Life Cycle Assessment of Greenhouse Gas (GHG) and NOx Emissions of Power-to-H2-to-Power Technology Integrated with Hydrogen-Fueled Gas Turbine
Abstract
:1. Introduction
2. Methodology
2.1. LCA Model
2.2. Green Hydrogen Production
2.3. Hydrogen Storage and Transportation
2.4. Plant Construction and Dismissing (PCD)
2.5. Power Regeneration (PRG)
2.6. Calculation of Life Cycle of GHG and NOx Emissions
2.7. Sensitivity Analysis
3. Results and Discussion
3.1. Renewable Power Sources
3.1.1. GHG Emissions
3.1.2. NOx Emissions
3.1.3. Contributions of Different Stages
3.2. Water Electrolysis Efficiency
3.3. Influences of CCGT Operation
3.4. EOH and NOx Concentration
3.5. Plant Scale
3.6. Potential of Reduction in the Future
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Statista Global Carbon Dioxide Emissions in 2020, by Sector. Available online: https://www.statista.com/statistics/276480/world-carbon-dioxide-emissions-by-sSector/ (accessed on 25 August 2022).
- Lamb, W.F.; Wiedmann, T.; Pongratz, J.; Andrew, R.; Crippa, M.; Olivier, J.G.J.; Wiedenhofer, D.; Mattioli, G.; Al Khourdajie, A.; House, J.; et al. A Review of Trends and Drivers of Greenhouse Gas Emissions by Sector from 1990 to 2018. Environ. Res. Lett. 2021, 16, 073005. [Google Scholar] [CrossRef]
- Dolci, F.; Thomas, D.; Hilliard, S.; Hancke, R.; Ito, H.; Jegoux, M.; Fu, C.; Kreeft, G.; Leaver, J.; Newborough, M.; et al. Incentives and Legal Barriers for Power-to-Hydrogen Pathways: An International Snapshot. Int. J. Hydrog. Energy 2019, 44, 11394–11401. [Google Scholar] [CrossRef]
- National Academies of Sciences Engineering and Medicine. Advanced Technologies for Gas Turbines; National Academies Press: Washington, DC, USA, 2020; ISBN 9780309664226. [Google Scholar]
- Taamallah, S.; Vogiatzaki, K.; Alzahrani, F.M.; Mokheimer, E.M.A.; Habib, M.A.; Ghoniem, A.F. Fuel Flexibility, Stability and Emissions in Premixed Hydrogen-Rich Gas Turbine Combustion: Technology, Fundamentals, and Numerical Simulations. Appl. Energy 2015, 154, 1020–1047. [Google Scholar] [CrossRef]
- Patel, S. First Hydrogen Burn at Long Ridge HA-Class Gas Turbine Marks Triumph for GE. Available online: https://www.powermag.com/first-hydrogen-burn-at-long-ridge-ha-class-gas-turbine-marks-triumph-for-ge/ (accessed on 20 September 2022).
- General Electric First GE 9HA Gas Turbines Ordered for Hydrogen-Blended Natural Gas Fueled Power Plant in China, Supporting China’s Decarbonization Roadmap. Available online: https://www.ge.com/news/press-releases/first-ge-9ha-gas-turbines-ordered-for-hydrogen-blended-natural-gas-fueled-power (accessed on 20 September 2022).
- Walker, S.B.; Van Lanen, D.; Mukherjee, U.; Fowler, M. Greenhouse Gas Emissions Reductions from Applications of Power-to-Gas in Power Generation. Sustain. Energy Technol. Assess. 2017, 20, 25–32. [Google Scholar] [CrossRef]
- Cappelletti, A.; Martelli, F. Investigation of a Pure Hydrogen Fueled Gas Turbine Burner. Int. J. Hydrog. Energy 2017, 42, 10513–10523. [Google Scholar] [CrossRef] [Green Version]
- Alhuyi Nazari, M.; Fahim Alavi, M.; Salem, M.; Assad, M.E.H. Utilization of Hydrogen in Gas Turbines: A Comprehensive Review. Int. J. Low-Carbon Technol. 2022, 17, 513–519. [Google Scholar] [CrossRef]
- Siemens Gas and Power HYFLEXPOWER: The World’s First Integrated Power-to-X-to-Power Hydrogen Gas Turbine Demonstrator. Available online: https://press.siemens.com/global/en/pressrelease/ (accessed on 20 September 2022).
