A Review on Industrial CO2 Capture through Microalgae Regulated by Phytohormones and Cultivation Processes
Abstract
:1. Introduction
2. The Metabolic Mechanism of Microalgae Regulated by Phytohormones
2.1. The Species of Phytohormones
2.2. Regulation of Phytohormones on Microalgae Growth
Phytohormone | Specific Phytohormone | Species | Concentration of Phytohormone (ppm) | Cell Density (106 Cells/mL) | Dry Weight (mg/L) | Lipid Accumulation (mg/L) | References |
---|---|---|---|---|---|---|---|
Auxins | IAA | Nannochloropsis oceanica | 0 | 215.5 | 392.6 | 120.6 | [72] |
10 | 579.5 | 544.1 | 241.2 | ||||
20 | 576.5 | 536.8 | 291.2 | ||||
30 | 574.8 | 526.5 | 310.3 | ||||
40 | 536.6 | 522.0 | 320.6 | ||||
50 | 520.1 | 457.3 | 273.5 | ||||
IAA | Chlorella vulgaris | 0 | 430.4 | / | / | [70] | |
1 | 649.9 | ||||||
0.1 | 466.9 | ||||||
0.01 | 481.3 | ||||||
IAA | Nannochloropsis oculata | 0 | 9.8 | / | / | [71] | |
0.1 | 13.9 | ||||||
0.25 | 15.3 | ||||||
0.5 | 21 | ||||||
0.75 | 11.8 | ||||||
1 | 11.9 | ||||||
ABA | ABA | Chlorella sp. | 0 | / | / | 447.1 | [74] |
0.5 | 690.2 | ||||||
1 | 601.3 | ||||||
10 | 880.1 | ||||||
20 | 330.5 | ||||||
ABA | Chlorella saccharophila | 0 | 11.8 | 157.2 | 80 | [75] | |
1 | 14.1 | 154.8 | 82 | ||||
4 | 14.3 | 162 | 87.2 | ||||
10 | 14.8 | 150.4 | 85.6 | ||||
20 | 14.9 | 160 | 91.6 | ||||
CKs | Kinetin | Chlorella vulgaris | 0 | 430.4 | / | / | [70] |
1 | 667.0 | ||||||
0.1 | 608.9 | ||||||
0.01 | 601.9 | ||||||
Kinetin | Chlorella protothecoides | 0 | / | / | 506 | [76] | |
0.5 | 543 | ||||||
1 | 592.7 | ||||||
1.5 | 520 | ||||||
2 | 582.3 | ||||||
Zeatin | Nannochloropsis oculata | 0 | 9.8 | / | / | [71] | |
0.1 | 21 | ||||||
0.25 | 21.1 | ||||||
0.5 | 21.8 | ||||||
0.75 | 22.9 | ||||||
1 | 13.6 | ||||||
GAs | GA3 | Chlorella vulgaris | 0 | 430.4 | / | / | [70] |
1 | 592.2 | ||||||
0.1 | 454.2 | ||||||
0.01 | 464.7 | ||||||
GA3 | Chlorella protothecoides | 0 | / | / | 50.7 | [76] | |
2.5 | 50.9 | ||||||
5 | 48.0 | ||||||
10 | 38.9 | ||||||
15 | 31.9 | ||||||
GA3 | Nannochloropsis oculata | 0 | 9.8 | / | / | [71] | |
0.1 | 16.7 | ||||||
0.25 | 19.3 | ||||||
0.5 | 10.7 | ||||||
0.75 | 10.3 | ||||||
1 | 11.5 | ||||||
GA3 | Chlorella ellipsoidea | 0 | 8.5 | 40.1 | 9.4 | [67] | |
20 | 18.8 | 185.0 | 32 | ||||
40 | 39.6 | 193.1 | 31.1 | ||||
60 | 82.9 | 216.2 | 33.1 | ||||
80 | 30.3 | 124.2 | 24.1 | ||||
120 | 8.4 | 48.0 | 7.2 | ||||
GA3 | Microcystis aeruginosa | 0 | 56.5 | 0.66 | / | [73] | |
0.001 | 71.7 | 0.72 | |||||
0.1 | 91.5 | 0.77 | |||||
10 | 101.6 | 0.98 | |||||
25 | 111.7 | 0.98 | |||||
Ethylene | Ethephon | Chlorella vulgaris | 0 | / | 2748.1 | / | [63] |
50 | 2800 | ||||||
200 | 2886.42 |
3. Regulation of Phytohormones on Microalgae under Abiotic Stresses
3.1. Effect of Phytohormones on Microalgae under Nitrogen Stress
3.2. Effect of Phytohormones on Microalgae under Other Stresses
4. Multistage Regulation of Phytohormones on CO2 Fixation through Microalgae
5. Photobioreactors for CO2 Fixation through Microalgae
5.1. CO2 Transfer Reinforcement in Photobioreactors
5.2. Light Transfer Reinforcement in Photo-Bioreactor
5.3. Prediction and Optimization through the CFD Model
6. Prospective
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Barati, B.; Zeng, K.; Baeyens, J.; Wang, S.; Addy, M.; Gan, S.-Y.; El-Fatah Abomohra, A. Recent progress in genetically modified microalgae for enhanced carbon dioxide sequestration. Biomass Bioenergy 2021, 145, 105927. [Google Scholar] [CrossRef]
- Burlacot, A.; Dao, O.; Auroy, P.; Cuine, S.; Li-Beisson, Y.; Peltier, G. Alternative photosynthesis pathways drive the algal CO2-concentrating mechanism. Nature 2022, 605, 366–371. [Google Scholar] [CrossRef] [PubMed]
- Phukan, M.M.; Chutia, R.S.; Konwar, B.K.; Kataki, R. Microalgae Chlorella as a potential bio-energy feedstock. Appl. Energy 2011, 88, 3307–3312. [Google Scholar] [CrossRef]
- Giostri, A.; Binotti, M.; Macchi, E. Microalgae cofiring in coal power plants: Innovative system layout and energy analysis. Renew. Energy 2016, 95, 449–464. [Google Scholar] [CrossRef]
- Song, C.; Liu, Q.; Qi, Y.; Chen, G.; Song, Y.; Kansha, Y.; Kitamura, Y. Absorption-microalgae hybrid CO2 capture and biotransformation strategy—A review. Int. J. Greenh. Gas Control 2019, 88, 109–117. [Google Scholar] [CrossRef]
