Sustainability in Blockchain: A Systematic Literature Review on Scalability and Power Consumption Issues
Abstract
:1. Introduction
Research Objective and Contributions of the Study
- (a)
- To give a thorough literature study on the global energy consumption of bitcoin.
- (b)
- To outline the costs and power requirements for different types of electricity as well as for central heating.
- (c)
- To propose a solution for saving energy consumption.
- (d)
- To present how research proposed different strategies to overcome the scalability problem of blockchain.
- (e)
- To present the summarized results achieved by adopting different strategies to resolve the challenge of scalability in blockchain technology.
- ○
- A review of the energy consumption challenge and proposing suggestions for energy conservation;
- ○
- Analyzing scalability challenges in blockchain, providing a taxonomy and an updated account of research conducted in this domain.
2. Research Methodology
2.1. Research Questions
2.2. Research Benchmark
2.3. Data Sources
2.4. Quality Assurance
3. Background and Research Challenges in Blockchain
3.1. The Power Consumption Challenge
3.2. The Scalability Challenge
3.3. Mining in Blockchain
3.4. Privacy Challenge
4. Energy Consumption in Blockchain
4.1. Approaches Used for Estimating Energy Consumption in Bitcoin
4.2. Discussions on Literature for Energy Consumption
4.3. Costs of Central Heating and Other Forms of Electricity
4.4. A Novel Solution for Energy Preservation
5. Scalability in Blockchain
5.1. Protocol-Based Solutions
5.2. Layered Solutions
5.3. Solutions Based on Lightning Network
5.4. Compression-Based Approaches
5.5. Sharding-Based Approaches
5.6. Miscellaneous Approaches
5.7. Discussion on Approaches for Scalability in Blockchain
6. Conclusions and Future Work
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kwapień, J.; Wątorek, M.; Drożdż, S. Cryptocurrency market consolidation in 2020–2021. Entropy 2021, 23, 1674. [Google Scholar] [CrossRef] [PubMed]
- Yaga, D.; Mell, P.; Roby, N.; Scarfone, K. Blockchain technology overview. arXiv 2019, arXiv:1906.11078. [Google Scholar]
- Krause, M.J.; Tolaymat, T. Quantification of energy and carbon costs for mining cryptocurrencies. Nat. Sustain. 2018, 1, 711–718. [Google Scholar] [CrossRef]
- Mora, C.; Rollins, R.L.; Taladay, K.; Kantar, M.B.; Chock, M.K.; Shimada, M.; Franklin, E.C. Bitcoin emissions alone could push global warming above 2 C. Nat. Clim. Change 2018, 8, 931–933. [Google Scholar] [CrossRef]
- Stoll, C.; Klaaßen, L.; Gallersdörfer, U. The carbon footprint of bitcoin. Joule 2019, 3, 1647–1661. [Google Scholar] [CrossRef]
- An, J. Development of energy cooperation between Russia and China. Int. J. Energy Econ. Policy 2020, 10, 134–139. [Google Scholar] [CrossRef]
- Narayanan, A.; Bonneau, J.; Felten, E.; Miller, A.; Goldfeder, S. Bitcoin and Cryptocurrency Technologies: A Comprehensive Introduction; Princeton University Press: Princeton, NJ, USA, 2016. [Google Scholar]
- De Vries, A. Bitcoin’s growing energy problem. Joule 2018, 2, 801–805. [Google Scholar] [CrossRef]
- Blochain charts. Available online: https://www.blockchain.com/explorer/charts (accessed on 20 November 2022).
- Bitcoin Market. Available online: https://markets.bitcoin.com/crypto/BTC/ (accessed on 1 June 2021).
