Modeling the Consumption of Main Fossil Fuels in Greenhouse Gas Emissions in European Countries, Considering Gross Domestic Product and Population
Abstract
:1. Introduction and Literature Review
2. Data Source and Methodological Framework
- Y—dependent variable;
- X1, X2, …, Xn—independent variables;
- α1, α2, …, αn—parameters;
- ϵ—random component (the rest of the model).
3. Results and Discussion
- −
- When the consumption of OPP increases by 1 thousand tonnes, GHG emissions will increase by 0.16 thousand tonnes of CO2 equivalent, if other variables remain unchanged;
- −
- When HC consumption increases by 1 thousand tonnes, GHG emissions will increase by 1.42 thousand tonnes of CO2 equivalent, if other variables remain unchanged;
- −
- When NG consumption increases by 1 thousand tonnes, GHG emissions will increase by 0.5 thousand tonnes of CO2 equivalent, if other variables remain unchanged;
- −
- When BC consumption increases by 1 thousand tonnes, GHG emissions will increase by 0.14 thousand tonnes of CO2 equivalent, if other variables remain unchanged;
- −
- When GDP increases by 1 thousand tonnes, GHG emissions will increase by 0.48 thousand tonnes of CO2 equivalent, if other variables remain unchanged.
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kappelle, M.; Van Vuuren, M.M.I.; Baas, P. Effects of climate change on biodiversity: A review and identification of key research issues. Biodivers. Conserv. 1999, 8, 1383–1397. [Google Scholar] [CrossRef]
- Pimm, S.L. What we need to know to prevent a mass extinction of plant species. Plants People Planet 2020, 3, 7–15. [Google Scholar] [CrossRef]
- Courchamp, F.; Ivan Jarić, I.; Albert, C.; Meinard, Y. The paradoxical extinction of the most charismatic animals. PLoS Biol. 2018, 16, e2003997. [Google Scholar] [CrossRef] [PubMed]
- Valipour, M.; Mousavi, S.M.; Valipour, R.; Rezaei, E. Air, water, and soil pollution study in industrial units using environmental flow diagram. J. Basic Appl. Sci. Res. 2012, 2, 12365–12372. [Google Scholar]
- Munzel, T.; Hahad, O.; Daiber, A.; Landrigan, P.J. Soil and water pollution and human health: What should cardiologists worry about? Cardiovasc. Res. 2022, 119, 440–449. [Google Scholar] [CrossRef] [PubMed]
- Kolasa-Więcek, A.; Suszanowicz, D. Air pollution in European countries and life expectancy—Modelling with the use of neural network. Air Qual. Atmos. Health 2019, 12, 1335–1345. [Google Scholar] [CrossRef]
- Antonakakis, N.; Chatziantoniou, I.; Filis, G. Energy consumption, CO2 emissions, and economic growth: An ethical dilemma. Renew. Sust. Energ. Rev. 2017, 68, 808–824. [Google Scholar] [CrossRef]
- Qureitem, G.; Al-Khatib, I.A.; Anayah, F. Inventory of main greenhouse gas emissions from energy sector in Palestine. Environ. Monit. Assess. 2020, 192, 63. [Google Scholar] [CrossRef]
- Rajbhandari, S.; Winyuchakrit, P.; Pradhan, B.B.; Chaichaloempreecha, A.; Piti Pita, P.; Limmeechokchai, B. Thailand’s net-zero emissions by 2050: Analysis of economy-wide impacts. Sustain. Sci. 2023, 1–14. [Google Scholar] [CrossRef]
- Chowdhury, M.M.I.; Rahman, S.M.; Abubakar, I.R.; Aina, Y.A.; Hasan, M.A.; Khondaker, A.N. A review of policies and initiatives for climate change mitigation and environmental sustainability in Bangladesh. Environ. Dev. Sustain. 2021, 23, 1133–1161. [Google Scholar] [CrossRef]
- Stošić, M.; Ivezić, V.; Tadić, V. Tillage systems as a function of greenhouse gas (GHG) emission and fuel consumption mitigation. Environ. Sci. Pollut. Res. 2021, 28, 16492–16503. [Google Scholar] [CrossRef] [PubMed]
- Abbas, H.S.M.; Xu, X.; Sun, C. Role of foreign direct investment interaction to energy consumption and institutional governance in sustainable GHG emission reduction. Environ. Sci. Pollut. Res. 2021, 28, 56808–56821. [Google Scholar] [CrossRef]
- Zubir, M.A.; Bong, C.P.C.; Ishak, S.A.; Ho, W.S.; Hashim, H. The trends and projections of greenhouse gas emission by the livestock sector in Malaysia. Clean. Technal. Environ. Policy 2022, 24, 363–377. [Google Scholar] [CrossRef]
- Kolasa-Więcek, A. Use of Artificial Neural Networks in Predicting Direct Nitrous Oxide Emissions from Agricultural Soils. Ecol. Chem. Eng. S 2013, 20, 419–428. [Google Scholar] [CrossRef]
- Ramachandra, T.V.; Aithal, B.H.; Sreejith, K. GHG footprint of major cities in India. Renew. Sust. Energ. Rev. 2015, 44, 473–495. [Google Scholar] [CrossRef]
- Eurostat. Available online: https://ec.europa.eu/eurostat/data/database (accessed on 28 October 2023).