- Zhou, W.; Wang, J.; Chen, P.; Ji, C.; Kang, Q.; Lu, B.; Li, K.; Liu, J.; Ruan, R. Bio-mitigation of carbon dioxide using microalgal systems: Advances and perspectives. Renew. Sustain. Energy Rev. 2017, 76, 1163–1175. [Google Scholar] [CrossRef]
- Stirk, W.A.; van Staden, J. Potential of phytohormones as a strategy to improve microalgae productivity for biotechnological applications. Biotechnol. Adv. 2020, 44, 107612. [Google Scholar] [CrossRef]
- Wang, S.; Mukhambet, Y.; Esakkimuthu, S.; Abomohra, A.E.L.F. Integrated microalgal biorefinery–Routes, energy, economic and environmental perspectives. J. Clean. Prod. 2022, 348, 131245. [Google Scholar] [CrossRef]
- Kadam, K.L. Power plant flue gas as a source of CO2 for microalgae cultivation: Economic impact of different process options. Energy Convers. Manag. 1997, 38, S505–S510. [Google Scholar] [CrossRef]
- Wei, M.; Marrakchi, F.; Yuan, C.; Cheng, X.; Jiang, D.; Zafar, F.F.; Fu, Y.; Wang, S. Adsorption modeling, thermodynamics, and DFT simulation of tetracycline onto mesoporous and high-surface-area NaOH-activated macroalgae carbon. J. Hazard. Mater. 2022, 425, 127887. [Google Scholar] [CrossRef]
- Cao, B.; Jiang, D.; Zheng, Y.; Rupani, P.F.; Yuan, C.; Hu, Y.; Chen, H.; Li, C.; Hu, X.; Wang, S.; et al. Evaluation of biochar-derived carbocatalysts for pyrolytic conversion of sawdust: Life cycle assessment towards monophenol production. Fuel 2022, 330, 125476. [Google Scholar] [CrossRef]
- Barsanti, L.; Gualtieri, P. Is exploitation of microalgae economically and energetically sustainable? Algal Res. 2018, 31, 107–115. [Google Scholar] [CrossRef]
- Bernaerts, T.M.M.; Gheysen, L.; Kyomugasho, C.; Jamsazzadeh Kermani, Z.; Vandionant, S.; Foubert, I.; Hendrickx, M.E.; Van Loey, A.M. Comparison of microalgal biomasses as functional food ingredients: Focus on the composition of cell wall related polysaccharides. Algal Res. 2018, 32, 150–161. [Google Scholar] [CrossRef]
- Seyed Hosseini, N.; Shang, H.; Scott, J.A. Biosequestration of industrial off-gas CO2 for enhanced lipid productivity in open microalgae cultivation systems. Renew. Sustain. Energy Rev. 2018, 92, 458–469. [Google Scholar] [CrossRef]
- Yan, Z.; Shen, T.; Li, W.; Cheng, W.; Wang, X.; Zhu, M.; Yu, Q.; Xiao, Y.; Yu, L. Contribution of microalgae to carbon sequestration in a natural karst wetland aquatic ecosystem: An in-situ mesocosm study. Sci. Total Environ. 2021, 768, 144387. [Google Scholar] [CrossRef]
- Zhao, S.; Ding, Y.-D.; Chen, R.; Liao, Q.; Zhu, X. Dynamic behaviors of CO2 bubbles coalescing at two parallel capillary. Int. J. Heat Mass Transf. 2015, 90, 1001–1008. [Google Scholar] [CrossRef]
- Kao, C.-Y.; Chen, T.-Y.; Chang, Y.-B.; Chiu, T.-W.; Lin, H.-Y.; Chen, C.-D.; Chang, J.-S.; Lin, C.-S. Utilization of carbon dioxide in industrial flue gases for the cultivation of microalga Chlorella sp. Bioresour. Technol. 2014, 166, 485–493. [Google Scholar] [CrossRef]
- Guo, Y.; Yuan, Z.; Xu, J.; Wang, Z.; Yuan, T.; Zhou, W.; Xu, J.; Liang, C.; Xu, H.; Liu, S. Metabolic acclimation mechanism in microalgae developed for CO2 capture from industrial flue gas. Algal Res. 2017, 26, 225–233. [Google Scholar] [CrossRef]
- Cui, X.; Yang, J.; Cui, M.; Zhang, W.; Zhao, J. Comparative experiments of two novel tubular photobioreactors with an inner aerated tube for microalgal cultivation: Enhanced mass transfer and improved biomass yield. Algal Res. 2021, 58, 102364. [Google Scholar] [CrossRef]
- Fu, J.; Huang, Y.; Liao, Q.; Xia, A.; Fu, Q.; Zhu, X. Photo-bioreactor design for microalgae: A review from the aspect of CO2 transfer and conversion. Bioresour. Technol. 2019, 292, 121947. [Google Scholar] [CrossRef]
- Voss, U.; Bishopp, A.; Farcot, E.; Bennett, M.J. Modelling hormonal response and development. Trends Plant Sci. 2014, 19, 311–319. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lu, Y.; Xu, J. Phytohormones in microalgae: A new opportunity for microalgal biotechnology? Trends Plant Sci. 2015, 20, 273–282. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.; Luo, F.; Wang, Z.; Li, Y. The enhanced biomass and lipid accumulation in Coccomyxa subellipsoidea with an integrated treatment strategy initiated by brewery effluent and phytohormones. World J. Microbiol. Biotechnol. 2018, 34, 25. [Google Scholar] [CrossRef] [PubMed]
