-inorganic perovskite single crystals. Nat. Commun. 2021, 12, 2023. [Google Scholar] [CrossRef]
- Berhe, T.A.; Su, W.-N.; Chen, C.-H.; Pan, C.-J.; Cheng, J.-H.; Chen, H.-M.; Tsai, M.-C.; Chen, L.-Y.; Dubale, A.R.; Hwang, B.-J. Organometal halide perovskite solar cells: Degradation and stability. Energy Environ. Sci. 2016, 9, 323–356. [Google Scholar] [CrossRef]
- Niu, G.; Guo, X.; Wang, L. Review of recent progress in chemical stability of perovskite solar cells. J. Mater. Chem. A 2015, 3, 8970–8980. [Google Scholar] [CrossRef]
- Wang, Z.; Lin, Q.; Chmiel, F.P.; Sakai, N.; Herz, L.M.; Snaith, H.J. Efficient ambient-air-stable solar cells with 2D–3D heterostructured butylammonium-caesium-formamidinium lead halide perovskites. Nat. Energy 2017, 2, 17135. [Google Scholar] [CrossRef]
- Leijtens, T.; Eperon, G.E.; Pathak, S.; Abate, A.; Lee, M.M.; Snaith, H.J. Overcoming ultraviolet light instability of sensitized TiO2 with meso-superstructured organometal tri-halide perovskite solar cells. Nat. Commun. 2013, 4, 2885. [Google Scholar] [CrossRef]
- Domanski, K.; Correa-Baena, J.-P.; Mine, N.; Nazeeruddin, M.K.; Abate, A.; Saliba, M.; Tress, W.; Hagfeldt, A.; Grätzel, M. Not all that glitters is gold: Metal-migration-induced degradation in perovskite solar cells. ACS Nano 2016, 10, 6306–6314. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Wang, H.; Williams, S.T.; Xiong, D.; Zhang, W.; Chueh, C.-C.; Chen, W.; Jen, A.K.-Y. SrCl2 Derived Perovskite Facilitating a High Efficiency of 16% in Hole-Conductor-Free Fully Printable Mesoscopic Perovskite Solar Cells. Adv. Mater. 2017, 29, 1606608. [Google Scholar] [CrossRef]
- Liu, D.; Shao, Z.; Li, C.; Pang, S.; Yan, Y.; Cui, G. Structural Properties and Stability of Inorganic CsPbI3 Perovskites. Small Struct. 2021, 2, 2000089. [Google Scholar] [CrossRef]
- Li, X.; Tschumi, M.; Han, H.; Babkair, S.S.; Alzubaydi, R.A.; Ansari, A.A.; Habib, S.S.; Nazeeruddin, M.K.; Zakeeruddin, S.M.; Grätzel, M. Outdoor performance and stability under elevated temperatures and long-term light soaking of triple-layer mesoporous perovskite photovoltaics. Energy Technol. 2015, 3, 551–555. [Google Scholar] [CrossRef]
- Ling, X.; Gao, F.; Cao, Y.; Li, D.; Liu, Q.; Liu, H.; Li, S. Progress on the stability and encapsulation techniques of perovskite solar cells. Org. Electron. 2022, 106, 106515. [Google Scholar]
- Ahmad, J.; Bazaka, K.; Anderson, L.J.; White, R.D.; Jacob, M.V. Materials and methods for encapsulation of OPV: A review. Renew. Sustain. Energy Rev. 2013, 27, 104–117. [Google Scholar] [CrossRef]
- Wang, Y.; Ahmad, I.; Leung, T.; Lin, J.; Chen, W.; Liu, F.; Ching Ng, A.M.; Zhang, Y.; Djurišić, A.B. Encapsulation and Stability Testing of Perovskite Solar Cells for Real Life Applications. ACS Mater. 2022, 2, 215–236. [Google Scholar] [CrossRef]
