Examining the Energy Efficiency and Economic Growth Potential in the World Energy Trilemma Countries
Abstract
:1. Introduction
2. Literature Review
2.1. Theoretical Background
2.2. Empirical Literature
3. Data and Methodology
3.1. Data
3.2. Methodology
4. Results and Discussion
Robustness Check
5. Conclusions and Policy
Policy Insight
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Abulfotuh, F. Energy efficiency and renewable technologies: The way to sustainable energy future. Desalination 2007, 209, 275–282. [Google Scholar] [CrossRef]
- Bataille, C.; Melton, N. Energy efficiency and economic growth: A retrospective CGE analysis for Canada from 2002 to 2012. Energy Econ. 2017, 64, 118–130. [Google Scholar] [CrossRef]
- Stern, D.I. Modeling international trends in energy efficiency. Energy Econ. 2012, 34, 2200–2208. [Google Scholar] [CrossRef]
- Herring, H. Energy efficiency—A critical view. Energy 2006, 31, 10–20. [Google Scholar] [CrossRef]
- Rajbhandari, A.; Zhang, F. Does energy efficiency promote economic growth? Evidence from a multicountry and multisectoral panel dataset. Energy Econ. 2018, 69, 128–139. [Google Scholar] [CrossRef] [Green Version]
- Bayar, Y.; Gavriletea, M.D. Energy efficiency, renewable energy, economic growth: Evidence from emerging market economies. Qual. Quant. 2019, 53, 2221–2234. [Google Scholar] [CrossRef]
- Marques, A.C.; Fuinhas, J.A.; Tomás, C. Energy efficiency and sustainable growth in industrial sectors in European Union countries: A nonlinear ARDL approach. J. Clean. Prod. 2019, 239, 118045. [Google Scholar] [CrossRef]
- Akram, R.; Chen, F.; Khalid, F.; Huang, G.; Irfan, M. Heterogeneous effects of energy efficiency and renewable energy on economic growth of BRICS countries: A fixed effect panel quantile regression analysis. Energy 2021, 215, 119019. [Google Scholar] [CrossRef]
- Zakari, A.; Khan, I.; Tan, D.; Alvarado, R.; Dagar, V. Energy efficiency and sustainable development goals (SDGs). Energy 2022, 239, 122365. [Google Scholar] [CrossRef]
- Lu, Y.; Liu, Y.; Zhou, M. Rebound effect of improved energy efficiency for different energy types: A general equilibrium analysis for China. Energy Econ. 2017, 62, 248–256. [Google Scholar] [CrossRef] [Green Version]
- Sinha, A. Modeling energy efficiency and economic growth: Evidences from India. Int. J. Energy Econ. Policy 2015, 5, 96. [Google Scholar]
- Razzaq, A.; Sharif, A.; Najmi, A.; Tseng, M.L.; Lim, M.K. Dynamic and causality interrelationships from municipal solid waste recycling to economic growth, carbon emissions and energy efficiency using a novel bootstrapping autoregressive distributed lag. Resources. Conserv. Recycl. 2021, 166, 105372. [Google Scholar] [CrossRef]
- Sener, S.; Karakas, A.T. The effect of economic growth on energy efficiency: Evidence from high, upper-middle and lower-middle income countries. Procedia Comput. Sci. 2019, 158, 523–532. [Google Scholar] [CrossRef]
- Lin, B.; Zhou, Y. Does energy efficiency make sense in China? Based on the perspective of economic growth quality. Sci. Total Environ. 2022, 804, 149895. [Google Scholar] [CrossRef] [PubMed]
- World Energy Council. World Energy Trilemma Index 2020. 2020. Available online: https://www.worldenergy.org/publications/entry/world-energy-trilemma-index-2019 (accessed on 14 January 2021).
- World Energy Council. Policies for the Future, 2011 Assessment of Country Energy and Climate Policies. 2011. Available online: http://www.worldenergy.org/documents/wec_2011_assessment_of_energy_and_climate_policies.pdf (accessed on 20 July 2022).