- Rinawati, D.I.; Keeley, A.R.; Takeda, S.; Managi, S. Life-Cycle Assessment of Hydrogen Utilization in Power Generation: A Systematic Review of Technological and Methodological Choices. Front. Sustain. 2022, 3, 1–19. [Google Scholar] [CrossRef]
- Mehmeti, A.; Angelis-Dimakis, A.; Arampatzis, G.; McPhail, S.J.; Ulgiati, S. Life Cycle Assessment and Water Footprint of Hydrogen Production Methods: From Conventional to Emerging Technologies. Environments 2018, 5, 24. [Google Scholar] [CrossRef] [Green Version]
- Salkuyeh, Y.K.; Saville, B.A.; MacLean, H.L. Techno-Economic Analysis and Life Cycle Assessment of Hydrogen Production from Different Biomass Gasification Processes. Int. J. Hydrog. Energy 2018, 43, 9514–9528. [Google Scholar] [CrossRef]
- Therkelsen, P.; Werts, T.; McDonell, V.; Samuelsen, S. Analysis of NOx Formation in a Hydrogen-Fueled Gas Turbine Engine. J. Eng. Gas Turbines Power 2009, 131, 1–10. [Google Scholar] [CrossRef]
- IKE Chinese Core Life Cycle Database (CLCD). Available online: https://www.ike-global.com/#/products-2/chinese-lca-database-clcd (accessed on 16 March 2022).
- Zang, G.; Zhang, J.; Jia, J.; Lora, E.S.; Ratner, A. Life Cycle Assessment of Power-Generation Systems Based on Biomass Integrated Gasification Combined Cycles. Renew. Energy 2020, 149, 336–346. [Google Scholar] [CrossRef]
- Schmidt, O.; Gambhir, A.; Staffell, I.; Hawkes, A.; Nelson, J.; Few, S. Future Cost and Performance of Water Electrolysis: An Expert Elicitation Study. Int. J. Hydrog. Energy 2017, 42, 30470–30492. [Google Scholar] [CrossRef]
- Dawood, F.; Anda, M.; Shafiullah, G.M. Hydrogen Production for Energy: An Overview. Int. J. Hydrog. Energy 2020, 45, 3847–3869. [Google Scholar] [CrossRef]
- Bhandari, R.; Trudewind, C.A.; Zapp, P. Life Cycle Assessment of Hydrogen Production via Electrolysis—A Review. J. Clean. Prod. 2014, 85, 151–163. [Google Scholar] [CrossRef]
- Susmozas, A.; Iribarren, D.; Zapp, P.; Linβen, J.; Dufour, J. Life-Cycle Performance of Hydrogen Production via Indirect Biomass Gasification with CO2 Capture. Int. J. Hydrog. Energy 2016, 41, 19484–19491. [Google Scholar] [CrossRef]
- Wang, M.; Wang, G.; Sun, Z.; Zhang, Y.; Xu, D. Review of Renewable Energy-Based Hydrogen Production Processes for Sustainable Energy Innovation. Glob. Energy Interconnect. 2019, 2, 436–443. [Google Scholar] [CrossRef]
- Gardiner, M. Energy Requirements for Hydrogen Gas Compression and Liquefaction as Related to Vehicle Storage Needs. Available online: https://www.hydrogen.energy.gov/pdfs/9013_energy_requirements_for_hydrogen_gas_compression.pdf/ (accessed on 24 March 2022).