- Song, X.; Liu, B.-F.; Kong, F.; Ren, N.-Q.; Ren, H.-Y. Overview on stress-induced strategies for enhanced microalgae lipid production: Application, mechanisms and challenges. Resour. Conserv. Recycl. 2022, 183, 106355. [Google Scholar] [CrossRef]
- Salama, E.-S.; Jeon, B.-H.; Chang, S.W.; Lee, S.-H.; Roh, H.-S.; Yang, I.-S.; Kurade, M.B.; El-Dalatony, M.M.; Kim, D.-H.; Kim, K.-H.; et al. Interactive effect of indole-3-acetic acid and diethyl aminoethyl hexanoate on the growth and fatty acid content of some microalgae for biodiesel production. J. Clean. Prod. 2017, 168, 1017–1024. [Google Scholar] [CrossRef]
- Salama, E.S.; Kabra, A.N.; Ji, M.K.; Kim, J.R.; Min, B.; Jeon, B.H. Enhancement of microalgae growth and fatty acid content under the influence of phytohormones. Bioresour. Technol 2014, 172, 97–103. [Google Scholar] [CrossRef]
- Yu, Z.; Pei, H.; Jiang, L.; Hou, Q.; Nie, C.; Zhang, L. Phytohormone addition coupled with nitrogen depletion almost tripled the lipid productivities in two algae. Bioresour. Technol. 2018, 247, 904–914. [Google Scholar] [CrossRef]
- Sanaye Mozaffari Sabet, N.; Golzary, A. CO2 biofixation at microalgae photobioreactors: Hydrodynamics and mass transfer study. Int. J. Environ. Sci. Technol. 2022, 19, 11631–11648. [Google Scholar] [CrossRef]
- Liao, Q.; Chang, H.-X.; Fu, Q.; Huang, Y.; Xia, A.; Zhu, X.; Zhong, N. Physiological-phased kinetic characteristics of microalgae Chlorella vulgaris growth and lipid synthesis considering synergistic effects of light, carbon and nutrients. Bioresour. Technol. 2018, 250, 583–590. [Google Scholar] [CrossRef]
- Sun, Y.; Liao, Q.; Huang, Y.; Xia, A.; Fu, Q.; Zhu, X.; Fu, J.; Li, J. Application of growth-phase based light-feeding strategies to simultaneously enhance Chlorella vulgaris growth and lipid accumulation. Bioresour. Technol. 2018, 256, 421–430. [Google Scholar] [CrossRef]
- Zhao, Y.; Wang, H.P.; Han, B.; Yu, X. Coupling of abiotic stresses and phytohormones for the production of lipids and high-value by-products by microalgae: A review. Bioresour. Technol. 2019, 274, 549–556. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Zhao, Y.; Ding, W.; Zhao, P.; Xu, J.W.; Li, T.; Ma, H.; Yu, X. A strategy for promoting lipid production in green microalgae Monoraphidium sp. QLY-1 by combined melatonin and photoinduction. Bioresour. Technol. 2017, 235, 104–112. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Li, D.; Xu, J.W.; Zhao, P.; Li, T.; Ma, H.; Yu, X. Melatonin enhances lipid production in Monoraphidium sp. QLY-1 under nitrogen deficiency conditions via a multi-level mechanism. Bioresour. Technol. 2018, 259, 46–53. [Google Scholar] [CrossRef] [PubMed]
- Tiwari, S.; Patel, A.; Prasad, S.M. Kinetin alleviates chromium toxicity on growth and PS II photochemistry in Nostoc muscorum by regulating antioxidant system. Ecotoxicol. Environ. Saf. 2018, 161, 296–304. [Google Scholar] [CrossRef]
- Lakshmikandan, M.; Murugesan, A.G.; Wang, S.; Abomohra, A.E.-F.; Jovita, P.A.; Kiruthiga, S. Sustainable biomass production under CO2 conditions and effective wet microalgae lipid extraction for biodiesel production. J. Clean. Prod. 2020, 247, 119398. [Google Scholar] [CrossRef]
- Pires, J.C.M.; Alvim-Ferraz, M.C.M.; Martins, F.G. Photobioreactor design for microalgae production through computational fluid dynamics: A review. Renew. Sustain. Energy Rev. 2017, 79, 248–254. [Google Scholar] [CrossRef]
- Ye, Y.; Ma, S.; Peng, H.; Huang, Y.; Zeng, W.; Xia, A.; Zhu, X.; Liao, Q. Insight into the comprehensive effect of carbon dioxide, light intensity and glucose on heterotrophic-assisted phototrophic microalgae biofilm growth: A multifactorial kinetic model. J. Environ. Manag. 2023, 325, 116582. [Google Scholar] [CrossRef]
- Peter, A.P.; Koyande, A.K.; Chew, K.W.; Ho, S.-H.; Chen, W.-H.; Chang, J.-S.; Krishnamoorthy, R.; Banat, F.; Show, P.L. Continuous cultivation of microalgae in photobioreactors as a source of renewable energy: Current status and future challenges. Renew. Sustain. Energy Rev. 2022, 154, 111852. [Google Scholar] [CrossRef]