- Rong, Y.; Hou, X.; Hu, Y.; Mei, A.; Liu, L.; Wang, P.; Han, H. Synergy of ammonium chloride and moisture on perovskite crystallization for efficient printable mesoscopic solar cells. Nat. Commun. 2017, 8, 14555. [Google Scholar] [CrossRef]
- Matteocci, F.; Cinà, L.; Lamanna, E.; Cacovich, S.; Divitini, G.; Midgley, P.A.; Ducati, C.; Di Carlo, A. Encapsulation for long-term stability enhancement of perovskite solar cells. Nano Energy 2016, 30, 162–172. [Google Scholar] [CrossRef]
- Chen, X.; Cao, H.; Yu, H.; Zhu, H.; Zhou, H.; Yang, L.; Yin, S. Large-area, high-quality organic–inorganic hybrid perovskite thin films via a controlled vapor–solid reaction. J. Mater. Chem. A 2016, 4, 9124–9132. [Google Scholar] [CrossRef]
- Zhou, H.; Shi, Y.; Dong, Q.; Zhang, H.; Xing, Y.; Wang, K.; Du, Y.; Ma, T. Hole-conductor-free, metal-electrode-free TiO2/CH3NH3PbI3 heterojunction solar cells based on a low-temperature carbon electrode. J. Phys. Chem. Lett. 2014, 5, 3241–3246. [Google Scholar] [CrossRef] [PubMed]
- Kwon, Y.-S.; Lim, J.; Yun, H.-J.; Kim, Y.-H.; Park, T. A diketopyrrolopyrrole-containing hole transporting conjugated polymer for use in efficient stable organic–inorganic hybrid solar cells based on a perovskite. Energy Environ. Sci. 2014, 7, 1454–1460. [Google Scholar] [CrossRef]
- Chang, C.-Y.; Lee, K.-T.; Huang, W.-K.; Siao, H.-Y.; Chang, Y.-C. High-performance, air-stable, low-temperature processed semitransparent perovskite solar cells enabled by atomic layer deposition. Chem. Mater. 2015, 27, 5122–5130. [Google Scholar] [CrossRef]
- Hashmi, S.G.; Tiihonen, A.; Martineau, D.; Ozkan, M.; Vivo, P.; Kaunisto, K.; Ulla, V.; Zakeeruddin, S.M.; Grätzel, M. Long term stability of air processed inkjet infiltrated carbon-based printed perovskite solar cells under intense ultra-violet light soaking. J. Mater. Chem. A 2017, 5, 4797–4802. [Google Scholar] [CrossRef]
- Eperon, G.E.; Stranks, S.D.; Menelaou, C.; Johnston, M.B.; Herz, L.M.; Snaith, H.J. Formamidinium lead trihalide: A broadly tunable perovskite for efficient planar heterojunction solar cells. Energy Environ. Sci. 2014, 7, 982–988. [Google Scholar] [CrossRef]
- Filip, M.R.; Eperon, G.E.; Snaith, H.J.; Giustino, F. Steric engineering of metal-halide perovskites with tunable optical band gaps. Nat. Commun. 2014, 5, 5757. [Google Scholar] [CrossRef]
- Ren, M.; Qian, X.; Chen, Y.; Wang, T.; Zhao, Y. Potential lead toxicity and leakage issues on lead halide perovskite photovoltaics. J. Hazard. Mater. 2022, 426, 127848. [Google Scholar] [CrossRef]
- Flora, G.; Gupta, D.; Tiwari, A. Toxicity of lead: A review with recent updates. Interdiscip. Toxicol. 2012, 5, 47–58. [Google Scholar] [CrossRef]
- Chen, C.-H.; Cheng, S.-N.; Cheng, L.; Wang, Z.-K.; Liao, L.-S. Toxicity, Leakage, and Recycling of Lead in Perovskite Photovoltaics. Adv. Energy Mater. 2023, 13, 2204144. [Google Scholar] [CrossRef]
- Kim, G.-Y.; Kim, K.; Kim, H.-J.; Jung, H.-S.; Jeon, I.; Lee, J.W. Sustainable and environmentally viable perovskite solar cells. EcoMat 2023, 5, e12319. [Google Scholar] [CrossRef]