- Gao, C.; Chen, S.; Chen, S.; Wang, S. Life Cycle Assessment of Integrated Iron and Steel Works in China. J. Harbin Inst. Technol. 2016, 48, 177–181. (In Chinese) [Google Scholar] [CrossRef]
- Cui, S.; Li, Y.; Li, C.; Wang, Y. Research and Application of Life Cycle Assessment in Cement Industry. Mater. China 2016, 35, 761–768. (In Chinese) [Google Scholar] [CrossRef]
- Ditaranto, M.; Heggset, T.; Berstad, D. Concept of Hydrogen Fired Gas Turbine Cycle with Exhaust Gas Recirculation: Assessment of Process Performance. Energy 2020, 192, 116646. [Google Scholar] [CrossRef]
- Funke, H.H.W.; Boerner, S.; Keinz, J.; Kusterer, K.; Kroniger, D.; Kitajima, J.; Kazari, M.; Horikawa, A. Numerical and Experimental Characterization of Low NOX Micromix Combustion Principle for Industrial Hydrogen Gas Turbine Applications. Proc. ASME Turbo Expo 2012, 2, 1069–1079. [Google Scholar] [CrossRef]
- Farzaneh-Gord, M.; Deymi-Dashtebayaz, M. A New Approach for Enhancing Performance of a Gas Turbine (Case Study: Khangiran Refinery). Appl. Energy 2009, 86, 2750–2759. [Google Scholar] [CrossRef]
- Park, Y.; Choi, M.; Kim, K.; Li, X.; Jung, C.; Na, S.; Choi, G. Prediction of Operating Characteristics for Industrial Gas Turbine Combustor Using an Optimized Artificial Neural Network. Energy 2020, 213, 118769. [Google Scholar] [CrossRef]
- Yao, X. Gas Turbine and Combined Cycle, 2nd ed.; China Electric Power Press: Beijing, China, 2017. [Google Scholar]
- Wang, Y.; Zhou, S.; Yao, Z.; Ou, X. Life Cycle Modeling Analysis of the Interaction Between Carbon Dioxide and Air Pollutant Emissions of Coal Power in China. Electr. Power 2021, 54, 128–135. (In Chinese) [Google Scholar]
- Liu, G. Analysis and Suggestion of Carbon Emission in Thermal Power Plants under the Background of Carbon Peak and Carbon Neutrality. Available online: https://kns.cnki.net/kcms/detail/11.3676.TD.20211209.0713.012.html/ (accessed on 14 October 2022).
- Wang, Y.; Zhou, S.; Wang, Y.; Qin, X.; Chen, F.; Ou, X. Comprehensive Assessment of the Environmental Impact of China’s Unclear and Other Power Generation Technologies. J. Tsinghua Univ. (Science Technol.) 2021, 61, 377–384. (In Chinese) [Google Scholar]
- Li, H.; Jiang, H.-D.; Dong, K.-Y.; Wei, Y.-M.; Liao, H. A Comparative Analysis of the Life Cycle Environmental Emissions from Wind and Coal Power: Evidence from China. J. Clean. Prod. 2020, 248, 119192. [Google Scholar] [CrossRef]
- Song, G.; Tang, L.; Jiang, W.; Xiao, J. Life-Cycle Environmental Impact Assessment of a Typical 2 × 200 MW Natural Gas Combined Cycle-Combined Heat and Power Plant. Electr. Power 2014, 47, 149–155. (In Chinese) [Google Scholar]
- Withey, P.; Johnston, C.; Guo, J. Quantifying the Global Warming Potential of Carbon Dioxide Emissions from Bioenergy with Carbon Capture and Storage. Renew. Sustain. Energy Rev. 2019, 115, 109408. [Google Scholar] [CrossRef]
- Song, G.; Xiao, J.; Yan, C.; Gu, H.; Zhao, H. Quality of Gaseous Biofuels: Statistical Assessment and Guidance on Production Technologies. Renew. Sustain. Energy Rev. 2022, 169, 112959. [Google Scholar] [CrossRef]
- Song, G.; Zhao, S.; Wang, X.; Cui, X.; Wang, H.; Xiao, J. An Efficient Biomass and Renewable Power-to-Gas Process Integrating Electrical Heating Gasification. Case Stud. Therm. Eng. 2022, 30, 101735. [Google Scholar] [CrossRef]
- Zhao, R.; Dong, L.; Bai, L.; Zhang, Y.; Li, X.; Qiao, Q.; Xie, M.; Wang, W. Inventoryanalysis on Carbon Emissions of Photovoltaicindustry. China Environ. Sci. 2020, 40, 2751–2757. (In Chinese) [Google Scholar] [CrossRef]
