Determination of the Effect of a Thermal Curtain Used in a Greenhouse on the Indoor Climate and Energy Savings
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Determination of the Climate Parameters Outside of the Greenhouse
3.2. Determination of the Climate Parameters of Indoor Greenhouse
3.3. Comparison of Some Parameters Related to Fuel Consumption in Greenhouses
4. Conclusions
- Of the heat energy required for heating, 80.5% was needed during the hours when the curtain was closed.
- In the greenhouse with a thermal curtain, fuel consumption was 59.14 m3·night−1, and it was 74.11 m3·night−1 without a thermal curtain. At the same time, the heat energy consumption was 453.7 kWh·night−1 in the greenhouse with a thermal curtain and 568.6 kWh·night−1 without a thermal curtain.
- The heating cost of one kg of tomatoes in a greenhouse without a thermal curtain is USD 0.11 higher, depending on the fuel consumed.
- The heat energy savings with a thermal curtain were 21% on average (14.4–26.4%).
- The average heat transfer coefficient was calculated as U = 2.87 W·m−2 °C in the greenhouse with a curtain and as U = 3.63 W·m−2 °C in the greenhouse without a curtain. Accordingly, it has been determined that the energy consumption will decrease by 151.1 kWh if the U value decreases by 1 W·m−2 °C.
- In the case of a thermal curtain, the CO2 emissions released into the atmosphere were 29.5 kg·night−1 less than without a thermal curtain.
- The nightly average fuel cost in the greenhouse with a thermal curtain was USD 5.4·night−1 cheaper than without a thermal curtain.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- van Dijk, M.; Morley, T.; Rau, M.L.; Saghai, Y. A meta-analysis of projected global food demand and population at risk of hunger for the period 2010–2050. Nat. Food 2021, 2, 494–501. [Google Scholar] [CrossRef]
- Raza, A.; Razzaq, A.; Mehmood, S.S.; Zou, X.; Zhang, X.; Lv, Y.; Xu, J. Impact of Climate Change on Crops Adaptation and Strategies to Tackle Its Outcome: A Review. Plants 2019, 8, 34. [Google Scholar] [CrossRef] [PubMed]
- Kocięcka, J.; Liberacki, D. The Potential of Using Chitosan on Cereal Crops in the Face of Climate Change. Plants 2021, 10, 1160. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Bindi, M.; Eitzinger, J.; Ferrise, R.; Gaile, Z.; Gobin, A.; Holzkämper, A.; Kersebaum, K.C.; Kozyra, J.; Kriaučiūnienė, Z.; et al. Priority for climate adaptation measures in European crop production systems. Eur. J. Agron. 2022, 138, 126516. [Google Scholar] [CrossRef]
- Minoli, S.; Jägermeyr, J.; Asseng, S.; Urfels, A.; Müller, C. Global crop yields can be lifted by timely adaptation of growing periods to climate change. Nat. Commun. 2022, 13, 7079. [Google Scholar] [CrossRef] [PubMed]
- Kocięcka, J.; Liberacki, D.; Stróżecki, M. The Role of Antitranspirants in Mitigating Drought Stress in Plants of the Grass Family (Poaceae)—A Review. Sustainability 2023, 15, 9165. [Google Scholar] [CrossRef]
- Ouazzani Chahidi, L.; Fossa, M.; Priarone, A.; Mechaqrane, A. Energy saving strategies in sustainable greenhouse cultivation in the mediterranean climate e a case study. Appl. Energy 2021, 282, 116156. [Google Scholar] [CrossRef]
- Zhang, S.; Guo, Y.; Zhao, H.; Wang, Y.; Chow, D.; Fang, Y. Methodologies of control strategies for improving energy efficiency in agricultural greenhouses. J. Clean. Prod. 2020, 274, 122695. [Google Scholar] [CrossRef]
- Saltuk, B.; Mikail, N.; Atilgan, A.; Aydin, Y. Comparison of the Heating Energy Requirements of the Greenhouses in the Tigris Basin with Antalya. Sci. Pap. 6 Ser. E-Land. Reclam. Earth Obs. Surv. Environ. Eng. 2017, 6, 65–70. [Google Scholar]
- Rafiq, A.; Na, W.H.; Rasheed, A.; Lee, J.W.; Kim, H.T.; Lee, H.W. Measurement of longwave radiative properties of energy-saving greenhouse curtains. J. Agric. Eng. 2021, 52, 1209. [Google Scholar] [CrossRef]
- Evans, M.R. Greenhouse Management. 2023. Available online: https://greenhouse.hosted.uark.edu/Unit11/ (accessed on 15 June 2023).