- Shirazi, M. Assessing energy trilemma-related policies: The world’s large energy user evidence. Energy Policy 2022, 167, 113082. [Google Scholar] [CrossRef]
- Al Asbahi AA, M.H.; Gang, F.Z.; Iqbal, W.; Abass, Q.; Mohsin, M.; Iram, R. Novel approach of principal component analysis method to assess the national energy performance via Energy Trilemma Index. Energy Rep. 2019, 5, 704–713. [Google Scholar] [CrossRef]
- Gunningham, N. Managing the energy trilemma: The case of Indonesia. Energy Policy 2013, 54, 184–193. [Google Scholar] [CrossRef]
- Heffron, R.J.; McCauley, D.; Sovacool, B.K. Resolving society’s energy trilemma through the Energy Justice Metric. Energy Policy 2015, 87, 168–176. [Google Scholar] [CrossRef]
- Jing, R.; Lin, Y.; Khanna, N.; Chen, X.; Wang, M.; Liu, J.; Lin, J. Balancing the Energy Trilemma in energy system planning of coastal cities. Appl. Energy 2021, 283, 116222. [Google Scholar] [CrossRef]
- Oliver, J.; Sovacool, B. The energy trilemma and the smart grid: Implications beyond the United States. Asia Pac. Policy Stud. 2017, 4, 70–84. [Google Scholar] [CrossRef]
- Sautter, J.A.; Landis, J.; Dworkin, M.H. The Energy Trilemma in the Green Mountain State: An Analysis of Vermont’s Energy Challenges and Policy Options. Vt. J. Envt. L. 2008, 10, 477. [Google Scholar] [CrossRef]
- Stempien, J.P.; Chan, S.H. Addressing energy trilemma via the modified Markowitz Mean-Variance Portfolio Optimization theory. Appl. Energy 2017, 202, 228–237. [Google Scholar] [CrossRef]
- Iqbal, W.; Altalbe, A.; Fatima, A.; Ali, A.; Hou, Y. A DEA approach for assessing the energy, environmental and economic performance of top 20 industrial countries. Processes 2019, 7, 902. [Google Scholar] [CrossRef] [Green Version]
- Alola, A.A.; Olanipekun, I.O.; Shah, M.I. Examining the drivers of alternative energy in leading energy sustainable economies: The trilemma of energy efficiency, energy intensity and renewables expenses. Renew. Energy 2023, 202, 1190–1197. [Google Scholar] [CrossRef]
- Filippini, M.; Hunt, L.C. Measurement of energy efficiency based on economic foundations. Energy Econ. 2015, 52, S5–S16. [Google Scholar] [CrossRef] [Green Version]
- Wu, F.; Fan, L.W.; Zhou, P.; Zhou, D.Q. Industrial energy efficiency with CO2 emissions in China: A nonparametric analysis. Energy Policy 2012, 49, 164–172. [Google Scholar] [CrossRef]
- Sim, N.; Zhou, H. Oil prices, US stock return, and the dependence between their quantiles. J. Bank. Financ. 2015, 55, 1–8. [Google Scholar] [CrossRef]
- Solow, R.M. A contribution to the theory of economic growth. Q. J. Econ. 1956, 70, 65–94. [Google Scholar] [CrossRef]
- Chenery, H.B.; Robinson, S.; Syrquin, M.; Feder, S. Industrialization and Growth; Oxford University Press: New York, NY, USA, 1986; p. 175. [Google Scholar]
- De Coninck, H.; Fischer, C.; Newell, R.G.; Ueno, T. International technology-oriented agreements to address climate change. Energy Policy 2008, 36, 335–356. [Google Scholar] [CrossRef] [Green Version]
- Du, H.; Matisoff, D.C.; Wang, Y.; Liu, X. Understanding drivers of energy efficiency changes in China. Appl. Energy 2016, 184, 1196–1206. [Google Scholar] [CrossRef]
- Newell, R.G. The role of markets and policies in delivering innovation for climate change mitigation. Oxf. Rev. Econ. Policy 2010, 26, 253–269. [Google Scholar] [CrossRef] [Green Version]
- Sjöholm, F. Technology gap, competition and spillovers from direct foreign investment: Evidence from establishment data. J. Dev. Stud. 1999, 36, 53–73. [Google Scholar] [CrossRef]
