Geophysical Interpretation of Horizontal Fractures in Shale Oil Reservoirs Using Rock Physical and Seismic Methods
Abstract
:1. Introduction
2. Methods
2.1. Rock Physics Model of Shale Oil Reservoirs
2.2. Hashin-Shtrikman Bounds
2.3. Self-Consistent Approximation Theory
2.4. Hudson Model
2.5. Domenico Equation for the Fluid Mixture
2.6. Prediction of the Horizontal Fracture Properties by Using the Shale Model and Logging Data
2.7. Estimation of the Horizontal Fracture (HF) Indicator from Elastic Properties
3. Results
3.1. Studied Area and Datasets
3.2. Prediction of the Horizontal Fracture Density by Using the Shale Model and Logging Data
3.3. Obtaining the HF Indicator for the Horizontal Fracture Estimation of Shale Oil Reservoirs
3.4. Estimations of HF and TOC by Using Seismic Data
4. Discussion
5. Conclusions
- (1)
- The proposed shale model was capable of quantifying the elastic responses of shale oil reservoirs that were associated with horizontal fracture properties. This result was validated by modeling results based on logging data. In the modeling, the calculated VP and VS showed a good agreement with the corresponding measured values. In addition, the predicted fracture properties, ϕf and α, were used to obtain the fracture density, εf, for further evaluation of horizontal fractures.
- (2)
- According to the framework of the Poisson impedance, the HF indicator was proposed to represent εf in terms of a combination of elastic properties (IP and VP/VS). This enabled a quantitative interpretation of the development of horizontal fractions by using seismic-inverted elastic properties. Also, the established HF indicator showed a good correlation with εf. The increasing HF indicated an increase in εf, which showed that the proposed HF factor was an effective indicator in the prediction of horizontal fractures in shale oil reservoirs.
- (3)
- The seismic data applications showed that the target shale oil layer had high HF anomalies in the oil-producing wells, while exhibiting no anomalous response in the dry well. The consistency between the development of horizontal fractures and the production status of the boreholes highlighted the importance of horizontal fractures for the ultimate productivity of shale oil reservoirs. This result indicated that the horizontal fractures were essential in the prediction of high-quality shale oil reservoirs.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Xu, C.Y.; Zhu, L.M.; Xu, F.; Kang, Y.L.; Jing, H.R.; You, Z.J. Experimental study on the mechanical controlling factors of fracture plugging strength for lost circulation control in shale gas reservoir. Geoen. Sci. Eng. 2023, 231, 212285. [Google Scholar] [CrossRef]
- Diwu, P.X.; Liu, T.J.; You, Z.J.; Jiang, B.Y.; Zhou, J. Effect of low velocity non-Darcy flow on pressure response in shale and tight oil reservoirs. Fuel 2018, 216, 398–406. [Google Scholar] [CrossRef]
- Feng, G.J.; Zhu, Y.M.; Chen, S.B.; Wang, Y.; Ju, W.; Hu, Y.C.; You, Z.J.; Wang, G.G. Supercritical methane adsorption on shale over wide pressure and temperature ranges: Implications for gas-in-place estimation. Energy Fuel. 2020, 34, 3121–3134. [Google Scholar] [CrossRef]