- Worley, C.; Skjellum, A. Blockchain tradeoffs and challenges for current and emerging applications: Generalization, fragmentation, sidechains, and scalability. In Proceedings of the 2018 IEEE International Conference on Internet of Things (iThings) and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData), Halifax, NS, Canada, 30 July–3 August 2018; IEEE: Piscataway Township, NJ, USA, 2018. [Google Scholar]
- Sun, W.; Jin, H.; Jin, F.; Kong, L.; Peng, Y.; Dai, Z. Spatial analysis of global Bitcoin mining. Sci. Rep. 2022, 12, 10694. [Google Scholar] [CrossRef]
- Berg, C.; Davidson, S.; Potts, J. Understanding the Blockchain Economy: An Introduction to Institutional Cryptoeconomics; Edward Elgar Publishing: Cheltenham, UK, 2019. [Google Scholar]
- Fairley, P. Blockchain world-Feeding the blockchain beast if bitcoin ever does go mainstream, the electricity needed to sustain it will be enormous. IEEE Spectr. 2017, 54, 36–59. [Google Scholar] [CrossRef]
- Fauzi, M.A.; Paiman, N.; Othman, Z. Bitcoin and cryptocurrency: Challenges, opportunities and future works. J. Asian Financ. Econ. Bus. 2020, 7, 695–704. [Google Scholar] [CrossRef]
- Malla, T.B.; Bhattarai, A.; Parajuli, A.; Shrestha, A.; Chhetri, B.B.; Chapagain, K. Status, Challenges and Future Directions of Blockchain Technology in Power System: A State of Art Review. Energies 2022, 15, 8571. [Google Scholar] [CrossRef]
- Böhme, R.; Christin, N.; Edelman, B.; Moore, T. Bitcoin: Economics, technology, and governance. J. Econ. Perspect. 2015, 29, 213–238. [Google Scholar] [CrossRef]
- Kethineni, S.; Cao, Y.; Dodge, C. Use of bitcoin in darknet markets: Examining facilitative factors on bitcoin-related crimes. Am. J. Crim. Justice 2018, 43, 141–157. [Google Scholar] [CrossRef]
- Hayes, A.S. Cryptocurrency value formation: An empirical study leading to a cost of production model for valuing bitcoin. Telemat. Inform. 2017, 34, 1308–1321. [Google Scholar] [CrossRef]
- O’Dwyer, K.J.; Malone, D. Bitcoin Mining and its Energy Footprint; IEEE Xplore: Piscataway Township, NJ, USA, 2014. [Google Scholar]
- Vranken, H. Sustainability of bitcoin and blockchains. Curr. Opin. Environ. Sustain. 2017, 28, 1–9. [Google Scholar] [CrossRef]
- Becker, J.; Breuker, D.; Heide, T.; Holler, J.; Rauer, H.P.; Böhme, R. Can we afford integrity by proof-of-work? Scenarios inspired by the Bitcoin currency. In The Economics of Information Security and Privacy; Springer: Berlin/Heidelberg, Germany, 2013; pp. 135–156. [Google Scholar]
- Wakunuma, K.; Masika, R. Cloud computing, capabilities and intercultural ethics: Implications for Africa. Telecommun. Policy 2017, 41, 695–707. [Google Scholar] [CrossRef]
- de Leon, D.C.; Stalick, A.Q.; Jillepalli, A.A.; Haney, M.A.; Sheldon, F.T. Blockchain: Properties and misconceptions. Asia Pac. J. Innov. Entrep. 2017, 11, 286–300. [Google Scholar] [CrossRef]
- Bitcoin Network Graphs. Available online: http://bitcoin.sipa.be/ (accessed on 4 June 2021).
- Garcia, D.; Tessone, C.J.; Mavrodiev, P.; Perony, N. The digital traces of bubbles: Feedback cycles between socio-economic signals in the Bitcoin economy. J. R. Soc. Interface 2014, 11, 20140623. [Google Scholar] [CrossRef]
- Bitcoin Wiki. Majority Attack—Bitcoin Wiki. Available online: https://en.bitcoin.it/wiki/Majority_attack (accessed on 3 June 2021).