- Worrell, E.; Van Berkel, R.; Zhou, F.; Menke, C.; Schaeffer, R.; Williams, R.O. Technology transfer of energy efficient technologies in industry: A review of trends and policy issues. Energy Policy 2001, 29, 29–43. [Google Scholar] [CrossRef]
- Cantore, N.; Calì, M.; Velde, D.W. Does energy efficiency improve technological change and economic growth in developing countries? Energy Policy 2016, 92, 279–285. [Google Scholar] [CrossRef]
- Smulders, S.; De Nooij, M. The impact of energy conservation on technology and economic growth. Resour. Energy Econ. 2003, 25, 59–79. [Google Scholar] [CrossRef] [Green Version]
- Adedoyin, F.F.; Bekun, F.V.; Alola, A.A. Growth impact of transition from non-renewable to renewable energy in the EU: The role of research and development expenditure. Renew. Energy 2020, 159, 1139–1145. [Google Scholar] [CrossRef]
- Alola, A.A.; Saint Akadiri, S. Clean energy development in the United States amidst augmented socioeconomic aspects and country-specific policies. Renew. Energy 2021, 169, 221–230. [Google Scholar] [CrossRef]
- Aqeel, A.; Butt, M.S. The relationship between energy consumption and economic growth in Pakistan. Asia-Pac. Dev. J. 2001, 8, 101–110. [Google Scholar]
- Ayres, R.U.; Turton, H.; Casten, T. Energy efficiency, sustainability and economic growth. Energy 2007, 32, 634–648. [Google Scholar] [CrossRef]
- Kose, N.; Bekun, F.V.; Alola, A.A. Criticality of sustainable research and development-led growth in EU: The role of renewable and non-renewable energy. Environ. Sci. Pollut. Res. 2020, 27, 12683–12691. [Google Scholar] [CrossRef]
- Lawal, A.I.; Ozturk, I.; Olanipekun, I.O.; Asaleye, A.J. Examining the linkages between electricity consumption and economic growth in African economies. Energy 2020, 208, 118363. [Google Scholar] [CrossRef]
- Lee, C.C. Energy consumption and GDP in developing countries: A cointegrated panel analysis. Energy Econ. 2005, 27, 415–427. [Google Scholar] [CrossRef]
- Ozturk, I. A literature survey on energy–growth nexus. Energy Policy 2010, 38, 340–349. [Google Scholar] [CrossRef]
- Kraft, J.; Kraft, A. On the relationship between energy and GNP. J. Energy Dev. 1978, 3, 401–403. [Google Scholar]
- Intergovernmental Panel on Climate Change (IPCC). Intergovernmental Panel on Climate Change (IPCC) Renewable energy sources and climate change mitigation. 2020. Available online: https://www.ipcc.ch/report/renewable-energy-sources-and-climate-change-mitigation/ (accessed on 20 July 2022).
- Liu, H.; Khan, I.; Zakari, A.; Alharthi, M. Roles of trilemma in the world energy sector and transition towards sustainable energy: A study of economic growth and the environment. Energy Policy 2022, 170, 113238. [Google Scholar] [CrossRef]
- Norouzi, N. Regulating sustainable economics: A legal and policy analysis in the light of the United Nations sustainable development goals. In Handbook of Research on Changing Dynamics in Responsible and Sustainable Business in the Post-COVID-19 Era; IGI Global: Hershey, PA, USA, 2022; pp. 266–287. [Google Scholar]
- Howarth, R.B. Energy efficiency and economic growth. Contemp. Econ. Policy 1997, 15, 1–9. [Google Scholar] [CrossRef]
- Farla, J.C.; Blok, K. Energy efficiency and structural change in the Netherlands, 1980–1995: Influence of energy efficiency, dematerialization, and economic structure on national energy consumption. J. Ind. Ecol. 2000, 4, 93–117. [Google Scholar] [CrossRef]