- Xu, C.Y.; Kang, Y.L.; You, Z.J.; Chen, M.J. Review on formation damage mechanisms and processes in shale gas reservoir: Known and to be known. J. Nat. Gas Sci. Eng. 2016, 36, 1208–1219. [Google Scholar] [CrossRef]
- Vernik, L.; Milovac, J. Rock physics of organic shales. Lead. Edge 2011, 30, 318–323. [Google Scholar] [CrossRef]
- Zhao, L.X.; Qin, X.; Zhang, J.Q.; Liu, X.W.; Han, D.H.; Geng, J.H.; Xiong, Y.N. An Effective Reservoir Parameter for Seismic Characterization of Organic Shale Reservoir. Surv. Geophys. 2018, 39, 509–541. [Google Scholar] [CrossRef]
- Deng, X.H.; Liu, C.; Guo, Z.Q.; Liu, X.W.; Liu, Y.W. Rock physical inversion and quantitative seismic interpretation for the Longmaxi shale gas reservoir. J. Geophys. Eng. 2019, 16, 652–665. [Google Scholar] [CrossRef]
- Yin, L.J.; Yin, X.Y.; Zong, Z.Y.; Chen, B.C.; Chen, Z.Q. A new rock physics model method for shale on the theory of micro-nanopores. Chin. J. Geophys. 2020, 63, 1642–1653. [Google Scholar] [CrossRef]
- Guo, Z.Q.; Lv, X.Y.; Liu, C.; Liu, X.W.; Liu, Y.W. Shale gas characterisation for hydrocarbon accumulation and brittleness by integrating a rock-physics-based framework with effective reservoir parameters. J. Nat. Gas Sci. Eng. 2022, 100, 104498. [Google Scholar] [CrossRef]
- Goodway, B.; Varsek, J.; Abaco, C. Isotropic AVO methods to detect fracture prone zones in tight gas resource plays. In CSPG CSEG Convention; CSPG CSEG: Calgary, AB, Canada, 2007. [Google Scholar]
- Rickman, R.; Mullen, M.; Petre, E. A practical use of shale petrophysics for stimulation design optimization: All shale plays are not clones of the Barnett Shale. In Proceedings of the SPE Annual Technical Conference and Exhibition, Denver, CO, USA, 21–24 September 2008; SPE: Denver, CO, USA, 2008. [Google Scholar]
- Waters, G.A.; Lewis, R.E.; Bentley, D.C. The effect of mechanical properties anisotropy in the generation of hydraulic fractures in organic shales. In Proceedings of the SPE Middle East Unconventional Gas Conference and Exhibition, Denver, CO, USA, 30 October–2 November 2011; SPE: Abu Dhabi, United Arab Emirates, 2011. [Google Scholar]
- Slatt, R.M.; Abousleiman, Y. Merging sequence stratigraphy and geomechanics for unconventional gas shales. Lead. Edge 2011, 30, 274–282. [Google Scholar] [CrossRef]
- Guo, Z.Q.; Li, X.Y.; Liu, C.; Feng, X.; Shen, Y. A shale rock physics model for analysis of brittleness index, mineralogy and porosity in the Barnett Shale. J. Geophys. Eng. 2013, 10, 025006. [Google Scholar] [CrossRef]
- Chen, J.J.; Zhang, G.Z.; Chen, H.Z.; Yin, X.Y. The Construction of Shale Rock Physics Effective Model and Prediction of Rock Brittleness. In Proceedings of the SEG Annual Meeting, Denver, CO, USA, 26–31 October 2014; SEG: Denver, Colorado, USA, 2014. [Google Scholar]
- Bachrach, R.; Sengupta, M.; Salama, A.; Miller, P. Reconstruction of the layer anisotropic elastic parameters and high-resolution fracture characterization from P-wave data: A case study using seismic inversion and Bayesian rock physics parameter estimation. Geophys. Prospect. 2009, 57, 253–262. [Google Scholar] [CrossRef]