- Wu, C.; Zhang, Q.; Liu, Y.; Luo, W.; Guo, X.; Huang, Z.; Ting, H.; Sun, W.; Zhong, X.; Wei, S.; et al. The dawn of lead-free perovskite solar cell: Highly stable double perovskite Cs2AgBiBr6 film. Adv. Sci. 2018, 5, 1700759. [Google Scholar] [CrossRef] [PubMed]
- Hartono, N.T.P.; Thapa, J.; Tiihonen, A.; Oviedo, F.; Batali, C.; Yoo, J.J.; Liu, Z.; Li, R.; Marrón, D.F.; Bawendi, M.G.; et al. How machine learning can help select capping layers to suppress perovskite degradation. Nat. Commun. 2020, 11, 4172. [Google Scholar] [CrossRef]
- Herz, L.M. How lattice dynamics moderate the electronic properties of metal-halide perovskites. J. Phys. Chem. Lett. 2018, 9, 6853–6863. [Google Scholar] [CrossRef] [PubMed]
- Gu, E.; Tang, X.; Langner, S.; Duchstein, P.; Zhao, Y.; Levchuk, I.; Kalancha, V.; Stubhan, T.; Hauch, J.; Egelhaaf, H.J.; et al. Robot-based high-throughput screening of antisolvents for lead halide perovskites. Joule 2020, 4, 1806–1822. [Google Scholar] [CrossRef]
- Byrne, F.P.; Jin, S.; Paggiola, G.; Petchey, T.H.M.; Clark, J.H.; Farmer, T.J.; Hunt, A.J.; McElroy, C.R.; Sherwood, J. Tools and techniques for solvent selection: Green solvent selection guides. Sustain. Chem. Process. 2016, 4, 7. [Google Scholar] [CrossRef]
- Chen, J.; Park, N.-G. Causes and Solutions of Recombination in Perovskite Solar Cells. Adv. Mater. 2019, 31, 1803019. [Google Scholar] [CrossRef]
- Kiermasch, D.; Fischer, M.; Gil-Escrig, L.; Baumann, A.; Bolink, H.J.; Dyakonov, V.; Tvingstedt, K. Reduced Recombination Losses in Evaporated Perovskite Solar Cells by Postfabrication Treatment. Sol. RRL 2021, 5, 2100400. [Google Scholar] [CrossRef]
- Zhang, H.; Ji, X.; Yao, H.; Fan, Q.; Yu, B.; Li, J. Review of the efficiency improvement effort of perovskite solar cells. Sol. Energy 2022, 233, 421–434. [Google Scholar] [CrossRef]
- Cheng, H.; Li, Y.; Zhong, Y. Towards cost-efficient and stable perovskite solar cells and modules: Utilization of self-assembled monolayers. Mater. Chem. Front. 2023. [Google Scholar] [CrossRef]
- Wang, S.; Peng, Y.; Li, L.; Zhou, Z.; Liu, Z.; Zhou, S.; Yao, M. Impact of loss mechanisms on performances of perovskite solar cells. Phys. B Condens. Matter 2022, 647, 414363. [Google Scholar] [CrossRef]
- Du, B.; He, K.; Zhao, X.; Li, B. Defect Passivation Scheme toward High-Performance Halide Perovskite Solar Cells. Polymers 2023, 15, 2010. [Google Scholar] [CrossRef]
- Lee, S.-W.; Bae, S.-H.; Kim, D.-H.; Lee, H.-S. Historical Analysis of High-Efficiency, Large-Area Solar Cells: Toward Upscaling of Perovskite Solar Cells. Adv. Mater. 2020, 32, 2002202. [Google Scholar] [CrossRef]
- Zhao, J.; Zheng, X.; Deng, Y.; Li, T.; Shao, Y.; Gruverman, A.; Shield, J.; Huang, J. Is Cu a stable electrode material in hybrid perovskite solar cells for a 30-year lifetime? Energy Environ. Sci. 2016, 9, 3650–3656. [Google Scholar] [CrossRef]