- Zhu, J.; Lin, B. Economic growth pressure and energy efficiency improvement: Empirical evidence from Chinese cities. Appl. Energy 2022, 307, 118275. [Google Scholar] [CrossRef]
- Dell’Anna, F. Green jobs and energy efficiency as strategies for economic growth and the reduction of environmental impacts. Energy Policy 2021, 149, 112031. [Google Scholar] [CrossRef]
- Li, H.; Shi, J.F. Energy efficiency analysis on Chinese industrial sectors: An improved Super-SBM model with undesirable outputs. J. Clean. Prod. 2014, 65, 97–107. [Google Scholar] [CrossRef]
- Wang, Q.; Zhao, Z.; Zhou, P.; Zhou, D. Energy efficiency and production technology heterogeneity in China: A meta-frontier DEA approach. Econ. Model. 2013, 35, 283–289. [Google Scholar] [CrossRef]
- Wang, Z.; Feng, C.; Zhang, B. An empirical analysis of China’s energy efficiency from both static and dynamic perspectives. Energy 2014, 74, 322–330. [Google Scholar] [CrossRef]
- Cagno, E.; Trianni, A. Exploring drivers for energy efficiency within small-and medium-sized enterprises: First evidences from Italian manufacturing enterprises. Appl. Energy 2013, 104, 276–285. [Google Scholar] [CrossRef]
- Li, K.; Lin, B. How to promote energy efficiency through technological progress in China? Energy 2018, 143, 812–821. [Google Scholar] [CrossRef]
- Hu, J.L.; Wang, S.C. Total-factor energy efficiency of regions in China. Energy Policy 2006, 34, 3206–3217. [Google Scholar] [CrossRef]
- Song, L.; Fu, Y.; Zhou, P.; Lai, K.K. Measuring national energy performance via energy trilemma index: A stochastic multicriteria acceptability analysis. Energy Econ. 2017, 66, 313–319. [Google Scholar] [CrossRef]
- Xia, Z.; Abbas, Q.; Mohsin, M.; Song, G. Trilemma among energy, economic and environmental efficiency: Can dilemma of EEE address simultaneously in era of COP 21? J. Environ. Manag. 2020, 276, 111322. [Google Scholar] [CrossRef]
- Broock, W.A.; Scheinkman, J.A.; Dechert, W.D.; LeBaron, B. A test for independence based on the correlation dimension. Econom. Rev. 1996, 15, 197–235. [Google Scholar] [CrossRef]
- Organization for Economic Corporation and Development. 2021. Available online: https://data.oecd.org/gga/general-government-revenue.htm#indicator-chart (accessed on 13 May 2021).
- European Environment Agency. Progress on energy efficiency in Europe. 2021. Available online: https://www.eea.europa.eu/data-and-maps/indicators/progress-on-energy-efficiency-in-europe-3/assessment (accessed on 13 May 2021).
- International Trade Administration. Energy and Environmental Technology. 2020. Available online: https://www.trade.gov/country-commercial-guides/finland-energy-and-environmental-technology (accessed on 13 May 2021).
- Organization for Economic Corporation and Development. Green growth in action: Germany. 2020. Available online: https://www.oecd.org/germany/greengrowthinactiongermany.htm (accessed on 13 May 2021).
- European Parliament. Energy efficiency. 2020. Available online: https://www.europarl.europa.eu/factsheets/en/sheet/69/energy-efficiency (accessed on 13 May 2021).
Countries | Mean | Maximum | Minimum | JB (p-Value) |
---|---|---|---|---|
Energy Efficiency | ||||
Austria | 1.3585 | 1.92041 | 0.8597 | 15.53 (0.00) |
Denmark | 1.1060 | 1.7246 | −0.3983 | 135.15 (0.00) |
France | 1.7583 | 2.4592 | 0.7868 | 12.211 (0.00) |
Finland | 1.7581 | 2.338 | 1.190 | 8.652 (0.01) |
Germany | 1.6812 | 2.43075 | 1.0704 | 15.568 (0.00) |
New Zealand | 1.6101 | 2.0069 | 1.3770 | 13.895 (0.00) |