- Far, M.E.; Thomsen, L.; Sayers, C.M. Inversion for asymmetric fracture parameters using synthetic AVOA data. In Society of Exploration Geophysicists International Exposition; SEG: Las Vegas, NV, USA, 2012. [Google Scholar]
- Zhang, G.Z.; Chen, H.Z.; Yin, X.Y.; Li, N.; Yang, B.J. Method of Fracture Elastic Parameter Inversion Based on Anisotropic AVO. J. Jilin Univ. (Earth Sci. Ed.) 2012, 42, 845–851, 871. [Google Scholar] [CrossRef]
- Chen, H.Z.; Yin, X.Y.; Gao, C.G.; Zhang, G.Z.; Chen, J.J. AVAZ inversion for fluid factor based on fracture anisotropic rock physics theory. Chin. J. Geophys. 2014, 57, 968–978. [Google Scholar] [CrossRef]
- Chen, H.Z.; Zhang, G.Z.; Ji, Y.X.; Yin, X.Y. Azimuthal seismic amplitude difference inversion for fracture weakness. Pure Appl. Geophys. 2017, 174, 279–291. [Google Scholar] [CrossRef]
- Pan, X.; Zhang, G. Fracture detection and fluid identification based on anisotropic Gassmann equation and linear-slip model. Geophysics 2019, 84, R99–R112. [Google Scholar] [CrossRef]
- Luo, T.; Feng, X.; Guo, Z.; Liu, C.; Liu, X.W. Seismic AVAZ inversion for orthorhombic shale reservoirs in the Longmaxi area, Sichuan. Appl. Geophys. 2019, 16, 185–198. [Google Scholar] [CrossRef]
- Pan, X.P.; Zhang, P.F.; Zhang, G.Z.; Guo, Z.W.; Liu, J.X. Seismic characterization of fractured reservoirs with elastic impedance difference versus angle and azimuth: A low-frequency poroelasticity perspective. Geophysics 2021, 86, M123–M139. [Google Scholar] [CrossRef]
- Vernik, L.; Nur, A. Ultrasonic velocity and anisotropy of hydrocarbon source rocks. Geophysics 1992, 57, 727–735. [Google Scholar] [CrossRef]
- Vernik, L.; Landis, C. Elastic anisotropy of source rocks: Implications for hydrocarbon generation and primary migration. AAPG Bull. 1996, 80, 531–544. [Google Scholar] [CrossRef]
- Carcione, J.M. A model for seismic velocity and attenuation in petroleum source rocks. Geophysics 2000, 65, 1080–1092. [Google Scholar] [CrossRef]
- Carcione, J.M. AVO effects of a hydrocarbon source-rock layer. Geophysics 2001, 66, 419–427. [Google Scholar] [CrossRef]
- Carcione, J.M.; Helle, H.B.; Avseth, P. Source-rock seismic-velocity models: Gassmann versus Backus. Geophysics 2011, 76, N37–N45. [Google Scholar] [CrossRef]
- Sayers, C.M. The effect of kerogen on the AVO response of organic-rich shales. Lead. Edge 2013, 32, 1514–1519. [Google Scholar] [CrossRef]
- Sayers, C.M.; Guo, S.; Silva, J. Sensitivity of the elastic anisotropy and seismic reflection amplitude of the Eagle Ford Shale to the presence of kerogen. Geophys. Prospect. 2015, 63, 151–165. [Google Scholar] [CrossRef]
- Vernik, L. Hydrocarbon-generation-induced microcracking of source rocks. Geophysics 1994, 59, 555–563. [Google Scholar] [CrossRef]
- Vernik, L.; Liu, X. Velocity anisotropy in shales: A petrophysical study. Geophysics 1997, 62, 521–532. [Google Scholar] [CrossRef]
- Liu, J.; Ning, J.R.; Liu, X.W.; Liu, C.Y.; Chen, T.S. An improved scheme of frequency-dependent AVO inversion method and its application for tight gas reservoirs. Geofluids 2019, 2019, 3525818. [Google Scholar] [CrossRef]