- Binek, A.; Petrus, M.L.; Huber, N.; Bristow, H.; Hu, Y.; Bein, T.; Docampo, P. Recycling perovskite solar cells to avoid lead waste. ACS Appl. Mater. Interfaces 2016, 8, 12881–12886. [Google Scholar] [CrossRef]
- Liu, F.-W.; Biesold, G.; Zhang, M.; Lawless, R.; Correa-Baena, J.-P.; Chueh, Y.-L.; Lin, Z. Recycling and recovery of perovskite solar cells. Materials Today 2021, 43, 185–197. [Google Scholar] [CrossRef]
- Vidal, R.; Alberola-Borràs, J.-A.; Sánchez-Pantoja, N.; Mora-Seró, I. Comparison of Perovskite Solar Cells with other Photovoltaics Technologies from the Point of View of Life Cycle Assessment. Adv. Energy Sustain. Res. 2021, 2, 2000088. [Google Scholar] [CrossRef]
- Sofia, A.E.; Wang, H.; Bruno, A.; Cruz-Campa, J.L.; Buonassisi, T.; Peters, I.M. Roadmap for cost-effective, commercially-viable perovskite silicon tandems for the current and future PV market. Sustain. Energy Fuels 2020, 4, 852–862. [Google Scholar] [CrossRef]
- Chang, N.L.; Ho-Baillie, A.W.Y.; Basore, P.A.; Young, T.L.; Evans, R.; Egan, R.J. A manufacturing cost estimation method with uncertainty analysis and its application to perovskite on glass photovoltaic modules. Prog. Photovolt. Res. Appl. 2017, 25, 390–405. [Google Scholar] [CrossRef]
- Chang, N.L.; Ho-Baillie, A.W.Y.; Vak, D.; Gao, M.; Green, M.A.; Egan, R.J. Manufacturing cost and market potential analysis of demonstrated roll-to-roll perovskite photovoltaic cell processes. Sol. Energy Mater. Sol. Cells 2018, 174, 314–324. [Google Scholar] [CrossRef]
- Hutchins, M. The Economics of Solar Perovskite Manufacturing. PV Magazine. 22 September 2022. Available online: https://www.pv-magazine.com/2022/09/02/the-economics-of-perovskite-solar-manufacturing/ (accessed on 25 April 2023).
- Čulík, P.; Brooks, K.; Momblona, C.; Adams, M.; Kinge, S.; Maréchal, F.; Dyson, P.J.; Nazeeruddin, M.K. Design and Cost Analysis of 100 MW Perovskite Solar Panel Manufacturing Process in Different Locations. ACS Energy Lett. 2022, 7, 3039–3044. [Google Scholar] [CrossRef]
- The SunShot Initiative: Making Solar Energy Affordable for All Americans. U.S. Department of Energy (DOE). Available online: https://www.energy.gov/eere/solar/sunshot-initiative (accessed on 10 July 2023).
- Li, Z.; Zhao, Y.; Wang, X.; Sun, Y.; Zhao, Z.; Li, Y.; Zhou, H.; Chen, Q. Cost Analysis of Perovskite Tandem Photovoltaics. Joule 2018, 2, 1559–1572. [Google Scholar] [CrossRef]
- Global Industry Analysis, Size, Share, Growth, Trends, Regional Outlook, and Forecast 2023–2032. Available online: https://www.precedenceresearch.com/perovskite-solar-cell-market (accessed on 6 July 2023).
- Global Opportunity Analysis and Industry Forecast, 2021–2030. Fortune Business Insight. Available online: https://www.fortunebusinessinsights.com/industry-reports/perovskite-solar-cell-market-101556 (accessed on 6 July 2023).