- IEA. Available online: https://www.iea.org/data-and-statistics/data-tools/greenhouse-gas-emissions-from-energy-data-explorer (accessed on 12 September 2023).
- Masoomi, M.; Panahi, M.; Samadi, R. Demand side management for electricity in Iran: Cost and emission analysis using LEAP modeling framework. Environ. Dev. Sustain. 2022, 24, 5667–5693. [Google Scholar] [CrossRef]
- Khan, M.T.I.; Yaseen, M.R.; Ali, Q. The dependency analysis between energy consumption, sanitation, forest area, financial development, and greenhouse gas: A continent-wise comparison of lower middle-income countries. Environ. Sci. Pollut. Res. 2018, 25, 24013–24040. [Google Scholar] [CrossRef]
- Dioha, M.O.; Kumar, A. Exploring greenhouse gas mitigation strategies for agriculture in Africa: The case of Nigeria. Ambio 2020, 49, 1549–1566. [Google Scholar] [CrossRef]
- Gamtessa, S.; Çule, M. Marginal abatement costs for GHG emissions in Canada: A shadow cost approach. Clean. Technal. Environ. Policy 2023, 25, 1323–1337. [Google Scholar] [CrossRef]
- Simionescu, M.; Radulescu, M.; Cifuentes-Faura, J. Pollution and electricity price in the EU Central and Eastern European countries: A sectoral approach. Environ. Sci. Pollut. Res. 2023, 30, 95917–95930. [Google Scholar] [CrossRef]
- Ahmad, N.; Du, L.; Lu, J.; Wang, J.; Li, H.-Z.; Hashmi, M.Z. Modelling the CO2 emissions and economic growth in Croatia: Is there any environmental Kuznets curve? Energy 2017, 123, 164–172. [Google Scholar] [CrossRef]
- Moutinho, V.; Madaleno, M.; Robaina, M.; Villar, J. Advanced scoring method of eco-efficiency in European cities. Environ. Sci. Pollut. Res. 2018, 25, 1637–1654. [Google Scholar] [CrossRef] [PubMed]
- Wenlong, Z.; Tien, N.H.; Sibghatullah, A.; Asih, D.; Soelton, M.; Ramli, Y. Impact of energy efficiency, technology innovation, institutional quality, and trade openness on greenhouse gas emissions in ten Asian economies. Environ. Sci. Pollut. Res. 2023, 30, 43024–43039. [Google Scholar] [CrossRef] [PubMed]
- Forsius, M.; Holmberg, M.; Junttila, V.; Kujala, H.; Schulz, T.; Paunu, V.V.; Savolahti, M.; Minunno, F.; Akujärvi, A.; Bäck, J.; et al. Modelling the regional potential for reaching carbon neutrality in Finland: Sustainable forestry, energy use and biodiversity protection. Ambio 2023, 52, 1757–1776. [Google Scholar] [CrossRef] [PubMed]
- Aziz, S.; Chowdhury, S.A. Drivers of greenhouse gas emissions in the electricity sector of Bangladesh. Clean. Technol. Environ. Policy 2023, 25, 237–252. [Google Scholar] [CrossRef]
- Fatima, T.; Xia, E.; Cao, Z.; Khan, D.; Fan, J.-L. Decomposition analysis of energy-related CO2 emission in the industrial sector of China: Evidence from the LMDI approach. Environ. Sci. Pollut. Res. 2019, 26, 21736–21749. [Google Scholar] [CrossRef] [PubMed]
- Mneimneh, F.; Ghazzawi, H.; Ramakrishna, S. Review Study of Energy Efficiency Measures in Favor of Reducing Carbon Footprint of Electricity and Power, Buildings, and Transportation. Circ. Econ. Sust. 2023, 3, 447–474. [Google Scholar] [CrossRef]
- Dawood, A.M.A.; Darko, E.O.; Glover, E.T. Ghana’s nuclear power and its potential to curtail carbon dioxide emission. Clean. Technol. Environ. Policy 2021, 23, 2883–2893. [Google Scholar] [CrossRef]
- Eurostat. Available online: https://ec.europa.eu/eurostat/web/products-eurostat-news/w/ddn-20230816-1 (accessed on 3 September 2023).