- Boyacı, S.; Akyüz, A.; Baytorun, A.N.; Çaylı, A. Determination of greenhouse agriculture potential of the Kırşehir province. Nevşehir Bilim. Teknol. Derg. 2016, 5, 142–157. [Google Scholar] [CrossRef]
- Akyüz, A.; Baytorun, A.N.; Çaylı, A.; Üstün, S.; Önder, D. New approaches to required heat power for designing the greenhouse heating systems. KSU J. Nat. Sci. 2017, 20, 209–217. [Google Scholar] [CrossRef]
- Rasheed, A.; Lee, J.W.; Lee, H.W. Development of a model to calculate the overall heat transfer coefficient of greenhouse covers. Span. J. Agric. Res. 2017, 15, e0208. [Google Scholar] [CrossRef]
- Baytorun, A.N.; Üstün, S.; Akyüz, A.; Çaylı, A. The determination of heat energy requirement for greenhouses with different hardware under climate conditions Antalya. Turk. J. Agric. Food Sci. Technol. 2017, 5, 144–152. [Google Scholar] [CrossRef]
- Ertop, H.; Kocięcka, J.; Atilgan, A.; Liberacki, D.; Niemiec, M.; Rolbiecki, R. The Importance of Rainwater Harvesting and Its Usage Possibilities: Antalya Example (Turkey). Water 2023, 15, 2194. [Google Scholar] [CrossRef]
- Alkilani, M.M.; Sopian, K.; Alghoul, M.A.; Sohif, M.; Ruslan, M.H. Review of solar air collectors with thermal storage units. Renew. Sustain. Energy Rev. 2011, 15, 1476–1490. [Google Scholar] [CrossRef]
- Kim, H.K.; Kang, G.C.; Moon, J.P.; Lee, T.S.; Oh, S.S. Estimation of thermal performance and heat loss in plastic greenhouses with and without thermal curtains. Energies 2018, 11, 578. [Google Scholar] [CrossRef]
- Von Zabeltitz, C. Gewachshauser: Handbuch des Erwerbsgartners; Verlag Eugen Ulmer: Stuttgart, Germany, 1986. [Google Scholar]
- Ruhm, G.; Gruda, N.; von Allwörden, A.; Steinborn, P.; Hattermann, H.; Bokelmann, W.; Schmidt, U. Energiekonzepte für den Gartenbau. Untersuchungen zu den Auswirkungen weiterer Heizölpreissteigerungen auf sächsische Gartenbauunternehmen, daraus abgeleitete innovative Handlungsfelder und Strategien. Schr. Sächs. Landesanst. Landwirtsch. 2007, 20, 214. [Google Scholar]
- von Zabeltitz, C. Forschung für die technik der pflanzenproduktion in gewächshäusern. Grund. Der. Landtech. 1982, 32, 152–155. [Google Scholar]
- Baytorun, A.N.; Önder, D.; Gügercin, Ö. Comparison of fossil fuel and geothermal energy sources used for greenhouse heating. Turk. J. Agric. Food Sci. Technol. 2016, 4, 832–839. [Google Scholar]
- Meyer, J. The influence of thermal curtains on energy consumption of greenhouse. Garten Dauwissen Schaft 1984, 49, 74–80. [Google Scholar]
- Boyacı, S.; Güleç, D. Determination of the effect of thermal screens with different insulation values on energy saving in greenhouses: Example of Kırşehir province. J. Ahi Agric. 2021, 1, 81–93. [Google Scholar]
- Teitel, M.; Barak, M.; Antler, A. Effect of cyclic heating and a thermal curtain on the nocturnal heat loss and microclimate of a greenhouse. Biosyst. Eng. 2009, 102, 162–170. [Google Scholar] [CrossRef]
- Kittas, C.; Katsoulas, N.; Baille, A. Influence of an aluminised thermal curtain on greenhouse microclimate and canopy energy balance. Trans. ASAE 2003, 46, 1653–1663. [Google Scholar] [CrossRef]