S. No. | Inorganic Perovskite | Method | Solar Cell Device Structure | Efficiency (%) | Ref. |
---|---|---|---|---|---|
1 | CsPbI3 and its derivative perovskite solar cells (PSC) | Solvent controlled growth | Stable α-phase CsPbI3. Device structure: (ITO)/SnO2/CsPbI3/Spiro-OMeTAD/Au | 15.77 | [46] |
2 | CsPbI3 | PCE-based PSC via surface termination of the perovskite film using phenyl trimethyl ammonium bromide (PTMBr) | Highly stable phase due to the use of PTMBr treated with CsPbI3. Device layers: FTO/c: TiO2/perovskite/Spiro-OMeTAD/Ag | 17.06 | [47] |
3 | CsPbI3 | Formamidium (FA) iodide (FAI)-coated quantum dots | Tio2/FAI-coated CsPbI3/Spiro-O MeTAD/MoOx/Al | 10.7 | [45] |
4. | CsPbI2Br | Fabrication of ZnO/C60 bilayer electron transport layer in inverted PSC PCE | FTO/NIOx/CsPbI2Br/ZnO @C60 | 13.3 | [48] |
5 | CsPbI2Br | Introduction of InCl3 to enhance the efficiency of inverted PSC | Yellow stable (δ-phase). Device structure: FTO/NiOx/perovskite/ZnO@C60/Ag using InCl3:CsPbI2Br perovskite | 13.74 | [49] |
6. | CsPbIxBr3-x | Lewis base, 6TIC-4F certified, and the most efficient inverted inorganic PSC with improved photo-stability reported to date. | Inverted layer with structure FTO/NIOx/CsPbIxBr3-x/ZnO/C60/Ag | 16.1 certified 15.6 | [50] |
SN | Hybrid Perovskite | HTM | Device Structure | Efficiency (%) | Ref. |
---|---|---|---|---|---|
1. | CH3NH3PbI3 | I−/I−3 | CH3NH3PbI3 Quantum dots (QD)/TiO2 substrate | 6.5 | [29] |
2. | CH3NH3PbI3 | CuI | TiO2/CH3NH3PbI3/spiroOMeTAD | 6.0 | [48] |
3. | CH3NH3PbI3−xClx | NiO | FTO/NiO/CuSCN/CH3NH3PbI3−xClx/PCBM/Ag | 7.3 | [59] |
4. | CH3NH3PbI3 | CuSCN | TiO2/CH3NH3PbI3/CuSCN/Au | 12.4 | [60] |
5. | CH3NH3PbI3−xBrx | PTAA | TiO2/CH3NH3PbI3−xBrx/DMSO/PTAA/Au | 16.2 | [38] |
6. | CH3NH3PbI3 | NiOx | ITO/NiOx/CH3NH3PbI3/PCBM/Ag | 16.47 | [61] |
7. | CH3NH3PbI3−xClx | spiroOMeTAD | ITO/PEIE/TiO2 CH3NH3PbI3−xClx/spiroOMeTAD/Au | 19.32 | [39] |
Classification | Efficiency (%) | Area (cm2) | Voc (V) | Jsc (mA/cm2) | Fill Factor (%) | Ref. | |
---|---|---|---|---|---|---|---|
Device: FTO/TiO2(c)/TiO2(M)/(FAPbI3)0.85(MAPbBr3)0.15/Perovskite layer (300 nm)/PTAA/Au | 17.8 | 1.11 | 22.8 | 70.7 | [77] | ||
FTO/NiO/FA0.85MA0.15Pb(I0.85Br0.15)3/PCBM dripped/Ag | 18.75 (certified) | 1.022 | 1.081 | 21.98 | 78.4 | [78] | |
MAxFA1−xSnI3 perovskites | 9.11 | 0.587 | 20.54 | 72.27 | [79] | ||
FA0.75MA0.25SnI3 perovskite | 9.83 | 0.607 | 23.46 | 69.24 | [80] | ||
FA0.75MA0.25SnI3 (SnF2) ITO/PEDOT:PSS/FA0.75MA0.25SnI3/C60/BCP/Ag | 8.12 | 0.61 | 21.20 | 63 | [81] | ||
FA0.75MA0.25SnI2.75Br0.25 (SnF2 + MACl). Device: ITO/PEDOT:PSS/FA0.75MA0.25SnI2.75Br0.25/C60/BCP/Ag | 8.07 | 0.52 | 22.30 | 70 | [82] | ||
FTO/TiO2/(FAPbI3)0.85(MAPbBr3)0.15/spiro-OMeTAD/Au | 18.32 | 1 | 1.102 | 22.99 | 72.33 | [83] | |