- Kasman, A.; Duman, Y.S. CO2 emissions, economic growth, energy consumption, trade and urbanization in new EU member and candidate countries: A panel data analysis. Econ. Model. 2015, 44, 97–103. [Google Scholar] [CrossRef]
- Pao, H.T.; Tsai, C.M. CO2 emissions, energy consumption and economic growth in BRIC countries. Energy Policy 2010, 38, 7850–7860. [Google Scholar] [CrossRef]
- Apergis, N.; Ozturk, I. Testing environmental Kuznets curve hypothesis in Asian countries. Ecol. Ind. 2015, 52, 16–22. [Google Scholar] [CrossRef]
- Ozdemir, O.; Özokcu, S. Economic growth, energy, and environmental Kuznets curve. Renew. Sustain. Energy Rev. 2017, 72, 639–647. [Google Scholar] [CrossRef]
- Bilgili, F.; Koçak, E.; Bulut, Ü. The dynamic impact of renewable energy consumption on CO2 emissions: A revisited environmental Kuznets curve approach. Renew. Sustain. Energy Rev. 2016, 54, 838–845. [Google Scholar] [CrossRef]
- Pata, U.K. Renewable energy consumption, urbanization, financial development, income and CO2 emissions in Turkey: Testing EKC hypothesis with structural breaks. J. Clean. Prod. 2018, 187, 770–779. [Google Scholar] [CrossRef]
- Al-Mulali, U.; Solarin, S.A.; Ozturk, I. Investigating the presence of the environmental Kuznets curve (EKC) hypothesis in Kenya: An autoregressive distributed lag (ARDL) approach. Nat. Hazards 2016, 80, 1729–1747. [Google Scholar] [CrossRef]
- Jackson, T. Wohlstand ohne Wachstum: Leben und Wirtschaften in Einer Endlichen Welt; Oekom: München, Germany, 2013; p. 206. ISBN 978-3-865-81414-2. [Google Scholar]
- Nuroğlu, E.; Kunst, R. Kuznets and Environmental Kuznets Curves for Developing Countries. In Industrial Policy and Sustainable Growth Part of the Series Sustainable Development, 1st ed.; Murat, Y., Ed.; Kuznets and Environmental Kuznets Curves for Developing Countries; Springer Nature Singapore Pte Ltd.: Singapore, 2017; pp. 1–14. [Google Scholar] [CrossRef]
- OECD. Available online: www.stats.oecd.org (accessed on 30 October 2023).