- Zheng, L.; Zhao, D.; Qi, X.; Chen, Y. Research on Energy Efficiency, Carbon Emission and Economy of Hydrogen Production Routes in China Based on Life Cycle Assessment Method. J. Eng. Thermophys. 2022, 43, 2306–2317. (In Chinese) [Google Scholar]
Emission | Hydro | PV | Wind | BP-CCS | BP+CCS |
---|---|---|---|---|---|
CO2 (g/kWh) | 3.4 | 50.0 | 17.8 | 203–239 | −874–−665 |
CH4 (g/kWh) | 0.291 | 0.175 | 0.058 | ||
N2O (g/kWh) | 0.00004 | 0.004 | 0.001 | ||
NOx (g/kWh) | 0.021 | 0.265 | 0.089 | 0.56–1.67 | 0.56–1.67 |
Type | Hydro | PV | Wind | |||
---|---|---|---|---|---|---|
Max | Min | Max | Min | Max | Min | |
GHG (kgCO2e/kg H2) | 1.73 | 0.16 | 6.67 | 2.32 | 0.97 | 0.6 |
NOx (kg/kg H2) | 0.005 | 0.001 | 0.04 | 0.012 | 0.004 | 0.004 |
Manufacturer | GE | SIEMENS | GE |
---|---|---|---|
Prototype Model | 6F.03 | SCC5-4000F | 9HA.01 |
GT power output (MW) | 80 | 329 | 448 |
Net plant output CC 1 × 1 (MW) | 124 | 485 | 680 |
Net plant output CC 2 × 1 (MW) | 248 | 970 | 1360 |
ηCCGT (%) | 55.40 | 61.0 | 63.7 |
Steel (t/plant) | 5283 | 6729 | 14,994 |
Cement (t/plant) | 10,299 | 19,137 | 39,272 |
Share | Wind | PV | MWPV | Hydro | BP-CCS |
---|---|---|---|---|---|
GHP (%) | 88.0–96.0 | 95.0–98.8 | 95.8–99.1 | 83.7–94.5 | 97.5–97.6 |
HST (%) | 2.2–3.3 | 0.9–2.6 | 0.6–2.3 | 0.7–6.5 | ~2.28 |
PCD (%) | 1.8–8.7 | 0.7–2.4 | 0.3–2.4 | 1.0–9.8 | 0.15–0.18 |
Share | Wind | PV | MWPV | Hydro | BP |
---|---|---|---|---|---|
GHP (%) | 68.1–72.1 | 86.4–95.5 | 82.9–95.7 | 37.1–75.5 | 92.5–95.9 |
HST (%) | 1.7–1.9 | 0.7–2.1 | 0.5–1.9 | 0.4–0.9 | 2.16–2.24 |
PCD (%) | 0.3–1.1 | 0.05–0.4 | 0.05–0.4 | 0.3–0.7 | 0.04–1.1 |
PRG (%) | 25.9–28.9 | 3.7–11.1 | 3.7–15.0 | 23.8–61.3 | 1.8–5.3 |
Prototype Model | GE 6F.03 | SIEMENS SCC5-4000F | GE 9HA.01 |
---|---|---|---|
Net plant output (MW) | 2 × 120 | 2 × 450 | 2 × 680 |
ηCCGT (%) | 55.40 | 61.0 | 63.7 |
GHG (gCO2e/kWh) | 54.3 | 48.8 | 47.0 |
NOx (g/kWh) | 0.33 | 0.30 | 0.29 |
Scenario | Current | Future | Coal Power | Gas Power | ||||
---|---|---|---|---|---|---|---|---|
GHG | NOx | GHG | NOx | GHG | NOx | GHG | NOx | |
Upper value | 366.1 | 2.29 | 312.2 | 1.89 | 839 | 2.94 | 561 | 0.60 |
Lower value | 10.2 | 0.14 | 8.8 | 0.06 | 776 | 0.32 | 373 | 0.33 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, G.; Zhao, Q.; Shao, B.; Zhao, H.; Wang, H.; Tan, W. Life Cycle Assessment of Greenhouse Gas (GHG) and NOx Emissions of Power-to-H2-to-Power Technology Integrated with Hydrogen-Fueled Gas Turbine. Energies 2023, 16, 977. https://doi.org/10.3390/en16020977
Song G, Zhao Q, Shao B, Zhao H, Wang H, Tan W. Life Cycle Assessment of Greenhouse Gas (GHG) and NOx Emissions of Power-to-H2-to-Power Technology Integrated with Hydrogen-Fueled Gas Turbine. Energies. 2023; 16(2):977. https://doi.org/10.3390/en16020977
Chicago/Turabian StyleSong, Guohui, Qi Zhao, Baohua Shao, Hao Zhao, Hongyan Wang, and Wenyi Tan. 2023. "Life Cycle Assessment of Greenhouse Gas (GHG) and NOx Emissions of Power-to-H2-to-Power Technology Integrated with Hydrogen-Fueled Gas Turbine" Energies 16, no. 2: 977. https://doi.org/10.3390/en16020977
APA StyleSong, G., Zhao, Q., Shao, B., Zhao, H., Wang, H., & Tan, W. (2023). Life Cycle Assessment of Greenhouse Gas (GHG) and NOx Emissions of Power-to-H2-to-Power Technology Integrated with Hydrogen-Fueled Gas Turbine. Energies, 16(2), 977. https://doi.org/10.3390/en16020977