- Digiconomist, I. Bitcoin Energy Consumption Index—Digiconomist. 2018. Available online: https://digiconomist.net/bitcoin-energy-consumption (accessed on 23 September 2019).
- BIS Annual Economic Report 2018. p. 134. Available online: https://www.bis.org/publ/arpdf/ar2018e.htm (accessed on 16 October 2018).
- Bevand, M. Electricity Consumption of Bitcoin: A Market-Based and Technical Analysis. 2017. Available online: http://blog.zorinaq.com/bitcoin-electricity-consumption (accessed on 4 February 2019).
- Imran, S. The Positive Externalities of Bitcoin Mining. 2018, pp. 1–15. Available online: https://drive.google.com/file/d/1dB0aDo__nzhNM8toHclhk9qfFNENVWci/view (accessed on 16 October 2018).
- Available online: https://www.blockchain.com/charts/hash-rate (accessed on 2 June 2021).
- LO3Energy. Available online: https://lo3energy.com/innovations/ (accessed on 3 June 2021).
- Adjeleian, A.; Jurjica, O.; Kim, H.M. Breaking the Stagnant Spell: How Blockchain Is Disrupting the Solar Energy Industry; SSRN: Rochester, NY, USA, 2018; SSRN 3207104. [Google Scholar]
- Bondarev, M. Energy consumption of bitcoin mining. Int. J. Energy Econ. Poli 2020, 10, 525–529. [Google Scholar] [CrossRef]
- Lago, M.M.; Shevchenko, A.; Bastero, N.A. Technological and socio-institutional dimensions of cryptocurrencies. An incremental or disruptive innovation? Int. Rev. Sociol. 2021, 31, 453–469. [Google Scholar]
- Puthal, D.; Mohanty, S.P.; Nanda, P.; Kougianos, E.; Das, G. Proof-of-authentication for scalable blockchain in resource-constrained distributed systems. In Proceedings of the 2019 IEEE International Conference on Consumer Electronics (ICCE), Las Vegas, NV, USA, 11–13 January 2019; IEEE: Piscataway Township, NJ, USA, 2019. [Google Scholar]
- Luo, J.; Su, W.; Huang, A.Q. Bit-energy: An innovative bitcoin-style distributed transactional model for a competitive electricity market. In Proceedings of the 2017 IEEE Power & Energy Society General Meeting, Chicago, IL, USA, 16–20 July 2017; IEEE: Piscataway Township, NJ, USA, 2017. [Google Scholar]
- Hahn, A.; Singh, R.; Liu, C.-C.; Chen, S. Smart contract-based campus demonstration of decentralized transactive energy auctions. In Proceedings of the 2017 IEEE Power & Energy Society Innovative Smart Grid Technologies Conference (ISGT), Washington, DC, USA, 23–26 April 2017; IEEE: Piscataway Township, NJ, USA, 2017. [Google Scholar]
- Mir, U. Bitcoin and its energy usage: Existing approaches, important opinions, current trends, and future challenges. KSII Trans. Internet Inf. Syst. 2020, 14, 3243–3256. [Google Scholar]
- Available online: https://www.techradar.com/best/asic-devices (accessed on 2 June 2021).
- Platt, M.; Scdlmeir, J.; Platt, D.; Xu, J.; Tasca, P.; Vadgama, N.; Ibañez, J.I. The Energy Footprint of Blockchain Consensus Mechanisms Beyond Proof-of-Work. In Proceedings of the 2021 IEEE 21st International Conference on Software Quality, Reliability and Security Companion (QRS-C), Hainan, China, 6–10 December 2021; IEEE: Piscataway Township, NJ, USA, 2021. [Google Scholar]
- Ghosh, E.; Das, B. A study on the issue of blockchain’s energy consumption. In International Ethical Hacking Conference; Springer: Berlin/Heidelberg, Germany, 2019. [Google Scholar]
- Dittmar, L.; Praktiknjo, A. Could Bitcoin emissions push global warming above 2 °C? Nat. Clim. Change 2019, 9, 656–657. [Google Scholar] [CrossRef]
- Hileman, G.; Rauchs, M. 2017 Global Cryptocurrency Benchmarking Study; SSRN: Rochester, NY, USA, 2017; Available online: http://dx.doi.org/10.2139/ssrn.2965436 (accessed on 17 November 2022).