- Kolasa-Więcek, A.; Suszanowicz, D.; Pilarska, A.A.; Pilarski, K. Modelling the Interaction between Air Pollutant Emissions and Their Key Sources in Poland. Energies 2021, 14, 6891. [Google Scholar] [CrossRef]
- Martínez-Zarzoso, I.; Bengochea, A.; Morales-Lage, R. The impact of population on CO2 emissions: Evidence from European countries. Environ. Resour. Econ. 2007, 38, 497–512. [Google Scholar] [CrossRef]
Variable | Mean | St. Dev. | Min. | Max. |
---|---|---|---|---|
Luxemburg | ||||
OPP * | 2617.1 | 392.7 | 1775.0 | 3104.5 |
HC * | 117.1 | 50.0 | 57.2 | 242.0 |
NG * | 990.7 | 259.3 | 636.0 | 1402.8 |
GDP ** | 32,191.6 | 12,517.9 | 13,123.3 | 55,797.4 |
Pop *** | 505,154.2 | 71,780.6 | 408,625.0 | 640,064.0 |
GHG **** | 10,828.3 | 1227.4 | 8590.9 | 12,993.8 |
Denmark | ||||
OPP | 7595.7 | 1036.5 | 5727.8 | 9445.0 |
HC | 6326.1 | 3228.1 | 1237.1 | 15,009.0 |
NG | 4146.4 | 813.4 | 2827.8 | 5150.0 |
GDP | 168,566.2 | 42,782.3 | 99,481.0 | 256,566.4 |
Pop | 5,516,857.7 | 187,415.6 | 5,227,861.0 | 5,850,189.0 |
GHG | 65,647.1 | 12,948.4 | 44,483.8 | 92,928.7 |
Ireland | ||||
OPP | 7287.9 | 857.1 | 5529.0 | 8486.0 |
HC | 2282.6 | 655.6 | 588.2 | 3002.0 |
NG | 4513.7 | 747.3 | 2875.0 | 5501.8 |
GDP | 163,753.6 | 79,151.1 | 57,259.9 | 362,050.6 |
Pop | 4,320,267.7 | 455,518.8 | 3,601,300.0 | 5,011,460.0 |
GHG | 64,917.7 | 4360.6 | 58,852.5 | 71,814.5 |
Poland | ||||
OPP | 22,409.6 | 4968.4 | 13,449.0 | 31,345.3 |
HC | 82,553.3 | 11,075.0 | 63,475.6 | 110,131.0 |
BC * | 59,827.1 | 4321.0 | 46,107.0 | 65,934.0 |
NG | 16,683.4 | 3099.5 | 12,196.0 | 23,541.9 |
GDP | 550,045.3 | 207,974.3 | 248,423.3 | 956,864.9 |
Pop | 38,310,532.6 | 135,324.3 | 38,115,909.0 | 38,533,789.0 |
GHG | 404,308.5 | 20430.1 | 371,312.4 | 460,383.5 |
Estonia | ||||
OPP | 1135.7 | 83.2 | 893.0 | 1309.0 |
HC | 68.7 | 31.7 | 3.5 | 130.0 |
NG | 703.0 | 175.6 | 420.7 | 992.0 |
GDP | 21,109.3 | 8882.8 | 7796.6 | 38,356.9 |
Pop | 1,351,716.3 | 34,022.8 | 1,314,545.0 | 1,436,634.0 |
GHG | 18,818.5 | 2570.8 | 11,407.1 | 22,046.4 |
Czech Republic | ||||
OPP | 8944.9 | 672.0 | 7799.0 | 9913.0 |
HC | 8985.7 | 2260.0 | 5288.9 | 14,180.0 |
BC | 43,757.8 | 6204.3 | 29,675.2 | 52,723.0 |
NG | 8940.5 | 634.5 | 7522.0 | 9895.0 |
GDP | 208,737.0 | 61,304.4 | 119,877.0 | 317,766.8 |
Pop | 10,412,272.3 | 153,547.5 | 10,200,774.0 | 10,700,155.0 |
GHG | 140,656.1 | 12,640.1 | 113,072.1 | 161,709.7 |
The Netherlands | ||||
OPP | 31,706.1 | 2087.1 | 27,475.6 | 34,899.2 |
HC | 13,006.5 | 2126.0 | 6492.9 | 17,977.0 |
BC | 26.9 | 12.7 | 6.0 | 56.6 |
NG | 47,421.9 | 3711.1 | 40,073.1 | 55,951.3 |
GDP | 530,235.0 | 118,950.4 | 303,567.7 | 749,498.1 |