- Khoo, C.G.; Lam, M.K.; Lee, K.T. Pilot-scale semi-continuous cultivation of microalgae Chlorella vulgaris in bubble column photobioreactor (BC-PBR): Hydrodynamics and gas–liquid mass transfer study. Algal Res. 2016, 15, 65–76. [Google Scholar] [CrossRef]
- Yu, J.; You, X.; Wang, Y.; Jin, C.; Zhao, Y.; Guo, L. Focus on the role of synthetic phytohormone for mixotrophic growth and lipid accumulation by Chlorella pyrenoidosa. Chemosphere 2022, 308, 136558. [Google Scholar] [CrossRef]
- Bajguz, A.; Piotrowska-Niczyporuk, A. Interactive effect of brassinosteroids and cytokinins on growth, chlorophyll, monosaccharide and protein content in the green alga Chlorella vulgaris (Trebouxiophyceae). Plant Physiol. Biochem. 2014, 80, 176–183. [Google Scholar] [CrossRef] [PubMed]
- Casson, S.A.; Chilley, P.M.; Topping, J.F.; Evans, I.M.; Souter, M.A.; Lindsey, K. The POLARIS gene of Arabidopsis encodes a predicted peptide required for correct root growth and leaf vascular patterning. Plant Cell 2002, 14, 1705–1721. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nordstrom, A.; Tarkowski, P.; Tarkowska, D.; Norbaek, R.; Astot, C.; Dolezal, K.; Sandberg, G. Auxin regulation of cytokinin biosynthesis in Arabidopsis thaliana: A factor of potential importance for auxin-cytokinin-regulated development. Proc. Natl. Acad. Sci. USA 2004, 101, 8039–8044. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salvi, P.; Manna, M.; Kaur, H.; Thakur, T.; Gandass, N.; Bhatt, D.; Muthamilarasan, M. Phytohormone signaling and crosstalk in regulating drought stress response in plants. Plant Cell Rep. 2021, 40, 1305–1329. [Google Scholar] [CrossRef] [PubMed]
- El Arroussi, H.; Benhima, R.; Bennis, I.; El Mernissi, N.; Wahby, I. Improvement of the potential of Dunaliella tertiolecta as a source of biodiesel by auxin treatment coupled to salt stress. Renew. Energy 2015, 77, 15–19. [Google Scholar] [CrossRef]
- Han, X.; Zeng, H.; Bartocci, P.; Fantozzi, F.; Yan, Y. Phytohormones and Effects on Growth and Metabolites of Microalgae: A Review. Fermentation 2018, 4, 25. [Google Scholar] [CrossRef] [Green Version]
- Revelou, P.-K.; Constantinou-Kokotou, V. Preparation of synthetic auxin-amino acid conjugates. Synth. Commun. 2019, 49, 1708–1712. [Google Scholar] [CrossRef]
- Guldhe, A.; Renuka, N.; Singh, P.; Bux, F. Effect of phytohormones from different classes on gene expression of Chlorella sorokiniana under nitrogen limitation for enhanced biomass and lipid production. Algal Res. 2019, 40, 101518. [Google Scholar] [CrossRef]
- Giridhar Babu, A.; Wu, X.; Kabra, A.N.; Kim, D.-P. Cultivation of an indigenous Chlorella sorokiniana with phytohormones for biomass and lipid production under N-limitation. Algal Res. 2017, 23, 178–185. [Google Scholar] [CrossRef]
- Cortleven, A.; Schmulling, T. Regulation of chloroplast development and function by cytokinin. J. Exp. Bot. 2015, 66, 4999–5013. [Google Scholar] [CrossRef]
- Akhtar, S.S.; Mekureyaw, M.F.; Pandey, C.; Roitsch, T. Role of Cytokinins for Interactions of Plants with Microbial Pathogens and Pest Insects. Front. Plant Sci. 2019, 10, 1777. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Piotrowska, A.; Czerpak, R. Cellular response of light/dark-grown green alga Chlorella vulgaris Beijerinck (Chlorophyceae) to exogenous adenine- and phenylurea-type cytokinins. Acta Physiol. Plantarum 2009, 31, 573–585. [Google Scholar] [CrossRef]
- Gan, S.; Amasino, R.M. Inhibition of leaf senescence by autoregulated production of cytokinin. Science 1995, 270, 1986–1988. [Google Scholar] [CrossRef] [PubMed]
- Romanenko, K.O.; Kosakovskaya, I.V.; Romanenko, P.O. Phytohormones of microalgae biological role and involvement. Int. J. Algae 2016, 18, 179–201. [Google Scholar] [CrossRef]
- Mansouri, H.; Soltani Nezhad, F. Changes in growth and biochemical parameters in Dunaliella salina (Dunaliellaceae) in response to auxin and gibberellin under colchicine-induced polyploidy. J. Phycol. 2021, 57, 1284–1294. [Google Scholar] [CrossRef]