Switzerland | 0.0940 | 0.8108 | −0.3570 | 40.831 (0.00) |
Sweden | 1.6394 | 2.0962 | 1.2568 | 3.6730 (0.15) |
United Kingdom | 1.2499 | 2.5558 | −0.0264 | 12.687 (0.00) |
Economic Growth | ||||
Austria | 11.544 | 11.649 | 11.408 | 9.539 (0.00) |
Denmark | 11.476 | 11.572 | 11.358 | 9.274 (0.00) |
France | 12.380 | 12.46 | 12.276 | 10.937 (0.00) |
Finland | 11.33 | 11.43 | 11.17 | 13.602 (0.00) |
Germany | 12.506 | 12.596 | 12.399 | 4.3230 (0.11) |
Switzerland | 11.100 | 11.272 | 10.917 | 7.2368 (0.02) |
Switzerland | 11.716 | 11.834 | 11.630 | 9.6334 (0.00) |
Sweden | 10.602 | 10.748 | 10.424 | 10.570 (0.00) |
United Kingdom | 12.345 | 12.461 | 12.205 | 9.872 (0.00) |
Country | M2 (Prob) | M3 (Prob) | M4 (Prob) | M5 (Prob) | M6 (Prob) |
---|---|---|---|---|---|
Energy Efficiency | |||||
Austria | 38.50 (0.00) | 40.37 (0.00) | 42.95 (0.00) | 46.97 (0.00) | 52.79 (0.00) |
Denmark | 18.423 (0.00) | 19.05 (0.00) | 19.84 (0.00) | 21.09 (0.00) | 22.74 (0.00) |
France | 44.67 (0.00) | 47.04 (0.00) | 50.28 (0.00) | 55.09 (0.00) | 61.70 (0.00) |
Finland | 47.70 (0.00) | 50.34 (0.00) | 53.87 (0.00) | 59.03 (0.00) | 66.16 (0.00) |
Germany | 40.57 (0.00) | 42.69 (0.00) | 45.26 (0.00) | 49.46 (0.00) | 55.50 (0.00) |
New Zealand | 16.56 (0.00) | 16.48 (0.00) | 16.61 (0.00) | 17.20 (0.00) | 18.20 (0.00) |
Sweden | 39.45 (0.00) | 40.61 (0.00) | 42.46 (0.00) | 45.77 (0.00) | 50.71 (0.00) |
Switzerland | 27.37 (0.00) | 28.63 (0.00) | 30.39 (0.00) | 33.21 (0.00) | 37.19 (0.00) |
UK | 45.14 (0.00) | 47.44 (0.00) | 50.52 (0.00) | 55.21 (0.00) | 61.72 (0.00) |
Economic Growth | |||||
Austria | 45.27 (0.00) | 48.33 (0.00) | 52.30 (0.00) | 58.15 (0.00) | 66.22 (0.00) |
Denmark | 35.88 (0.00) | 38.29 (0.00) | 41.35 (0.00) | 45.82 (0.00) | 51.95 (0.00) |
France | 43.45 (0.00) | 46.44 (0.00) | 50.27 (0.00) | 55.85 (0.00) | 63.527 (0.00) |
Finland | 46.11 (0.00) | 48.61 (0.00) | 52.07 (0.00) | 57.47 (0.00) | 65.15 (0.00) |
Germany | 46.11 (0.00) | 48.61 (0.00) | 52.07 (0.00) | 57.47 (0.00) | 65.15 (0.00) |
New Zealand | 49.25 (0.00) | 52.41 (0.00) | 56.56 (0.00) | 62.73 (0.00) | 71.31 (0.00) |
Sweden | 44.46 (0.00) | 47.37 (0.00) | 51.11 (0.00) | 56.65 (0.00) | 64.29 (0.00) |
Switzerland | 51.82 (0.00) | 55.16046 | 59.61 (0.00) | 66.27 (0.00) | 75.52 (0.00) |
United Kingdom | 43.32 (0.00) | 46.19 (0.00) | 49.90 (0.00) | 55.36 (0.00) | 62.87 (0.00) |
EF | 45.14 (0.00) | 47.44 (0.00) | 50.52 (0.00) | 55.21 (0.00) | 61.72 (0.00) |
GDP | 43.32 (0.00) | 46.19 (0.00) | 49.90 (0.00) | 55.36 (0.00) | 62.87 (0.00) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alola, A.A.; Adebayo, T.S.; Olanipekun, I.O. Examining the Energy Efficiency and Economic Growth Potential in the World Energy Trilemma Countries. Energies 2023, 16, 2036. https://doi.org/10.3390/en16042036
Alola AA, Adebayo TS, Olanipekun IO. Examining the Energy Efficiency and Economic Growth Potential in the World Energy Trilemma Countries. Energies. 2023; 16(4):2036. https://doi.org/10.3390/en16042036
Chicago/Turabian StyleAlola, Andrew Adewale, Tomiwa Sunday Adebayo, and Ifedolapo Olabisi Olanipekun. 2023. "Examining the Energy Efficiency and Economic Growth Potential in the World Energy Trilemma Countries" Energies 16, no. 4: 2036. https://doi.org/10.3390/en16042036
APA StyleAlola, A. A., Adebayo, T. S., & Olanipekun, I. O. (2023). Examining the Energy Efficiency and Economic Growth Potential in the World Energy Trilemma Countries. Energies, 16(4), 2036. https://doi.org/10.3390/en16042036