Pop | 16,487,267.3 | 583,278.3 | 15,459,004.0 | 17,533,048.0 |
GHG | 206,412.1 | 19,310.8 | 164,367.8 | 241,662.1 |
Lithuania | ||||
OPP | 2240.2 | 386.7 | 1696.0 | 3213.0 |
HC | 175.2 | 126.0 | 1.0 | 372.0 |
BC | 96.6 | 126.0 | 0.0 | 392.0 |
NG | 2664.4 | 386.9 | 2137.0 | 3553.0 |
GDP | 45,773.6 | 18,389.4 | 18,025.7 | 81,312.8 |
Pop | 3,187,915.6 | 286,946.3 | 2,794,137.0 | 3,629,102.0 |
GHG | 21,277.2 | 1461.3 | 19,493.7 | 24,730.0 |
Finland | ||||
OPP | 9270.3 | 733.0 | 7649.0 | 10,509.0 |
HC | 5574.1 | 1555.2 | 2726.0 | 8862.0 |
NG | 3779.8 | 855.5 | 2353.0 | 5036.0 |
GDP | 145,954.8 | 32,807.1 | 83,792.3 | 201,196.3 |
Pop | 5,326,196.2 | 144,144.4 | 5107,787.0 | 5,541,020.0 |
GHG | 67,762.9 | 10,595.3 | 47,756.3 | 85,490.4 |
Cyprus | ||||
OPP | 2335.1 | 243.9 | 1893.0 | 2822.0 |
HC | 29.1 | 20.2 | 0.0 | 66.4 |
BC | 0.4 | 0.5 | 0.0 | 1.0 |
GDP | 17,780.3 | 5051.8 | 9319.5 | 26,501.9 |
Pop | 781,973.4 | 81,219.5 | 650,860.0 | 900,357.0 |
GHG | 8640.1 | 748.3 | 6972.2 | 10,025.4 |
Bulgaria | ||||
OPP | 4217.1 | 471.9 | 3308.0 | 5233.0 |
HC | 2859.3 | 1347.3 | 828.0 | 4916.0 |
BC | 28,976.3 | 3304.8 | 22,283.0 | 36,996.0 |
NG | 3456.7 | 752.9 | 2645.0 | 5794.0 |
GDP | 76,051.6 | 25,793.3 | 39,843.9 | 128,169.2 |
Pop | 7,575,279.5 | 470,148.8 | 6,877,742.5 | 8,406,067.0 |
GHG | 60,642.2 | 5608.4 | 47,984.6 | 72,615.2 |
Germany | ||||
OPP | 116,180.3 | 9687.8 | 97,879.0 | 132,781.0 |
HC | 61,297.3 | 10,534.1 | 31,197.7 | 75,362.0 |
BC | 170,692.3 | 18,930.8 | 107,429.6 | 194,811.0 |
NG | 91,270.0 | 5193.7 | 76,897.0 | 97,389.0 |
GDP | 2,370,100.6 | 497,805.5 | 1,612,022.5 | 3,256,792.8 |
Pop | 82,079,774.9 | 749,883.4 | 80,274,981.0 | 83,196,076.0 |
GHG | 957,161.4 | 103,495.8 | 730,922.7 | 1137,869.0 |
Greece | ||||
OPP | 13,489.6 | 2451.1 | 9168.6 | 16,754.0 |
HC | 677.1 | 400.7 | 265.6 | 1480.0 |
BC | 54,110.4 | 16,202.7 | 13,213.7 | 70,855.0 |
NG | 3199.6 | 1690.3 | 36.0 | 6446.4 |
GDP | 206,312.7 | 32,851.6 | 136,520.1 | 265,211.8 |
Pop | 10,859,677.0 | 168,322.1 | 10,562,160.0 | 11,121,344.0 |
GHG | ||||
Belgium | ||||
OPP | 22,195.8 | 838.4 | 19,987.5 | 23,621.6 |
HC | 6804.3 | 2909.0 | 2863.3 | 11,859.0 |
BC | 189.2 | 219.9 | 0.0 | 730.0 |
NG | 17,146.2 | 1672.7 | 12,792.0 | 20,476.0 |
GDP | 309,968.5 | 74,820.6 | 190,570.7 | 452,167.7 |
Pop | 10,770,320.6 | 478,660.1 | 10,136,814.0 | 11,552,615.0 |
GHG | 113,438.3 | 17,955.9 | 75,464.5 | 136,748.1 |
Austria | ||||
OPP | 12,052.7 | 768.0 | 10,383.0 | 13,522.5 |
HC | 3652.3 | 428.3 | 2749.9 | 4328.0 |
BC | 659.3 | 676.9 | 59.6 | 1743.0 |
NG | 8843.3 | 547.7 | 7844.3 | 9921.8 |
GDP | 256,426.9 | 60431.8 | 157,751.2 | 355,971.0 |