- Hedden, P. The Current Status of Research on Gibberellin Biosynthesis. Plant Cell Physiol. 2020, 61, 1832–1849. [Google Scholar] [CrossRef]
- Pal, M.; Tajti, J.; Szalai, G.; Peeva, V.; Vegh, B.; Janda, T. Interaction of polyamines, abscisic acid and proline under osmotic stress in the leaves of wheat plants. Sci. Rep. 2018, 8, 12839. [Google Scholar] [CrossRef] [Green Version]
- Laloum, T.; Martin, G.; Duque, P. Alternative Splicing Control of Abiotic Stress Responses. Trends Plant Sci. 2018, 23, 140–150. [Google Scholar] [CrossRef] [Green Version]
- Suzuki, N.; Bassil, E.; Hamilton, J.S.; Inupakutika, M.A.; Zandalinas, S.I.; Tripathy, D.; Luo, Y.; Dion, E.; Fukui, G.; Kumazaki, A.; et al. ABA Is Required for Plant Acclimation to a Combination of Salt and Heat Stress. PLoS ONE 2016, 11, e0147625. [Google Scholar] [CrossRef] [Green Version]
- Li, S.; Li, X.; Wei, Z.; Liu, F. ABA-mediated modulation of elevated CO(2) on stomatal response to drought. Curr. Opin. Plant Biol. 2020, 56, 174–180. [Google Scholar] [CrossRef]
- Pierik, R.; Tholen, D.; Poorter, H.; Visser, E.J.; Voesenek, L.A. The Janus face of ethylene: Growth inhibition and stimulation. Trends Plant Sci. 2006, 11, 176–183. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.L.; Li, H.; Ecker, J.R. Ethylene biosynthesis and signaling networks. Plant Cell 2002, 14 (Suppl. 1), S131–S151. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, S.H.; Lim, S.R.; Hong, S.J.; Cho, B.K.; Lee, H.; Lee, C.G.; Choi, H.K. Effect of Ethephon as an Ethylene-Releasing Compound on the Metabolic Profile of Chlorella vulgaris. J. Agric. Food. Chem. 2016, 64, 4807–4816. [Google Scholar] [CrossRef] [PubMed]
- Zhao, P.; Lin, Z.; Wang, Y.; Chai, H.; Li, Y.; He, L.; Zhou, J. Facilitating effects of plant hormones on biomass production and nutrients removal by Tetraselmis cordiformis for advanced sewage treatment and its mechanism. Sci. Total Environ. 2019, 693, 133650. [Google Scholar] [CrossRef]
- Talarek-Karwel, M.; Bajguz, A.; Piotrowska-Niczyporuk, A.; Rajewska, I. The effect of 24-epibrassinolide on the green alga Acutodesmus obliquus (Chlorophyceae). Plant Physiol. Biochem. 2018, 124, 175–183. [Google Scholar] [CrossRef]
- Fu, L.; Li, Q.; Chen, C.; Zhang, Y.; Liu, Y.; Xu, L.; Zhou, Y.; Li, C.; Zhou, D.; Rittmann, B.E. Benzoic and salicylic acid are the signaling molecules of Chlorella cells for improving cell growth. Chemosphere 2021, 265, 129084. [Google Scholar] [CrossRef]
- Gonzalez-Garcinuno, A.; Sanchez-Alvarez, J.M.; Galan, M.A.; Martin Del Valle, E.M. Understanding and optimizing the addition of phytohormones in the culture of microalgae for lipid production. Biotechnol. Prog. 2016, 32, 1203–1211. [Google Scholar] [CrossRef]
- Tang, D.; Han, W.; Li, P.; Miao, X.; Zhong, J. CO2 biofixation and fatty acid composition of Scenedesmus obliquus and Chlorella pyrenoidosa in response to different CO2 levels. Bioresour. Technol. 2011, 102, 3071–3076. [Google Scholar] [CrossRef]
- Jiang, L.; Pei, H.; Hu, W.; Han, F.; Zhang, L.; Hou, Q. Effect of diethyl aminoethyl hexanoate on the accumulation of high-value biocompounds produced by two novel isolated microalgae. Bioresour. Technol. 2015, 197, 178–184. [Google Scholar] [CrossRef]
- Piotrowska-Niczyporuk, A.; Bajguz, A. The effect of natural and synthetic auxins on the growth, metabolite content and antioxidant response of green alga Chlorella vulgaris (Trebouxiophyceae). Plant Growth Regul. 2013, 73, 57–66. [Google Scholar] [CrossRef]
- Trinh, C.T.; Tran, T.H.; Bui, T.V. Effects of plant growth regulators on the growth and lipid accumulation of Nannochloropsis oculata (droop) Hibberd. AIP Conf. Proc. 2017, 1878, 020017. [Google Scholar]
- Udayan, A.; Arumugam, M. Selective enrichment of Eicosapentaenoic acid (20:5n−3) in N. oceanica CASA CC201 by natural auxin supplementation. Bioresour. Technol. 2017, 242, 329–333. [Google Scholar] [CrossRef] [PubMed]
- Pan, X.; Chang, F.; Kang, L.; Liu, Y.; Li, G.; Li, D. Effects of gibberellin A(3) on growth and microcystin production in Microcystis aeruginosa (cyanophyta). J. Plant Physiol. 2008, 165, 1691–1697. [Google Scholar] [CrossRef] [PubMed]