- Available online: https://www.businesswire.com/news/home/20151211005837/en/BitFury-to-Launch-Energy-Efficient-Immersion-Cooling-Data-Center (accessed on 17 November 2022).
- Huang, Z.; Wong, J.I. The Lives of Bitcoin Miners Digging for Digital Gold in Inner Mongolia. 2017. Available online: https://qz.com/1054805/what-its-like-working-at-a-sprawling-bitcoin-mine-in-inner-mongolia/ (accessed on 4 October 2019).
- Asia, T. Cheap Electricity Made China the King of Bitcoin Mining. The Government’s Stepping in 2017. Available online: https://www.techinasia.com/inner-mongoliabitcoin-mine (accessed on 17 November 2022).
- Jalili, M.; Manousakis, I.; Goiri, Í.; Misra, P.A.; Raniwala, A.; Alissa, H.; Ramakrishnan, B.; Tuma, P.; Belady, C.; Fontoura, M. Cost-efficient overclocking in immersion-cooled datacenters. In Proceedings of the 2021 ACM/IEEE 48th Annual International Symposium on Computer Architecture (ISCA), Valencia, Spain, 14–18 June 2021; IEEE: Piscataway Township, NJ, USA, 2021. [Google Scholar]
- Zhou, Q.; Huang, H.; Zheng, Z.; Bian, J. Solutions to scalability of blockchain: A survey. IEEE Access 2020, 8, 16440–16455. [Google Scholar] [CrossRef]
- Khan, D.; Jung, L.T.; Hashmani, M.A. Systematic literature review of challenges in blockchain scalability. Appl. Sci. 2021, 11, 9372. [Google Scholar] [CrossRef]
- Chauhan, A.; Malviya, O.P.; Verma, M.; Mor, T.S. Blockchain and scalability. In Proceedings of the 2018 IEEE International Conference on Software Quality, Reliability and Security Companion (QRS-C), Lisbon, Portugal, 16–20 July 2018; IEEE: Piscataway Township, NJ, USA, 2018. [Google Scholar]
- Berneis, M.; Bartsch, D.; Winkler, H. Applications of Blockchain Technology in Logistics and Supply Chain Management—Insights from a Systematic Literature Review. Logistics 2021, 5, 43. [Google Scholar] [CrossRef]
- Shahriar Hazari, S.; Mahmoud, Q.H. Improving transaction speed and scalability of blockchain systems via parallel proof of work. Future Internet 2020, 12, 125. [Google Scholar] [CrossRef]
- Taş, R.; Tanrıöver, Ö.Ö. A systematic review of challenges and opportunities of blockchain for E-voting. Symmetry 2020, 12, 1328. [Google Scholar] [CrossRef]
- Pieroni, A.; Scarpato, N.; Felli, L. Blockchain and IoT convergence—A systematic survey on technologies, protocols and security. Appl. Sci. 2020, 10, 6749. [Google Scholar] [CrossRef]
- Lucas, A.; Geneiatakis, D.; Soupionis, Y.; Nai-Fovino, I.; Kotsakis, E. Blockchain technology applied to energy demand response service tracking and data sharing. Energies 2021, 14, 1881. [Google Scholar] [CrossRef]
- Sohrabi, N.; Tari, Z. On the scalability of blockchain systems. In Proceedings of the 2020 IEEE International Conference on Cloud Engineering (IC2E), Sydney, Australia, 21–24 April 2020; IEEE: Piscataway Township, NJ, USA, 2020. [Google Scholar]
- Nakamoto, S. Bitcoin: A peer-to-peer electronic cash system. Decentralized Bus. Rev. 2008, 21260. [Google Scholar] [CrossRef]
- Gencer, A.E. On Scalability of Blockchain Technologies; Cornell University: Ithaca, NY, USA, 2017. [Google Scholar]