Pop | 8,357,953.1 | 322485.5 | 7,948,278.0 | 8,951,520.0 |
GHG | 82,768.9 | 4683.3 | 73,910.8 | 92,588.6 |
Slovakia | ||||
OPP | 3526.1 | 265.7 | 3066.0 | 4045.0 |
HC | 4359.3 | 676.4 | 2594.0 | 5330.0 |
BC | 3560.0 | 1512.2 | 1306.0 | 7221.0 |
NG | 6052.2 | 959.5 | 4535.0 | 7633.0 |
GDP | 85,709.0 | 28,715.5 | 39,059.4 | 124,676.7 |
Pop | 5,407,179.9 | 25,951.2 | 5,363,676.0 | 5,458,827.0 |
GHG | 46,566.7 | 4807.4 | 37,187.9 | 53,180.0 |
Country | OPP | HC | NG | BC | GDP | Pop | |
---|---|---|---|---|---|---|---|
1 | Luxemburg | 0.707 | −0.165 | 0.919 | - | 0.048 | −0.08 |
2 | Denmark | 0.934 | 0.968 | 0.775 | - | −0.948 | −0.963 |
3 | Ireland | 0.876 | 0.585 | −0.17 | - | −0.371 | −0.484 |
4 | Poland | −0.483 | 0.886 | −0.507 | 0.424 | −0.544 | −0.178 |
5 | Estonia | 0.343 | 0.525 | 0.385 | - | −0.327 | 0.068 |
6 | Czech Republic | −0.412 | 0.912 | 0.451 | 0.979 | −0.894 | −0.851 |
7 | The Netherlands | −0.039 | 0.452 | 0.742 | −0.077 | −0.944 | −0.963 |
8 | Lithuania | 0.455 | −0.172 | 0.411 | 0.437 | −0.439 | 0.524 |
9 | Finland | 0.752 | 0.922 | 0.891 | - | −0.733 | −0.85 |
10 | Cyprus | 0.877 | 0.291 | - | 0.63 | 0.629 | 0.424 |
11 | Bulgaria | 0.536 | 0.667 | 0.778 | 0.332 | −0.597 | 0.69 |
12 | Germany | 0.941 | 0.927 | 0.205 | 0.734 | −0.955 | −0.205 |
13 | Greece | 0.462 | - | −0.514 | 0.952 | 0.161 | 0.952 |
14 | Belgium | 0.214 | 0.946 | −0.566 | 0.576 | −0.948 | −0.98 |
15 | Austria | 0.831 | 0.877 | 0.481 | 0.438 | −0.42 | −0.495 |
16 | Slovakia | −0.305 | 0.945 | 0.917 | 0.834 | −0.922 | −0.897 |
Country | R | R2 | Adjusted R2 | F (Fischer) | Significance Level p | |
---|---|---|---|---|---|---|
1 | Luxemburg | 0.930 | 0.866 | 0.855 | 77.390 | 0.000 |
2 | Denmark | 0.998 | 0.995 | 0.994 | 901.012 | 0.000 |
3 | Ireland | 0.956 | 0.914 | 0.903 | 81.847 | 0.000 |
4 | Poland | 0.986 | 0.971 | 0.964 | 141.782 | 0.000 |
5 | Estonia | 0.529 | 0.280 | 0.220 | 4.668 | 0.019 |
6 | Czech Republic | 0.997 | 0.995 | 0.993 | 629.450 | 0.000 |
7 | The Netherlands | 0.994 | 0.988 | 0.986 | 458.309 | 0.000 |
8 | Lithuania | 0.973 | 0.947 | 0.935 | 75.611 | 0.000 |
9 | Finland | 0.995 | 0.989 | 0.987 | 388.783 | 0.000 |
10 | Cyprus | 0.974 | 0.949 | 0.940 | 102.424 | 0.000 |
11 | Bulgaria | 0.909 | 0.827 | 0.785 | 20.042 | 0.000 |
12 | Germany | 0.994 | 0.988 | 0.985 | 442.695 | 0.000 |
13 | Greece | 0.995 | 0.990 | 0.987 | 405.966 | 0.000 |
14 | Belgium | 0.991 | 0.982 | 0.978 | 227.175 | 0.000 |
15 | Austria | 0.985 | 0.970 | 0.961 | 108.503 | 0.000 |
16 | Slovakia | 0.994 | 0.987 | 0.984 | 328.888 | 0.000 |
Country | Regression Equation | |
---|---|---|