- Arinze, E.A.; Schoenau, G.J.; Besant, R.W. Experimental and computer performance evaluation of a movable thermal insulation for energy conservation in greenhouses. J. Agric. Eng. Res. 1986, 34, 97–113. [Google Scholar] [CrossRef]
- Sethi, V.P.; Sharma, S.K. Survey and evaluation of heating technologies for worldwide agricultural greenhouse applications. Solar. Energy 2008, 82, 832–859. [Google Scholar] [CrossRef]
- Papadakis, G.; Briassoulis, D.; Scarascia Mungnozza, G.; Vox, G.; Feuilloley, P.; Stoffers, J.A. Radiometric and thermal properties of, and testing methods for, greenhouse covering materials. J. Agric. Eng. Res. 2000, 77, 7–38. [Google Scholar] [CrossRef]
- Tantau, H.J. Heizungsanlagen im Gartenbau; Eugen Ulmer: Stuttgart, Germany, 1983; p. 258. [Google Scholar]
- Chandra, P.; Albright, L.D. Analytical determination of the effect on greenhouse heating requirements of using night curtains. Trans. ASAE 1980, 23, 994–1000. [Google Scholar] [CrossRef]
- Choab, N.; Allouhi, A.; El Maakoul, A.; Kousksou, T.; Saadeddine, S.; Jamil, A. Review on greenhouse microclimate and application: Design parameters, thermal modeling and simulation, climate controlling technologies. Solar Energy 2019, 191, 109–137. [Google Scholar] [CrossRef]
- Jerszurki, D.; Saadon, T.; Zhen, J.; Agam, N.; Tas, E.; Rachmilevitch, S.; Lazarovitch, N. Vertical microclimate heterogeneity and dew formation in semi-closed and naturally ventilated tomato greenhouses. Sci. Hortic. 2021, 288, 105823. [Google Scholar] [CrossRef]
- Kempkes, F.; Swinkels, G.J.; Hemming, S. Increase of light transmission of a Venlo-type greenhouse during winter by 10%: A design study. Acta Hortic. 2018, 1227, 133–140. [Google Scholar] [CrossRef]
- Schmidt, U.; Huber, C.; Dannehl, D.; Rocksch, T.; Tantau, H.J.; Meyer, J. Effect of special climate conditions in closed greenhouses on coefficient of performance and plant growth-preliminary tests for optimising closed greenhouse control. Acta Hortic. 2009, 893, 429–436. [Google Scholar] [CrossRef]
- García-Ruiza, R.A.; López-Martíneza, J.; Blanco-Claracoa, J.L.; Pérez-Alonsoa, J.; Callejón-Ferrea, A.J. On air temperature distribution and ISO 7726-defined heterogeneity inside a typical greenhouse in Almería. Comput. Electron. Agric. 2018, 151, 264–275. [Google Scholar] [CrossRef]
- Zorzeto, T.Q.; Leal, P.A.M.; Coutinho, V.D.S.; Araújo, H.F. Gradients of temperature and relative humidity of air in greenhouse with wireless sensor network. In Proceedings of the 2nd International Conference on Agriculture and Biotechnology IPCBEE, Beijing, China, 22–23 May 2014; IACSIT Press: Singapore, 2014; Volume 79. [Google Scholar]
- Shukla, A.; Tiwari, G.N.; Sodha, M.S. Thermal modeling for greenhouse heating by using thermal curtain and an earth–air heat exchanger. Build. Environ. 2006, 41, 843–850. [Google Scholar] [CrossRef]
- Öztürk, H.H.; Başçetinçelik, A. Effect of Thermal Curtains on the Microclimate and Overall Heat Loss Coefficient in Plastic Tunnel Greenhouses. Turk. J. Agric. For. 2003, 27, 123–134. Available online: https://journals.tubitak.gov.tr/agriculture/vol27/iss3/1 (accessed on 10 October 2023).