- Zhang, X.M.; Shi, W.Z.; Hu, Q.H.; Zhai, G.Y.; Wang, R.; Xu, X.F.; Meng, F.L.; Liu, Y.Z.; Bai, L.H. Developmental characteristics and controlling factors of natural fractures in the lower paleozoic marine shales of the upper Yangtze Platform, southern China. J. Nat. Gas Sci. Eng. 2020, 76, 103191. [Google Scholar] [CrossRef]
- Xu, X.; Zeng, L.B.; Tian, H.; Ling, K.G.; Che, S.Q.; Yu, X.; Shu, Z.G.; Dong, S.Q. Controlling factors of lamellation fractures in marine shales: A case study of the Fuling Area in Eastern Sichuan Basin, China. J. Petrol. Sci. Eng. 2021, 207, 109091. [Google Scholar] [CrossRef]
- He, Z.L.; Li, S.J.; Nie, H.K.; Yuan, Y.S.; Wang, H. The shale gas “sweet window”: “The cracked and unbroken” state of shale and its depth range. Mar. Petrol. Geol. 2019, 101, 334–342. [Google Scholar] [CrossRef]
- Lu, Y.; Yang, F.; Bai, T.; Han, B.; Lu, Y.; Gao, H. Shale Oil Occurrence Mechanisms: A Comprehensive Review of the Occurrence State, Occurrence Space, and Movability of Shale Oil. Energies 2022, 15, 9485. [Google Scholar] [CrossRef]
- Gou, Q.; Xu, S. The Controls of Laminae on Lacustrine Shale Oil Content in China: A Review from Generation, Retention, and Storage. Energies 2023, 16, 1987. [Google Scholar] [CrossRef]
- Xu, S.; Gou, Q. The Importance of Laminae for China Lacustrine Shale Oil Enrichment: A Review. Energies 2023, 16, 1661. [Google Scholar] [CrossRef]
- Guo, Z.Q.; Liu, C.; Liu, X.W.; Dong, N.; Liu, Y.W. Research on anisotropy of shale oil reservoir based on rock physics model. Appl. Geophys. 2016, 13, 382–392. [Google Scholar] [CrossRef]
- Guo, Z.Q.; Zhang, X.D.; Liu, C.; Liu, X.W.; Liu, Y.W. Hydrocarbon identification and bedding fracture detection in shale gas reservoirs based on a novel seismic dispersion attribute inversion method. Surv. Geophys. 2022, 43, 1793–1816. [Google Scholar] [CrossRef]
- Zhao, L.X.; Qin, X.; Han, D.H.; Geng, J.H.; Yang, Z.F.; Cao, H. Rock-physics modeling for the elastic properties of organic shale at different maturity stages. Geophysics 2016, 81, 527–541. [Google Scholar] [CrossRef]
- Liu, X.W.; Guo, Z.Q.; Liu, C.; Liu, Y.W. Anisotropy rock physics model for the Longmaxi shale gas reservoir, Sichuan Basin, China. Appl. Geophys. 2017, 14, 21–30. [Google Scholar] [CrossRef]
- Guo, Z.Q.; Lv, X.Y.; Liu, C. Estimating Organic Enrichment in Shale Gas Reservoirs Using Elastic Impedance Inversion Based on an Organic Matter−Matrix Decoupling Method. Surv. Geophys. 2023, 44, 1985–2009. [Google Scholar] [CrossRef]
- Yi, S.; Pan, S.; Zuo, H.; Wu, Y.; Song, G.; Gou, Q. Research on Rock Physics Modeling Methods for Fractured Shale Reservoirs. Energies 2023, 16, 226. [Google Scholar] [CrossRef]
- Guo, Z.Q.; Li, X.Y.; Liu, C. Anisotropy parameters estimate and rock physics analysis for the Barnett Shale. J. Geophhys. Eng. 2014, 11, 065006. [Google Scholar] [CrossRef]
- Sayers, C.M.; den Boer, L.D. The elastic properties of clay in shales. J. Geophys. Res. Sol. Ea. 2018, 123, 5965–5974. [Google Scholar] [CrossRef]