ITO/SnO2/(FAPbI3)1−x(MAPbBr3)x/spiro-OMeTAD/Au | 20.9 (certified) | 0.0737 | 1.116 | 23.9 | 80.6 | [84] | |
FTO/TiO2–Cl/FA0.85MA0.15PbI2.55Br0.45/Spiro-OMeTAD/Au | 19.5 (certified | 1.10 | 1.195 | 21.5 | 75.7 | [85] | |
Cs0.05MAyFA0.95-yPbI3-xClx | 20.68 | 1.10 | 24.15 | 78 | [86] | ||
FTO/TiO2(c)/TiO2(M)/FA0.85MA0.15Pb(I0.85Br0.15)3/Spiro- MeOTAD/Au | 19.43 | 0.16 | 1.123 | 22.89 | 75.6 | [87] | |
FTO/TiO2(c)/TiO2(M)/(FAPbI3)0.95(MAPbBr3)0.05/DM∗/Au | 22.6 (certified) | 0.0939 | 1.1268 | 80.5 | [88] | ||
FTO/TiO2(c)/TiO2(M)/(FAPbI3)0.92(MAPbBr3)0.08 (3Dperovskite)/n-hexylammonium bromide (C6Br)(LP)/Spiro-MeOTAD/Au | 23.4 (22.6 certified) | 1.19 | 24.2 | 78.5 | [89] | ||
Cs5(MA17FA83)95Pb(I83Br17)3 (CsMAFA) | 20.8 | 1.88 | 21.9 | 80.2 | [90] | ||
(FA0.65MA0.20Cs0.15)Pb(I0.8Br0.2)3 | 18.19 | 0.06 | 1.15 | 20.06 | 79.8 | [91] | |
Four-terminal tandem | (FASnI3)0.6(MAPbI3)0.4 | 25.4 (certified) | 0.806 | 10.5 | 80.6 | [92] | |
Cs0.05FA0.8MA0.15PbI2.55Br0.45 | 1.124 | 20.8 | 79.3 | ||||
All-perovskite tandem (Cs0.2FA0.8PbI1.8Br1.2/MA0.3FA0.7Pb0.5Sn0.5I3) | 24.8 (certified) | 20-cm2 | 2.157 | 14.86 | 77.5 | [93] |
Perovskite | Characteristics | Behavior Response |
---|---|---|
CsPbI3 | Bandgap | Spin-orbit coupling approximation 1.16 eV can be reduced to 0.39 eV |
Binding energy | 169 eV | |
Photoluminescence | λem = 680 nm, λex = 365 nm | |
CH3NH3PbBr3 | Absorption | 800–550 nm |
Bandgap | 2.2 eV | |
Binding energy | 150 meV | |
Photoluminescence | Emission at shorter wavelength owing to larger bandgap λem = 560 nm | |
CH3NH3PbI3 | Absorption | 800 nm to complete visible spectrum |
The thickness of the film | 600 nm | |
Bandgap | 1.55 eV comparable with the optimal bandgap 1.4 eV | |
Binding energy | 50 meV | |
Photoluminescence | Emission at longer wavelength owing to small bandgap (λem = 770 nm for λex = 546 nm) | |
Ambipolar behavior | Mesoporous TiO2/CH3NH3PbI3 | p-type charge transport. Solar efficiency of 5.5% |
Mesoporous ZnO2/CH3NH3PbI3 | n-type charge transport. Solar efficiency of 10.8% | |
Dispersion range | 130 nm and 100 nm. 1100 nm and 1200 nm in CH3NH3PbI3-xClx |
Perovskite Materials | Eg (eV) | Voc (V) | Jsc (mA/cm2) | FF | PCE (%) | Ref. |
---|---|---|---|---|---|---|
MASnI3 | 1.3 | 0.68 | 16.3 | 0.48 | 5.23 | [117] |
MASnI3−xBrx | 1.75 | 0.82 | 12.3 | 0.57 | 5.73 | [117] |
MASnIBr0.8Cl0.2 | 1.25 | 0.38 | 14 | 0.57 | 3 | [118] |
CsSnI2.9Br0.1 | 0.22 | 24.16 | 0.33 | 1.76 | [119] |
Perovskite Materials | Eg (eV) | Voc (V) | Jsc (A/cm2) | FF | PCE (%) | Ref. |
---|---|---|---|---|---|---|
Cs3Bi2I9 | 2.2 | 0.53 | 0.58 | 0.5 | 1.09 | [124] |
MA3Bi2I9 | 2.1 | 0.83 | 3.0 | 0.79 | 3.17 | [125] |
MA3Bi2I9 | 0.83 | 0.83 | 3.0 | 0.79 | 1.64 | [126] |
FA3Bi2I9 | 2.19 | 0.48 | 0.11 | 0.46 | 0.022 | [127] |
MA3Bi2I9−xClx | 2.4 | 0.04 | 0.18 | 0.38 | 0.003 | [125] |
