A Review of Electric Motors with Soft Magnetic Composite Cores for Electric Drives
Abstract
:1. Introduction
2. Development of SMC Electrical Machines
2.1. Axial Field PM Motors with SMC Cores
2.2. Claw Pole Motors with SMC Cores
2.3. Transverse Flux Motors with SMC Cores
2.4. SMC Machines with Claw Pole/TFM Configuration
2.5. Other Types of SMC Motors
3. Advanced Magnetic Property Characterization of SMC Materials
3.1. 3D Vectorial Magnetic Properties
3.2. 2D or Quasi-3D Vectorial Magnetic Properties
3.3. Challenges of Vectorial Magnetic Property Characterization
4. Advanced Techniques for SMC Motor Design and Optimization
5. Development of SMC Materials
5.1. Improvement of SMC Material Properties
5.2. Cost of SMC Materials and Motors
5.3. Comparison of Electrical Motors with SMC and Conventional Electrical Steel Cores
6. Discussions and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Emadi, A.; Ehsani, M. An Education Program for Transportation Electrification. In Proceedings of the IEEE Vehicle Power and Propulsion Conference, Lille, France, 1–3 September 2010; pp. 1–5. [Google Scholar]
- Tan, D. Transportation Electrification: Challenges and opportunities. IEEE Power Electron. Mag. 2016, 3, 50–52. [Google Scholar] [CrossRef]
- Crawford, C.; Franca, A.; Jankowski-Walsh, J.; Clancy, D.; Ivanova, A.; Tehrani, N.; Amid, P.; Behboodi, S.; Chassin, D.; Djlali, N. Addressing Key Challenges in Transportation Mode Electrification. In Proceedings of the IEEE Canadian Conference on Electrical and Computer Engineering (CCECC), Vancouver, BC, Canada, 14–18 May 2016; pp. 1–4. [Google Scholar]
- Fernandes, J.F.P.; Bhagubai, P.P.C.; Branco, P.J.C. Recent Developments in Electrical Machine Design for the Electrification of Industrial and Transportation Systems. Energies 2022, 15, 6390. [Google Scholar] [CrossRef]
- Bilgin, B.; Emadi, A. Electric Motors in Electrified Transportation: A step toward achieving a sustainable and highly efficient transportation system. IEEE Power Electron. Mag. 2014, 1, 10–20. [Google Scholar] [CrossRef]
- Chan, C.; Chau, K.; Jiang, J.; Xia, W.; Zhu, M.; Zhang, R. Novel permanent magnet motor drives for electric vehicles. IEEE Trans. Ind. Electron. 1996, 43, 331–339. [Google Scholar] [CrossRef] [Green Version]
- Hua, W.; Cheng, M.; Zhang, G. A Novel Hybrid Excitation Flux-Switching Motor for Hybrid Vehicles. IEEE Trans. Magn. 2009, 45, 4728–4731. [Google Scholar] [CrossRef]
- Menon, R.; Kadam, A.H.; Azeez, N.A.; Williamson, S.S. A Comprehensive Survey on Permanent Magnet Synchronous Motor Drive Systems for Electric Transportation Applications. In Proceedings of the IECON 2016-42nd Annual Conference of the IEEE Industrial Electronics Society, Florence, Italy, 24–27 October 2016; pp. 6627–6632. [Google Scholar]
- Zhu, Z.Q.; Cai, S. Hybrid excited permanent magnet machines for electric and hybrid electric vehicles. China Electrotech. Soc. Trans. Electr. Mach. Syst. 2019, 3, 233–247. [Google Scholar] [CrossRef]
- Sun, X.; Shi, Z.; Cai, Y.; Lei, G.; Guo, Y.; Zhu, J. Driving-Cycle-Oriented Design Optimization of a Permanent Magnet Hub Motor Drive System for a Four-Wheel-Drive Electric Vehicle. IEEE Trans. Transp. Electrif. 2020, 6, 1115–1125. [Google Scholar] [CrossRef]
- Guo, Y.; Zhu, J.; Liu, D.; Lu, H.; Wang, S. Application of Multi-Level Multi-Domain Modeling in the Design and Analysis of a PM Transverse Flux Motor with SMC Core. In Proceedings of the 7th International Conference on Power Electronics and Drive Systems (PEDS), Bangkok, Thailand, 27–30 November 2007; pp. 27–31. [Google Scholar]
- Lei, G.; Zhu, J.; Guo, Y. Multidisciplinary Design Optimization Methods for Electrical Machines and Drive Systems; Springer: Berlin/Heidelberg, Germany, 2016. [Google Scholar]
- Salimi, A.; Lowther, D.A. On the Role of Robustness in Multi-Objective Robust Optimization: Application to an IPM Motor Design Problem. IEEE Trans. Magn. 2016, 52, 8102304. [Google Scholar] [CrossRef]
- Zhu, X.; Shu, Z.; Quan, L.; Xiang, Z.; Pan, X. Multi-Objective Optimization of an Outer-Rotor V-Shaped Permanent Magnet Flux Switching Motor Based on Multi-Level Design Method. IEEE Trans. Magn. 2016, 52, 8205508. [Google Scholar] [CrossRef]