- Feng, X.; Ma, J.; Miao, Y.; Meng, Q.; Liu, X.; Jiang, Q.; Li, H. Pruneable sharding-based blockchain protocol. Peer Peer Netw. Appl. 2019, 12, 934–950. [Google Scholar] [CrossRef]
- Fajri, A.I.; Mahananto, F. Hybrid lightning protocol: An approach for blockchain scalability issue. Procedia Comput. Sci. 2022, 197, 437–444. [Google Scholar] [CrossRef]
- Ajorlou, A.; Abbasfar, A. An Optimized Structure of State Channel Network to Improve Scalability of Blockchain Algorithms. In Proceedings of the 2020 17th International ISC Conference on Information Security and Cryptology (ISCISC), Tehran, Iran, 9–10 September 2020; IEEE: Piscataway Township, NJ, USA, 2020. [Google Scholar]
- Erdin, E.; Cebe, M.; Akkaya, K.; Bulut, E.; Uluagac, A.S. A Heuristic-Based Private Bitcoin Payment Network Formation Using Off-Chain Links. In Proceedings of the 2019 IEEE International Conference on Blockchain (Blockchain), Atlanta, GA, USA, 14–17 July 2019; IEEE: Piscataway Township, NJ, USA, 2019. [Google Scholar]
- Harris, J.; Zohar, A. Flood & loot: A systemic attack on the lightning network. In Proceedings of the 2nd ACM Conference on Advances in Financial Technologies, New York, NY, USA, 21–23 October 2020. [Google Scholar]
- Guo, Y.; Tong, J.; Feng, C. A measurement study of bitcoin lightning network. In Proceedings of the 2019 IEEE International Conference on Blockchain (Blockchain), Atlanta, GA, USA, 14–17 July 2019; IEEE: Piscataway Township, NJ, USA, 2019. [Google Scholar]
- Wu, J.; Jiang, S. Local pooling of connected supernodes in lightning networks for blockchains. In Proceedings of the 2020 IEEE International Conference on Blockchain (Blockchain), Rhodes, Greece, 2–6 November 2020; IEEE: Piscataway Township, NJ, USA, 2020. [Google Scholar]
- Thakur, S.; Breslin, J.G. Coordinated Landmark-based Routing for Blockchain Offline Channels. In Proceedings of the 2020 Second International Conference on Blockchain Computing and Applications (BCCA), Antalya, Turkey, 2–5 November 2020; IEEE: Piscataway Township, NJ, USA, 2020. [Google Scholar]
- Khan, N. Lightning network: A comparative review of transaction fees and data analysis. In International Congress on Blockchain and Applications; Springer: Berlin/Heidelberg, Germany, 2019. [Google Scholar]
- Conoscenti, M.; Vetro, A.; De Martin, J.C. Hubs, rebalancing and service providers in the lightning network. IEEE Access 2019, 7, 132828–132840. [Google Scholar] [CrossRef]
- Bore, N.; Kinai, A.; Waweru, P.; Wambugu, I.; Mutahi, J.; Kemunto, E.; Bryant, R.; Weldemariam, K. AGWS: Blockchain-enabled Small-scale Farm Digitization. In Proceedings of the 2020 IEEE International Conference on Blockchain and Cryptocurrency (ICBC), Toronto, ON, Canada, 2–6 May 2020; IEEE: Piscataway Township, NJ, USA, 2020. [Google Scholar]
- Nadiya, U.; Mutijarsa, K.; Rizqi, C.Y. Block summarization and compression in bitcoin blockchain. In Proceedings of the 2018 International Symposium on Electronics and Smart Devices (ISESD), Bandung, Indonesia, 23–24 October 2018; IEEE: Piscataway Township, NJ, USA, 2018. [Google Scholar]