Perovskite Materials | Eg (eV) | Voc (V) | Jsc (mA/cm2) | FF | PCE (%) | Ref. |
---|---|---|---|---|---|---|
CsPb0.96Sb0.04I3 | 0.73 | 14.64 | 0.48 | 5.18 | [130] | |
Sb-alloyed Cu2AgBiI6 (Cu2AgBiI6-Sb) | 1.95 eV | 0.51 | 128 | 0.67 | 9.53 | [131] |
MASbSI2 | 0.67 | 8.11 | 0.59 | 3.11 | [132] | |
Cs2.4MA0.5FA0.1Sb2I8.5Cl0.5 | 2.0 | 0.6 V | 6.4% | [133] |
Perovskite Materials | Eg (eV) | Voc (V) | Jsc (A/cm2) | FF | PCE (%) | Ref. |
---|---|---|---|---|---|---|
CsGeI3 | 1.63 | 0.074 | 5.7 | 0.27 | 1.1 | [135] |
MAGeI3 | 2.2 | 0.15 | 4.0 | 0.3 | 2.0 | [136] |
MAGeI2.7Br0.3 | 0.46 | 3.11 | 0.48 | 5.7 | [137] |
Materials | Merits | Demerits and Challenges |
---|---|---|
Tin (Sn) based perovskites | The optical bandgap is in the near infrared region, has a comparable ionic radius (1.35 Å) to Pb2+ (1.49 Å), and exhibits stability against moisture. Sn-based materials possess stability for 3800 h. Among all lead-free materials, this material has presently achieved the highest efficiency. | Sn2+ may be as hazardous as Pb2+ and, therefore, may also face the same challenges that Pb-based perovskites are facing today. |
Bismuth (Bi) based perovskites | Bi2+ has the same electronic configuration as Pb2+ (ns2). Inorganic Bi2+-based materials show promising stability, are insoluble in water, are not toxic to the environment, are cost-effective, and have the potential to overcome most of the challenges that are faced by Pb in terms of industrialization. | Has a broad bandgap, low performance, and more internal defects. Organic compound stability is relatively low. The lowest power conversion efficiency (PCE) achieved so far in comparison with other materials Needs a more promising research direction. |
Increasing quantum yield and PCE can make this candidate an immediate replacement for Pb in the near future. | ||
Antimony (Sb) based perovskites | Sb3+ compounds show stability in the presence of air, and the bandgap is also comparable to that of Pb (2.14 eV). They are insoluble in water, and Sb2+ possesses good charge transport properties owing to the small bandgap. | (CH3NH3)3SbI9 may face the challenges of energetic disorder and low photocurrent density. low-hopping mechanism for charge transport owing to the large bandgap. |
Germanium (Ge) based perovskites | These are leading materials in the semiconductor industry and possess good optoelectronic properties. Moreover, they are lightweight and less toxic to the environment. They are stable in an inert atmosphere. | Decomposes easily in the air. It is not a cost-effective material. |
Double halide perovskites | Robust stability and a direct bandgap of 0.9–1.02 eV. | Most of the research is based on the computational method. |
Merits | Demerits |
---|---|