- Li, X.; Chen, K.; Li, P.; Li, J.; Geng, H.; Li, B.; Li, X.; Wang, H.; Zang, L.; Wei, Y.; et al. A New Evaluation Method of Shale Oil Sweet Spots in Chinese Lacustrine Basin and Its Application. Energies 2021, 14, 5519. [Google Scholar] [CrossRef]
- Hashin, Z.; Shtrikman, S. A variational approach to the theory of the elastic behaviour of multiphase materials. J. Mech. Phys. Solids 1963, 11, 127–140. [Google Scholar] [CrossRef]
- Berryman, J.G. Long-wavelength propagation in composite elastic media II. Ellipsoidal inclusions. J. Acoust. Soc. Am. 1980, 68, 1820–1831. [Google Scholar] [CrossRef]
- Hudson, J.A. Overall properties of a cracked solid. Math. Proc. Camb. Phil. Soc. 1980, 88, 371–384. [Google Scholar] [CrossRef]
- Domenico, S.N. Elastic properties of unconsolidated porous sand reservoirs. Geophysics 1977, 42, 1339–1368. [Google Scholar] [CrossRef]
- Quakenbush, M.; Shang, B.; Tuttle, C. Poisson impedance. Lead. Edge 2006, 25, 128–138. [Google Scholar] [CrossRef]
- Tian, L.X.; Zhou, D.H.; Lin, G.K.; Jiang, L.C. Reservoir prediction using Poisson impedance in Qinhuangdao, Bohai Sea. In SEG Annual Meeting; European Association of Geoscientists & Engineers: Denver, CO, USA, 2010. [Google Scholar]
- Ming, J.; Qin, D.H. An effeictive method of fluid discrimination using Poisson impedance and multi-attribute inversion. In SEG International Exposition and Annual Meeting; Society of Exploration Geophysicists: Dallas, TX, USA, 2016. [Google Scholar]
- Shang, F.; Xie, X.N.; Li, S.F. Enrichment conditions of Hetaoyuan Formation shale oil in Biyang Depression, China. J. Pet. Explor. Prod. Technol. 2019, 9, 927–936. [Google Scholar] [CrossRef]
- Li, L.J.; Lyu, Q.Q.; Shang, F. Seismic prediction of lithofacies heterogeneity in paleogene hetaoyuan shale play, Biyang depression, China. Open Geosci. 2020, 12, 1383–1391. [Google Scholar] [CrossRef]
- Mavko, G.; Mukerji, T.; Dvorkin, J. The Rock Physics Handbook: Tools for Seismic Analysis in Porous Media; Cambridge University Press: Cambridge, UK, 2009. [Google Scholar]
Clay | Quartz | Calcite | Kerogen | Oil | Water | |
---|---|---|---|---|---|---|
VP (km/s) | 3.6 | 6.05 | 6.84 | 2.6 | 0.9 | 1.47 |
VS (km/s) | 1.85 | 4.36 | 3.72 | 1.5 | 0 | 0 |
ρ (g/cm3) | 2.58 | 2.65 | 2.75 | 1.35 | 0.7 | 1.04 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, Z.; Gao, W.; Liu, C. Geophysical Interpretation of Horizontal Fractures in Shale Oil Reservoirs Using Rock Physical and Seismic Methods. Energies 2023, 16, 7514. https://doi.org/10.3390/en16227514
Guo Z, Gao W, Liu C. Geophysical Interpretation of Horizontal Fractures in Shale Oil Reservoirs Using Rock Physical and Seismic Methods. Energies. 2023; 16(22):7514. https://doi.org/10.3390/en16227514
Chicago/Turabian StyleGuo, Zhiqi, Wenxuan Gao, and Cai Liu. 2023. "Geophysical Interpretation of Horizontal Fractures in Shale Oil Reservoirs Using Rock Physical and Seismic Methods" Energies 16, no. 22: 7514. https://doi.org/10.3390/en16227514
APA StyleGuo, Z., Gao, W., & Liu, C. (2023). Geophysical Interpretation of Horizontal Fractures in Shale Oil Reservoirs Using Rock Physical and Seismic Methods. Energies, 16(22), 7514. https://doi.org/10.3390/en16227514