- Abak, K.; Çürük, S. Adaptation to humid high temperature, pollen vitality and germination capabilities of some tomato genotypes under Cukurova Conditions. In Proceedings of the Second National Horticulture Congress of Turkey, Adana, Turkey, 3–6 October 1995. [Google Scholar]
- Hand, D.W. Effects of atmospheric humidity on greenhouse crops. Acta Hortic. 1998, 229, 143–158. [Google Scholar] [CrossRef]
- Bailey, B. Thermal curtains for reducing heat losses from glasshouses. Technical and Physical Aspects of Energy Saving in Greenhouses. Acta Hortic. 1986, 70, 26–34. [Google Scholar] [CrossRef]
- Sevgican, A. Undercover (Greenhouse) Vegetable Farming; Publications of Ege University Faculty of Agriculture: Izmir, Türkiye, 2002. [Google Scholar]
- Harel, D.; Fadida, H.; Slepoy, A.; Gantz, S.; Shilo, K. The effect of mean daily temperature and relative humidity on pollen, fruit set and yield of tomato grown in commercial protected cultivation. Agronomy 2014, 4, 167–177. [Google Scholar] [CrossRef]
- Çolak, A.A. Research regarding the determination of the interior temperature of the glasshouse, dewpoint temperature and relative humidity designs in an unheated glasshouse. Ege Üniv. Ziraat Fak. Derg. 2002, 39, 105–112. [Google Scholar]
- Jarvis, W.R.; Shaw, L.A.; Traquair, J.A. Factors affecting antagonism of cucumber powdery mildew by Stephanoascus flocculosus and S. rugulosus. Mycol. Res. 1989, 92, 162–165. [Google Scholar] [CrossRef]
- Cohen, S.; Raveh, E.; Li, Y.; Grava, A.; Goldschmidh, E.E. Physiological response of leaves, tree growth and fruit yield of grapefruit trees under reflective shading curtains. Sci. Hortic. 2015, 107, 15–35. [Google Scholar] [CrossRef]
- Qian, T.; Dieleman, J.A.; Elings, A.; de Gelder, A.; Marcelis, L.F.M.; van Kooten, O. Comparison of climate and production in closed, semi-closed and open greenhouses. Acta Hortic. 2011, 893, 807–814. [Google Scholar] [CrossRef]
- Andersson, N.E. Energy saving in greenhouses can be obtained by energy balance-controlled curtains. Acta Agric. Scand. Sect. B Soil. Plant Sci. 2011, 61, 176–182. [Google Scholar] [CrossRef]
- Bailey, B.J. Heat conservation in glasshouses with aluminised thermal curtains. Acta Hortic. 1978, 76, 275–278. [Google Scholar] [CrossRef]
- Shakir, S.M.; Farhan, A.A. Movable Thermal Curtain for Saving Energy Inside the Greenhouse. Assoc. Arab. Univ. J. Eng. Sci. 2019, 26, 106–112. [Google Scholar] [CrossRef]
- Le Quillec, S.; Brajeul, E.; Lesourd, D.; Loda, D. Thermal screen evaluation in soilless tomato crop under glasshouse. Acta Hortic. 2005, 691, 709–716. [Google Scholar] [CrossRef]
- Mihara, Y.; Hayashi, M. Studies on the Insulation of Greenhouses-1. J. Agric. Meteorol. 1974, 35, 13–19. [Google Scholar] [CrossRef]
- Fuller, R.; Sites, R.; Blackwell, J. A thermal curtain system for greenhouse energy conservation. Effect of greenhouse design parameters on conservation of energy for greenhouse environmental control. Energy 1984, 27, 777–794. [Google Scholar]
- Jolliet, O.; Bourgeois, M.; Danloy, L.; Gay, J.B.; Mantilleri, S.; Moncousin, C. Test of a greenhouse using low temperature heating. Greenh. Constr. Cover. Mater. 1984, 170, 219–226. [Google Scholar]
- Pirard, G.; Deltour, J.; Nijskens, J. Controlled operation of thermal screens in greenhouses. Plasticulture 1994, 103, 11–22. [Google Scholar]
- Critten, D.L.; Bailey, B.J. A review of greenhouse engineering developments during the 1990s. Agric. For. Metrol. 2002, 112, 1–21. [Google Scholar] [CrossRef]
- Yüksel, A. Sera Yapım Tekniği; Hasad Yayıncılık Türkiye: Istanbul, Turkey, 1995; p. 272. [Google Scholar]
- Newell, A.; Yao, H.; Ryker, A.; Ho, T.; Nita-Rotaru, C. Node-capture resilient key establishment in sensor networks: Design space and new protocols. ACM Comput. Surv. (CSUR) 2015, 47, 1–34. [Google Scholar] [CrossRef]