Hybrid perovskites with the general formula ABX3 (A = organic cation, B = divalent metal, and X = halogen or pseudo-halogen) are used. | External factors, such as water, heat, humidity, and sunlight, inherently degrade the stability of the active layer of perovskite solar panels. |
Easy, low-cost manufacturing processes make perovskite the obvious choice for mass production. | Water sensitivity causes irreversible damage to perovskite materials. |
The PCE of perovskite solar cells is high. | Heat: Lead halides show an inability to sustain thermal stress. Therefore, the perovskite structure degrades under heat and creates halogen gases that are the source of the formation of B metals (lead, tin, germanium, etc.) on the perovskite film. |
Hybrid perovskite film solar panels are confirming candidates for power generation in the near future. | Oxygen and light: Prolonged exposure to air and light photons adversely degrades the longevity of the solar panel. |
Conversion energy loss is less in perovskite solar cells compared with other cells. | Scalability and efficiency on large-area perovskite are comparatively small. The technology is yet to be effectively transferred from the laboratory to industry. |
Solar Cell Structure | Testing Conditions | ||||||
---|---|---|---|---|---|---|---|
Stability Time (hours) | Illumination Dark/Light | Temperature (°C) | Atmospheric Condition Humidity (%) | Encapsulation | Percentage of Initial Performance (%) | Ref. | |
m-TiO2/MAPbI3/Carbon | >2000 | Dark | RT | Air | No | 100 | [175] |
m-TiO2/MAPbI3/PDPPDBTE/Au | 1000 | Dark | RT | Air (20) | No | 100 | [176] |
ITO/NiOx/MAPbI3/ZnO/Al | 1440 | Dark | 25 | Air (30–35) | No | 90 | [177] |
ITO/PETOD:PSS/MAPbI3/ZnO/Ag | 1000 | Dark | 30 | Air (65) | Yes | >95 | [177] |
m-TiO2/ZrO2/MAPbI3/Carbon | >3000 | Dark | RT | Air (35) | no | ~100 | [174] |
m-TiO2/MAPbI3/Carbon | 1002 | Ultraviolet | 40 | Air (45) | Yes | ~100 | [178] |
BaSnO3/MaPbI3/NiO/Au | 1000 | Light | RT | Air | Yes | 93 | [38] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Diouf, B.; Muley, A.; Pode, R. Issues, Challenges, and Future Perspectives of Perovskites for Energy Conversion Applications. Energies 2023, 16, 6498. https://doi.org/10.3390/en16186498
Diouf B, Muley A, Pode R. Issues, Challenges, and Future Perspectives of Perovskites for Energy Conversion Applications. Energies. 2023; 16(18):6498. https://doi.org/10.3390/en16186498
Chicago/Turabian StyleDiouf, Boucar, Aarti Muley, and Ramchandra Pode. 2023. "Issues, Challenges, and Future Perspectives of Perovskites for Energy Conversion Applications" Energies 16, no. 18: 6498. https://doi.org/10.3390/en16186498
APA StyleDiouf, B., Muley, A., & Pode, R. (2023). Issues, Challenges, and Future Perspectives of Perovskites for Energy Conversion Applications. Energies, 16(18), 6498. https://doi.org/10.3390/en16186498