- Wu, G.; Gao, Z.; Du, H.; Lin, B.; Yan, Y.; Li, G.; Guo, Y.; Fu, S.; Wei, G.; Wang, M.; et al. The effects of abscisic acid, salicylic acid and jasmonic acid on lipid accumulation in two freshwater Chlorella strains. J. Gen. Appl. Microbiol. 2018, 64, 42–49. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Contreras-Pool, P.Y.; Peraza-Echeverria, S.; Ku-González, Á.F.; Herrera-Valencia, V.A. The phytohormone abscisic acid increases triacylglycerol content in the green microalga Chlorella saccharophila (Chlorophyta). Algae 2016, 31, 267–276. [Google Scholar] [CrossRef] [Green Version]
- Parsaeimehr, A.; Mancera-Andrade, E.I.; Robledo-Padilla, F.; Iqbal, H.M.N.; Parra-Saldivar, R. A chemical approach to manipulate the algal growth, lipid content and high-value alpha-linolenic acid for biodiesel production. Algal Res. 2017, 26, 312–322. [Google Scholar] [CrossRef]
- Chokshi, K.; Pancha, I.; Trivedi, K.; George, B.; Maurya, R.; Ghosh, A.; Mishra, S. Biofuel potential of the newly isolated microalgae Acutodesmus dimorphus under temperature induced oxidative stress conditions. Bioresour. Technol. 2015, 180, 162–171. [Google Scholar] [CrossRef]
- Lan, S.; Wu, L.; Zhang, D.; Hu, C. Effects of light and temperature on open cultivation of desert cyanobacterium Microcoleus vaginatus. Bioresour. Technol. 2015, 182, 144–150. [Google Scholar] [CrossRef]
- Chu, S.; Rashid, R.T.; Pan, Y.; Wang, X.; Zhang, H.; Xiao, R. The impact of flue gas impurities and concentrations on the photoelectrochemical CO2 reduction. J. CO2 Util. 2022, 60, 101993. [Google Scholar] [CrossRef]
- Grim, R.G.; Huang, Z.; Guarnieri, M.T.; Ferrell, J.R.; Tao, L.; Schaidle, J.A. Transforming the carbon economy: Challenges and opportunities in the convergence of low-cost electricity and reductive CO2 utilization. Energy Environ. Sci. 2020, 13, 472–494. [Google Scholar] [CrossRef]
- Kim, G.-Y.; Heo, J.; Kim, K.; Chung, J.; Han, J.-I. Electrochemical pH control and carbon supply for microalgae cultivation. Chem. Eng. J. 2021, 426, 131796. [Google Scholar] [CrossRef]
- Sulochana, S.B.; Arumugam, M. Influence of abscisic acid on growth, biomass and lipid yield of Scenedesmus quadricauda under nitrogen starved condition. Bioresour. Technol. 2016, 213, 198–203. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Liao, Q.; Fu, Q.; Chen, H.; Huang, Y.; Xia, A.; Zhu, X.; Reungsang, A.; Liu, Z.; Li, J. Rheological properties of microalgae slurry under subcritical conditions for hydrothermal hydrolysis systems. Algal Res. 2018, 33, 78–83. [Google Scholar] [CrossRef]
- Renuka, N.; Guldhe, A.; Singh, P.; Ansari, F.A.; Rawat, I.; Bux, F. Evaluating the potential of cytokinins for biomass and lipid enhancement in microalga Acutodesmus obliquus under nitrogen stress. Energy Convers. Manag. 2017, 140, 14–23. [Google Scholar] [CrossRef]
- Renuka, N.; Guldhe, A.; Singh, P.; Bux, F. Combined effect of exogenous phytohormones on biomass and lipid production in Acutodesmus obliquus under nitrogen limitation. Energy Convers. Manag. 2018, 168, 522–528. [Google Scholar] [CrossRef]
- Ding, W.; Peng, J.; Zhao, Y.; Zhao, P.; Xu, J.-W.; Li, T.; Yu, X. A strategy for boosting astaxanthin accumulation in green microalga Haematococcus pluvialis by using combined diethyl aminoethyl hexanoate and high light. J. Appl. Phycol. 2018, 31, 171–181. [Google Scholar] [CrossRef]
- Piotrowska-Niczyporuk, A.; Bajguz, A.; Zambrzycka, E.; Godlewska-Zylkiewicz, B. Phytohormones as regulators of heavy metal biosorption and toxicity in green alga Chlorella vulgaris (Chlorophyceae). Plant Physiol. Biochem. 2012, 52, 52–65. [Google Scholar] [CrossRef]
- Baroukh, C.; Mairet, F.; Bernard, O. The paradoxes hidden behind the Droop model highlighted by a metabolic approach. Front. Plant Sci. 2022, 13, 941230. [Google Scholar] [CrossRef]
- Zhou, X.; Ge, H.; Xia, L.; Zhang, D.; Hu, C. Evaluation of oil-producing algae as potential biodiesel feedstock. Bioresour. Technol. 2013, 134, 24–29. [Google Scholar] [CrossRef]
- Russo, M.; Iervolino, G.; Vaiano, V.; Palma, V. Non-Thermal Plasma Coupled with Catalyst for the Degradation of Water Pollutants: A Review. Catalysts 2020, 10, 1438. [Google Scholar] [CrossRef]