- Palai, A.; Vora, M.; Shah, A. Empowering light nodes in blockchains with block summarization. In Proceedings of the 2018 9th IFIP International Conference on New Technologies, Mobility and Security (NTMS), Paris, France, 26–28 February 2018; IEEE: Piscataway Township, NJ, USA, 2018. [Google Scholar]
- Li, S.; Yu, M.; Yang, C.-S.; Avestimehr, A.S.; Kannan, S.; Viswanath, P. Polyshard: Coded sharding achieves linearly scaling efficiency and security simultaneously. IEEE Trans. Inf. Forensics Secur. 2020, 16, 249–261. [Google Scholar] [CrossRef]
- Mizrahi, A.; Rottenstreich, O. State sharding with space-aware representations. In Proceedings of the 2020 IEEE International Conference on Blockchain and Cryptocurrency (ICBC), Toronto, ON, Canada, 2–6 May 2020; IEEE: Piscataway Township, NJ, USA, 2020. [Google Scholar]
- Tushar, W.; Yuen, C.; Saha, T.K.; Morstyn, T.; Chapman, A.C.; Alam, M.J.E.; Hanif, S.; Poor, H.V. Peer-to-peer energy systems for connected communities: A review of recent advances and emerging challenges. Appl. Energy 2021, 282, 116131. [Google Scholar] [CrossRef]
- Budt, M.; Wolf, D.; Span, R.; Yan, J. A review on compressed air energy storage: Basic principles, past milestones and recent developments. Appl. Energy 2016, 170, 250–268. [Google Scholar] [CrossRef]
- Aneke, M.; Wang, M. Energy storage technologies and real life applications—A state of the art review. Appl. Energy 2016, 179, 350–377. [Google Scholar] [CrossRef]
- Pandey, P.; Shinde, V.N.; Deopurkar, R.L.; Kale, S.P.; Patil, S.A.; Pant, D. Recent advances in the use of different substrates in microbial fuel cells toward wastewater treatment and simultaneous energy recovery. Appl. Energy 2016, 168, 706–723. [Google Scholar] [CrossRef]
- Yu, G.; Wang, X.; Yu, K.; Ni, W.; Zhang, J.A.; Liu, R.P. Survey: Sharding in blockchains. IEEE Access 2020, 8, 14155–14181. [Google Scholar] [CrossRef]
- Zamani, M.; Movahedi, M.; Raykova, M. Rapidchain: Scaling blockchain via full sharding. In Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications Security, Toronto, ON, Canada, 15–19 October 2018. [Google Scholar]
- Liu, C.; Zhang, W.; Xu, M.; Shi, L.; Zhao, Y. A study of aging property of pressboard in gas insulator transformer. In Proceedings of the 2016 IEEE International Conference on Dielectrics (ICD), Montpellier, France, 3–7 July 2016; IEEE: Piscataway Township, NJ, USA, 2016. [Google Scholar]
- Manuskin, A.; Mirkin, M.; Eyal, I. Ostraka: Secure blockchain scaling by node sharding. In Proceedings of the 2020 IEEE European Symposium on Security and Privacy Workshops (EuroS&PW), Genoa, Italy, 7–11 September 2020; IEEE: Piscataway Township, NJ, USA, 2020. [Google Scholar]
- Dotan, M.; Pignolet, Y.-A.; Schmid, S.; Tochner, S.; Zohar, A. Survey on blockchain networking: Context, state-of-the-art, challenges. ACM Comput. Surv. 2021, 54, 1–34. [Google Scholar] [CrossRef]
- Amiri, M.J.; Agrawal, D.; El Abbadi, A. On sharding permissioned blockchains. In Proceedings of the 2019 IEEE International Conference on Blockchain (Blockchain), Atlanta, GA, USA, 14–17 July 2019; IEEE: Piscataway Township, NJ, USA, 2019. [Google Scholar]