- Önder, D.; Baytorun, A.N. Evaluation of the effect of thermal curtains used in greenhouses under mediterranean climate conditions on greenhouses temperature and energy saving. J. Tekirdag Agric. Fac. 2016, 13, 111–120. [Google Scholar]
- Kim, H.-K.; Ryou, Y.-S.; Kim, Y.-H.; Lee, T.-S.; Oh, S.-S.; Kim, Y.-H. Estimating the Thermal Properties of the Cover and the Floor in a Plastic Greenhouse. Energies 2021, 14, 1970. [Google Scholar] [CrossRef]
- Zhang, Y.; Gauthier, L.; de Halleux, D.; Dansereau, B.; Gosselin, A. Effect of covering materials on energy consumption and greenhouse microclimate. Agric. For. Meteorol. 1996, 82, 227–244. [Google Scholar] [CrossRef]
- Tantau, H.J. Heat requirement of greenhouses including latent heat flux. Landtechnik 2013, 68, 43–49. [Google Scholar]
- Atilgan, A.; Rolbiecki, R.; Ertop, H.; Kocięcka, J.; Aksoy, E.; Saltuk, B. Determination of global warming potential of dairy cattle farms. Int. J. Glob. Warm. 2023, 31, 178–193. [Google Scholar] [CrossRef]
- Doğan, N. The Impact of Agriculture on CO2 Emissions in China. Panoeconomicus 2018, 66, 257–271. [Google Scholar] [CrossRef]
- Yue, Q.; Xu, X.; Hillier, J.; Cheng, K.; Pan, G. Mitigating greenhouse gas emissions in agriculture: From farm production to food consumption. J. Clean. Prod. 2017, 149, 1011–1019. [Google Scholar] [CrossRef]
- Lee, C.-G.; Cho, L.-H.; Kim, S.-J.; Park, S.-Y.; Kim, D.-H. Comparative Analysis of Combined Heating Systems Involving the Use of Renewable Energy for Greenhouse Heating. Energies 2021, 14, 6603. [Google Scholar] [CrossRef]
- Boyacı, S. Kırşehir ve Antalya illeri için seralarin isi gereksiniminin belirlenmesi ve isitmada kullanilan enerji kaynaklarinin karşilaştirilmasi. KSÜ Tar. Doğa Derg. 2018, 21, 976–986. [Google Scholar] [CrossRef]
- Dieleman, J.A.; Marcelis, L.F.M.; Elings, A.; Dueck, T.A.; Meinen, E. Energy saving in greenhouses: Optimal use of climate conditions and crop management. Acta Hortic. 2006, 718, 203–210. [Google Scholar] [CrossRef]
- Kaya, B.; Baytorun, A.N. Calculation of greenhouse heating energy requirements under Mersin (Turkey) climatic conditions with different technical approaches. Acta Hortic. 2017, 1170, 531–538. [Google Scholar] [CrossRef]
- Ahamed, M.S.; Guo, H.; Tanino, K. Energy saving techniques for reducing the heating cost of conventional greenhouses. Biosyst. Eng. 2018, 178, 9–33. [Google Scholar] [CrossRef]
- Tezcan, A.; Buyuktas, K. Calculation of Structural and Heating Costs in Modern Greenhouses. In Proceedings of the 5th International Conference Trends in Agricultural Engineering, Prague, Czech Republic, 3–6 September 2013. [Google Scholar]
Greenhouses | Technical Specifications |
---|---|
Type | Venlo |
Cover material | 4 mm glass |
Side wall height | 6 m |
Ridge height | 6.50 m |
Width | 8 m |
Length | 27 m |
Ground area | 216 m2 |
Heating system | On the floor, side wall and roof |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Boyacı, S.; Atilgan, A.; Kocięcka, J.; Liberacki, D.; Rolbiecki, R.; Jagosz, B. Determination of the Effect of a Thermal Curtain Used in a Greenhouse on the Indoor Climate and Energy Savings. Energies 2023, 16, 7744. https://doi.org/10.3390/en16237744
Boyacı S, Atilgan A, Kocięcka J, Liberacki D, Rolbiecki R, Jagosz B. Determination of the Effect of a Thermal Curtain Used in a Greenhouse on the Indoor Climate and Energy Savings. Energies. 2023; 16(23):7744. https://doi.org/10.3390/en16237744
Chicago/Turabian StyleBoyacı, Sedat, Atilgan Atilgan, Joanna Kocięcka, Daniel Liberacki, Roman Rolbiecki, and Barbara Jagosz. 2023. "Determination of the Effect of a Thermal Curtain Used in a Greenhouse on the Indoor Climate and Energy Savings" Energies 16, no. 23: 7744. https://doi.org/10.3390/en16237744
APA StyleBoyacı, S., Atilgan, A., Kocięcka, J., Liberacki, D., Rolbiecki, R., & Jagosz, B. (2023). Determination of the Effect of a Thermal Curtain Used in a Greenhouse on the Indoor Climate and Energy Savings. Energies, 16(23), 7744. https://doi.org/10.3390/en16237744