- San Pedro, A.; González-López, C.V.; Acién, F.G.; Molina-Grima, E. Marine microalgae selection and culture conditions optimization for biodiesel production. Bioresour. Technol. 2013, 134, 353–361. [Google Scholar] [CrossRef]
- Mujtaba, G.; Choi, W.; Lee, C.G.; Lee, K. Lipid production by Chlorella vulgaris after a shift from nutrient-rich to nitrogen starvation conditions. Bioresour. Technol. 2012, 123, 279–283. [Google Scholar] [CrossRef]
- Ratha, S.K.; Prasanna, R.; Prasad, R.B.N.; Sarika, C.; Dhar, D.W.; Saxena, A.K. Modulating lipid accumulation and composition in microalgae by biphasic nitrogen supplementation. Aquaculture 2013, 392–395, 69–76. [Google Scholar] [CrossRef]
- Yang, H.; He, Q.; Hu, C. Lipid accumulation by NaCl induction at different growth stages and concentrations in photoautotrophic two-step cultivation of Monoraphidium dybowskii LB50. Bioresour. Technol. 2015, 187, 221–227. [Google Scholar] [CrossRef] [PubMed]
- Rahman, A.; Putra, J.D.; Prihantini, N.B.; Mahlia, T.M.I.; Aziz, M.; Deendarlianto; Nasruddin, N. Cultivation of Synechococcus HS-9 in a novel rectangular bubble column photobioreactor with horizontal baffle. Case Stud. Therm. Eng. 2021, 27, 101264. [Google Scholar] [CrossRef]
- Xia, A.; Hu, Z.; Liao, Q.; Huang, Y.; Zhu, X.; Ye, W.; Sun, Y. Enhancement of CO2 transfer and microalgae growth by perforated inverted arc trough internals in a flat-plate photobioreactor. Bioresour. Technol. 2018, 269, 292–299. [Google Scholar] [CrossRef] [PubMed]
- Yaqoubnejad, P.; Rad, H.A.; Taghavijeloudar, M. Development a novel hexagonal airlift flat plate photobioreactor for the improvement of microalgae growth that simultaneously enhance CO2 bio-fixation and wastewater treatment. J. Environ. Manag. 2021, 298, 113482. [Google Scholar] [CrossRef]
- Cheng, J.; Song, Y.; Miao, Y.; Guo, W.; Wang, Y.; Li, X.; Yang, W.; Zhou, J. Three-Stage Shear-Serrated Aerator Broke CO2 Bubbles To Promote Mass Transfer and Microalgal Growth. ACS Sustain. Chem. Eng. 2019, 8, 939–947. [Google Scholar] [CrossRef]
- Wu, K.; Ying, K.; Zhou, J.; Liu, D.; Liu, L.; Tao, Y.; Hanotu, J.; Zhu, X.; Cai, Z. Optimizing the growth of Haematococcus pluvialis based on a novel microbubble-driven photobioreactor. iScience 2021, 24, 103461. [Google Scholar] [CrossRef]
- Zhang, D.; Dechatiwongse, P.; Hellgardt, K. Modelling light transmission, cyanobacterial growth kinetics and fluid dynamics in a laboratory scale multiphase photo-bioreactor for biological hydrogen production. Algal Res. 2015, 8, 99–107. [Google Scholar] [CrossRef]
- Benson, B.C.; Rusch, K.A. Investigation of the light dynamics and their impact on algal growth rate in a hydraulically integrated serial turbidostat algal reactor (HISTAR). Aquac. Eng. 2006, 35, 122–134. [Google Scholar] [CrossRef]
- Sun, Y.; Liao, Q.; Huang, Y.; Xia, A.; Fu, Q.; Zhu, X.; Zheng, Y. Integrating planar waveguides doped with light scattering nanoparticles into a flat-plate photobioreactor to improve light distribution and microalgae growth. Bioresour. Technol. 2016, 220, 215–224. [Google Scholar] [CrossRef]
- Sun, Y.; Huang, Y.; Liao, Q.; Xia, A.; Fu, Q.; Zhu, X.; Fu, J. Boosting Nannochloropsis oculata growth and lipid accumulation in a lab-scale open raceway pond characterized by improved light distributions employing built-in planar waveguide modules. Bioresour. Technol. 2018, 249, 880–889. [Google Scholar] [CrossRef]
- Liao, Q.; Li, L.; Chen, R.; Zhu, X. A novel photobioreactor generating the light/dark cycle to improve microalgae cultivation. Bioresour. Technol. 2014, 161, 186–191. [Google Scholar] [CrossRef] [PubMed]
- Ye, Q.; Cheng, J.; Liu, S.; Qiu, Y.; Zhang, Z.; Guo, W.; An, Y. Improving light distribution and light/dark cycle of 900 L tangential spiral-flow column photobioreactors to promote CO2 fixation with Arthrospira sp. cells. Sci. Total Environ. 2020, 720, 137611. [Google Scholar] [CrossRef]
- Chen, Z.; Su, B. Influence of Medium Frequency Light/Dark Cycles on the Cultivation of Auxenochlorella pyrenoidosa. Appl. Sci. 2020, 10, 5093. [Google Scholar] [CrossRef]
- Liu, L.; Ying, K.; Wu, K.; Tang, S.; Zhou, J.; Cai, Z. Promoting the Growth of Haematococcus lacustris under High Light Intensity through the Combination of Light/Dark Cycle and Light Color. J. Mar. Sci. Eng. 2022, 10, 839. [Google Scholar] [CrossRef]