- Huang, C.; Wang, Z.; Chen, H.; Hu, Q.; Zhang, Q.; Wang, W.; Guan, X. Repchain: A reputation-based secure, fast, and high incentive blockchain system via sharding. IEEE Internet Things J. 2020, 8, 4291–4304. [Google Scholar] [CrossRef]
- Ren, Z.; Cong, K.; Aerts, T.; de Jonge, B.; Morais, A.; Erkin, Z. A scale-out blockchain for value transfer with spontaneous sharding. In Proceedings of the 2018 Crypto Valley Conference on Blockchain Technology (CVCBT), Zug, Switzerland, 20–22 June 2018; IEEE: Piscataway Township, NJ, USA, 2018. [Google Scholar]
- Huang, H.; Peng, X.; Zhan, J.; Zhang, S.; Lin, Y.; Zheng, Z.; Guo, S. BrokerChain: A Cross-Shard Blockchain Protocol for Account/Balance-based State Sharding. In IEEE INFOCOM; IEEE: Piscataway Township, NJ, USA, 2022. [Google Scholar]
- Dang, H.; Dinh, T.T.A.; Loghin, D.; Chang, E.-C.; Lin, Q.; Ooi, B.C. Towards scaling blockchain systems via sharding. In Proceedings of the 2019 International Conference on Management of Data, Amsterdam, The Netherlands, 5–30 July 2019. [Google Scholar]
- Wang, G.; Shi, Z.J.; Nixon, M.; Han, S. Sok: Sharding on blockchain. In Proceedings of the 1st ACM Conference on Advances in Financial Technologies, Zurich, Switzerland, 21–23 October 2019. [Google Scholar]
- Hafid, A.; Hafid, A.S.; Samih, M. Scaling blockchains: A comprehensive survey. IEEE Access 2020, 8, 125244–125262. [Google Scholar] [CrossRef]
- Chen, H.; Wang, Y. Sschain: A full sharding protocol for public blockchain without data migration overhead. Pervasive Mob. Comput. 2019, 59, 101055. [Google Scholar] [CrossRef]
- Yun, J.; Goh, Y.; Chung, J.-M. DQN-based optimization framework for secure sharded blockchain systems. IEEE Internet Things J. 2020, 8, 708–722. [Google Scholar] [CrossRef]
- Du, M.; Chen, Q.; Ma, X. MBFT: A new consensus algorithm for consortium blockchain. IEEE Access 2020, 8, 87665–87675. [Google Scholar] [CrossRef]
- Di Stasi, G.; Avallone, S.; Canonico, R.; Ventre, G. Routing payments on the lightning network. In Proceedings of the 2018 IEEE International Conference on Internet of Things (IThings) and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData), Halifax, NS, Canada, 30 July–3 August 2018; IEEE: Piscataway Township, NJ, USA, 2018. [Google Scholar]
- Yang, D.; Long, C.; Xu, H.; Peng, S. A review on scalability of blockchain. In Proceedings of the 2020 The 2nd International Conference on Blockchain Technology, Hilo, HI, USA, 12–14 March 2020. [Google Scholar]
Finding Engine | Address of Mentioned Search Engine |
---|---|
IEEE Xplore | https://ieeexplore.ieee.org/ (accessed on 5 July 2022) |
ACM | https://acm.org/ (accessed on 30 September 2022) |
Academia | https://academia.edu/ (accessed on 25 August 2022) |
Science Direct | https://sciencedirect.com (accessed on 18 September 2022) |
Taylor and Francis | https://www.taylorandfrancis.com (accessed on 20 August 2022) |
Springer | https://springer.com (accessed on 21 August 2022) |
The Rules Followed for Selecting Research Content | |
---|---|
Inclusion |
|
Exclusion |
|
Estimated Electricity Consumption (TWh) | |||
---|---|---|---|
Time Stamp | Higher Estimate | Best Guess | Lower Estimate |