1 | Luxemburg | Y = 0.8NG + 5519.8 |
2 | Denmark | Y = 0.23OPP + 0.18NG + 0.58HC |
3 | Ireland | Y = 0.8OPP − 0.23Pop + 4225.7 |
4 | Poland | Y = 0.16OPP + 1.42HC + 0.5NG + 0.14BC + 0.48GDP + 50,708.8 |
5 | Estonia | Y = 0.47HC + 15,309.4 |
6 | Czech Republic | Y = 0.12OPP + 0.35HC + 0.09NG + 0.64BC + 860,627 |
7 | The Netherlands | Y = −0.54Pop + 0.25HC + 0.33NG + 400,730 |
8 | Lithuania | Y = 0.97OPP + 0.65NG + 0.39BC |
9 | Finland | Y = 0.44Pop + 0.01OPP + 0.48HC + 0.22NG + 188,493.2 |
10 | Cyprus | Y = 0.46Pop + 0.61OPP + 0.88GDP + 5218 |
11 | Bulgaria | Y = 0.53HC + 1.07NG |
12 | Germany | Y = 0.06OPP + 0.08HC + 0.13BC − 0.34GDP +402,191.8 |
13 | Greece | Y = 0.48OPP + 0.16NG + 0.6BC |
14 | Belgium | Y = −1.69Pop + 0.14NG + 0.24BC + 0.78DGP + 623,443 |
15 | Austria | Y = 0.4OPP + 0.41HC + 0.26NG + 0.28BC |
16 | Slovakia | Y = 0.2Pop + 0.59HC + 0.47NG + 0.4BC – 190,009 |
Year | HC Consump. in Thousand Tonnes |
---|---|
1995 | 103,000 |
1996 | 115,000 |
1997 | 98,000 |
1998 | 75,000 |
1999 | 79,000 |
2000 | 87,000 |
2001 | 109,000 |
2002 | 61,000 |
2003 | 44,000 |
2004 | 58,000 |
2005 | 56,000 |
2006 | 70,000 |
2007 | 130,000 |
2008 | 129,000 |
2009 | 87,000 |
2010 | 60,000 |
2011 | 70,000 |
2012 | 64,000 |
2013 | 61,000 |
2014 | 78,000 |
2015 | 29,000 |
2016 | 27,000 |
2017 | 48,000 |
2018 | 50,000 |
2019 | 50,345 |
2020 | 12,280 |
2021 | 3500 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kolasa-Więcek, A.; Pilarska, A.A.; Wzorek, M.; Suszanowicz, D.; Boniecki, P. Modeling the Consumption of Main Fossil Fuels in Greenhouse Gas Emissions in European Countries, Considering Gross Domestic Product and Population. Energies 2023, 16, 7906. https://doi.org/10.3390/en16237906
Kolasa-Więcek A, Pilarska AA, Wzorek M, Suszanowicz D, Boniecki P. Modeling the Consumption of Main Fossil Fuels in Greenhouse Gas Emissions in European Countries, Considering Gross Domestic Product and Population. Energies. 2023; 16(23):7906. https://doi.org/10.3390/en16237906
Chicago/Turabian StyleKolasa-Więcek, Alicja, Agnieszka A. Pilarska, Małgorzata Wzorek, Dariusz Suszanowicz, and Piotr Boniecki. 2023. "Modeling the Consumption of Main Fossil Fuels in Greenhouse Gas Emissions in European Countries, Considering Gross Domestic Product and Population" Energies 16, no. 23: 7906. https://doi.org/10.3390/en16237906
APA StyleKolasa-Więcek, A., Pilarska, A. A., Wzorek, M., Suszanowicz, D., & Boniecki, P. (2023). Modeling the Consumption of Main Fossil Fuels in Greenhouse Gas Emissions in European Countries, Considering Gross Domestic Product and Population. Energies, 16(23), 7906. https://doi.org/10.3390/en16237906