- Zhang, Q.; Xue, S.; Yan, C.; Wu, X.; Wen, S.; Cong, W. Installation of flow deflectors and wing baffles to reduce dead zone and enhance flashing light effect in an open raceway pond. Bioresour. Technol. 2015, 198, 150–156. [Google Scholar] [CrossRef]
- Cheng, J.; Yang, Z.; Ye, Q.; Zhou, J.; Cen, K. Enhanced flashing light effect with up-down chute baffles to improve microalgal growth in a raceway pond. Bioresour. Technol. 2015, 190, 29–35. [Google Scholar] [CrossRef]
- Chen, Z.; Zhang, X.; Jiang, Z.; Chen, X.; He, H.; Zhang, X. Light/dark cycle of microalgae cells in raceway ponds: Effects of paddlewheel rotational speeds and baffles installation. Bioresour. Technol. 2016, 219, 387–391. [Google Scholar] [CrossRef]
- Guo, W.; Cheng, J.; Song, Y.; Liu, S.; Ali, K.A.; Kumar, S. Three-dimensional numerical simulation of light penetration in an optimized flow field composed of microalgae cells, carbon dioxide bubbles and culture medium. Bioresour. Technol. 2019, 292, 121979. [Google Scholar] [CrossRef] [PubMed]
- Ranganathan, P.; Pandey, A.K.; Sirohi, R.; Tuan Hoang, A.; Kim, S.H. Recent advances in computational fluid dynamics (CFD) modelling of photobioreactors: Design and applications. Bioresour. Technol. 2022, 350, 126920. [Google Scholar] [CrossRef] [PubMed]
- Ye, Q.; Cheng, J.; Lai, X.; An, Y.; Chu, F.; Zhou, J.; Cen, K. Promoting Photochemical Efficiency of Chlorella PY-ZU1 with Enhanced Velocity Field and Turbulent Kinetics in a Novel Tangential Spiral-Flow Column Photobioreactor. ACS Sustain. Chem. Eng. 2018, 7, 384–393. [Google Scholar] [CrossRef]
- Shen, Y.; Zhang, Y.; Zhang, Q.; Ye, Q.; Cai, Q.; Wu, X. Enhancing the flow field in parallel spiral-flow column photobioreactor to improve CO2 fixation with Spirulina sp. Sci. Total Environ. 2021, 799, 149314. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.; Peng, C.; Zhang, J.; Tang, Z. Synergistic effect of microbubble flow and light fields on a bionic tree-like photobioreactor. Chem. Eng. Sci. 2021, 229, 116092. [Google Scholar] [CrossRef]
- He, S.; Barati, B.; Hu, X.; Wang, S. Carbon migration of microalgae from cultivation towards biofuel production by hydrothermal technology: A review. Fuel Process. Technol. 2023, 240, 107563. [Google Scholar] [CrossRef]
Abiotic Stress | Phytohormones | Species | Products | Effects | Refs. |
---|---|---|---|---|---|
ND (nitrogen deprived) | ABA | S. quadricauda | Biomass, lipid | “+“, “=” | [82] |
NAA and IBA | Scenedesmus SDEC-8 | “+”, “+” | [83] | ||
C. sorokiniana SDEC-18 | “+”, “+” | ||||
IAA | C. sorokiniana | “+”, “+” | [49] | ||
DAH | “+”, “+” | ||||
K | Acutodesmus obliquus | “+”, “+” | [84] | ||
Z | “+”, “+” | ||||
Z and IAA and GA | Acutodesmus obliquus | “+”, “+” | [85] | ||
HL intensity | MT | Monoraphidium sp. | Biomass, lipid | “=”, “+” | [32] |
DAH | H. pluvialis | “−”, “=” | [86] | ||
Heavy metals | Z | Chlorella vulgaris | Number of cells, carotenoid | “+”, “+” | [87] |
K | “+”, “+” | ||||
IAA | “+”, “+” | ||||
GA | “+”, “+” | ||||
JA | “+”, “+” | ||||
K | Nostoc muscorum | Biomass, carotenoid | “+”, “+” | [34] | |
Salt stress | 2-4-D | D. tertiolecta | Lipid | “+” | [45] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, H.; Jiang, Y.; Zhu, K.; Yang, J.; Fu, Y.; Wang, S. A Review on Industrial CO2 Capture through Microalgae Regulated by Phytohormones and Cultivation Processes. Energies 2023, 16, 897. https://doi.org/10.3390/en16020897
Chen H, Jiang Y, Zhu K, Yang J, Fu Y, Wang S. A Review on Industrial CO2 Capture through Microalgae Regulated by Phytohormones and Cultivation Processes. Energies. 2023; 16(2):897. https://doi.org/10.3390/en16020897
Chicago/Turabian StyleChen, Hao, Yuye Jiang, Kai Zhu, Jingwen Yang, Yanxia Fu, and Shuang Wang. 2023. "A Review on Industrial CO2 Capture through Microalgae Regulated by Phytohormones and Cultivation Processes" Energies 16, no. 2: 897. https://doi.org/10.3390/en16020897
APA StyleChen, H., Jiang, Y., Zhu, K., Yang, J., Fu, Y., & Wang, S. (2023). A Review on Industrial CO2 Capture through Microalgae Regulated by Phytohormones and Cultivation Processes. Energies, 16(2), 897. https://doi.org/10.3390/en16020897