9 June 2017 | 43.258 | 17.165 | 4.619 |
30 January 2018 | 161.652 | 40.735 | 17.259 |
3 November 2018 | 94.842 | 51.935 | 21.564 |
10 January 2019 | 66.847 | 37.889 | 17.216 |
9 July 2019 | 183.289 | 59.005 | 23.734 |
7 March 2020 | 155.761 | 82.736 | 43.116 |
8 February 2021 | 291.091 | 117.087 | 43.438 |
15 May 2021 | 305.56 | 128.849 | 46.134 |
Author(s) | Targeted Technique | Primary Architectural Characteristic | Type of Gain or Reward for BTC Miners |
---|---|---|---|
Puthal, D. et al. [37] | confirmation of authenticity (i.e., PoA) or proof of authentication | The main consideration for design is the hash rate | Only the active peers obtain the reward from the blockchain |
Luo, J. et al. [38] | Smart contract | The main consideration for design is that there is no central entity | Boost in resources in terms of energy |
Hahn, A., et al. [39] | Smart contract | The main parameter for design is that there is no central entity | Boost in resources in terms of energy |
Mir, U. et al. [40] | PoG (Proof of Green) | The main parameter for design is trust that can be performed by using vote. | N/A |
Type of Machinery | Hashrate Value (TH/s) | Power Usage(W) | Efficiency of the Power Utilized (J/GH) |
---|---|---|---|
WhatsMiner M32-62T | 62 | 3348 | 0.031 |
Whatsminer M32-70 | 70 | 3360 | 0.054 |
Antminer S9 | 14 | 1372 | 0.098 |
Antminer T9 | 12.5 | 1576 | 0.126 |
Antminer T9+ | 10.5 | 1332 | 0.127 |
Antminer V9 | 4 | 1027 | 0.257 |
Antminer S7 | 4.73 | 1293 | 0.273 |
AvalonMiner 821 | 11 | 1200 | 0.109 |
AvalonMiner 761 | 8.8 | 1320 | 0.150 |
AvalonMiner 741 | 7.3 | 1150 | 0.160 |
Bitfury B8 Black | 55 | 5600 | 0.11 |
Bitfury B8 | 47 | 6400 | 0.13 |
Cryptocurrency | Energy Consumption per Year (TWh/yr) |
---|---|
Litecoin | 4.54 |
Bitcoin SV | 3.78 |
Bitcoin Cas HEthereum Bitcoin Cardano | 6.25 83.15 115.65 4.8 |
Degecoin 3.01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alshahrani, H.; Islam, N.; Syed, D.; Sulaiman, A.; Al Reshan, M.S.; Rajab, K.; Shaikh, A.; Shuja-Uddin, J.; Soomro, A. Sustainability in Blockchain: A Systematic Literature Review on Scalability and Power Consumption Issues. Energies 2023, 16, 1510. https://doi.org/10.3390/en16031510
Alshahrani H, Islam N, Syed D, Sulaiman A, Al Reshan MS, Rajab K, Shaikh A, Shuja-Uddin J, Soomro A. Sustainability in Blockchain: A Systematic Literature Review on Scalability and Power Consumption Issues. Energies. 2023; 16(3):1510. https://doi.org/10.3390/en16031510
Chicago/Turabian StyleAlshahrani, Hani, Noman Islam, Darakhshan Syed, Adel Sulaiman, Mana Saleh Al Reshan, Khairan Rajab, Asadullah Shaikh, Jaweed Shuja-Uddin, and Aadar Soomro. 2023. "Sustainability in Blockchain: A Systematic Literature Review on Scalability and Power Consumption Issues" Energies 16, no. 3: 1510. https://doi.org/10.3390/en16031510
APA StyleAlshahrani, H., Islam, N., Syed, D., Sulaiman, A., Al Reshan, M. S., Rajab, K., Shaikh, A., Shuja-Uddin, J., & Soomro, A. (2023). Sustainability in Blockchain: A Systematic Literature Review on Scalability and Power Consumption Issues. Energies, 16(3), 1510. https://doi.org/10.3390/en16031510