- Diao, K.; Sun, X.; Lei, G.; Guo, Y.; Zhu, J. Multiobjective System Level Optimization Method for Switched Reluctance Motor Drive Systems Using Finite-Element Model. IEEE Trans. Ind. Electron. 2020, 67, 10055–10064. [Google Scholar] [CrossRef]
- Sun, X.; Wan, B.; Lei, G.; Tian, X.; Guo, Y.; Zhu, J. Multiobjective and Multiphysics Design Optimization of a Switched Re-luctance Motor for Electric Vehicle Application. IEEE Trans. Energy Convers. 2021, 36, 3294–3304. [Google Scholar] [CrossRef]
- Liu, C.-T.; Chiang, T.; Zamora, J.; Lin, S. Field-Oriented Control Evaluations of a Single-Sided Permanent Magnet Axial-Flux Motor for an Electric Vehicle. IEEE Trans. Magn. 2003, 39, 3280–3282. [Google Scholar]
- Men, X.; Guo, Y.; Wu, G.; Chen, S.; Shi, C. Implementation of an Improved Motor Control for Electric Vehicles. Energies 2022, 15, 4833. [Google Scholar] [CrossRef]
- Zhang, L.; Fan, Y.; Cui, R.; Lorenz, R.D.; Cheng, M. Fault-Tolerant Direct Torque Control of Five-Phase FTFSCW-IPM Motor Based on Analogous Three-Phase SVPWM for Electric Vehicle Applications. IEEE Trans. Veh. Technol. 2018, 67, 910–919. [Google Scholar] [CrossRef]
- Sun, X.; Diao, K.; Lei, G.; Guo, Y.; Zhu, J. Direct Torque Control Based on a Fast Modeling Method for a Segmented-Rotor Switched Reluctance Motor in HEV Application. IEEE J. Emerg. Sel. Top. Power Electron. 2019, 9, 232–241. [Google Scholar] [CrossRef]
- Wang, T.; Liu, C.; Lei, G.; Guo, Y.; Zhu, J. Model predictive direct torque control of permanent magnet synchronous motors with extended set of voltage space vectors. IET Electr. Power Appl. 2017, 11, 1376–1382. [Google Scholar] [CrossRef]
- Wu, H.; Si, Z.; Li, Z. Trajectory Tracking Control for Four-Wheel Independent Drive Intelligent Vehicle Based on Model Pre-dictive Control. IEEE Access 2020, 8, 73071–73081. [Google Scholar] [CrossRef]
- Machacek, D.T.; Barhoumi, K.; Ritzmann, J.M.; Huber, T.; Onder, C.H. Multi-Level Model Predictive Control for the Energy Management of Hybrid Electric Vehicles Including Thermal Derating. IEEE Trans. Veh. Technol. 2022, 71, 10400–10414. [Google Scholar] [CrossRef]
- Hasegawa, M.; Tanaka, N.; Chiba, A.; Fukao, T. The Operation Analysis and Efficiency Improvement of Switched Reluctance Motors with High Silicon Steel. In Proceedings of the IEEE Power Conversion Conference-Osaka, Osaka, Japan, 2–5 April 2002; pp. 981–986. [Google Scholar]
- Ou, J.; Liu, Y.; Breining, P.; Gietzelt, T.; Wunsch, T.; Doppelbauer, M. Study of the Electromagnetic and Mechanical Properties of a High-silicon Steel for a High-speed Interior PM Rotor. In Proceedings of the 22nd International Conference on Electrical Machines and Systems (ICEMS), Harbin, China, 11–14 August 2019; pp. 1–4. [Google Scholar]
- Jensen, C.C.; Profumo, F.; Lipo, T.A. A Low-Loss Permanent-Magnet Brushless dc Motor Utilizing Tape Wound Amorphous Iron. IEEE Trans. Ind. Appl. 1992, 28, 646–651. [Google Scholar] [CrossRef]
- Wang, Z.; Enomoto, Y.; Ito, M.; Masaki, R.; Morinaga, S.; Itabashi, H.; Tanigawa, S. Development of a Permanent Magnet Motor Utilizing Amorphous Wound Cores. IEEE Trans. Magn. 2010, 46, 570–573. [Google Scholar] [CrossRef]
- Fan, T.; Li, Q.; Wen, X. Development of a High Power Density Motor Made of Amorphous Alloy Cores. IEEE Trans. Ind. Electron. 2014, 61, 4510–4518. [Google Scholar] [CrossRef]
- Guo, Y.; Liu, L.; Ba, X.; Lu, H.; Lei, G.; Sarker, P.; Zhu, J. Characterization of Rotational Magnetic Properties of Amorphous Metal Materials for Advanced Electrical Machine Design and Analysis. Energies 2022, 15, 7798. [Google Scholar] [CrossRef]
- Snitchler, G.; Gamble, B.; Kalsi, S. The Performance of a 5 MW High Temperature Superconductor Ship Propulsion Motor. IEEE Trans. Appl. Supercond. 2005, 15, 2206–2209. [Google Scholar] [CrossRef]
- Guo, Y.G.; Jin, J.X.; Zhu, J.G.; Lu, H.Y. Design and Analysis of a Prototype Linear Motor Driving System for HTS Maglev Transportation. IEEE Trans. Appl. Supercond. 2007, 17, 2087–2090. [Google Scholar]
- Jin, J.X.; Zheng, L.H.; Guo, Y.G.; Zhu, J.G.; Grantham, C.; Sorrell, C.C.; Xu, W. High-Temperature Superconducting Linear Synchronous Motors Integrated With HTS Magnetic Levitation Components. IEEE Trans. Appl. Supercond. 2012, 22, 5202617. [Google Scholar]
- Persson, M.; Jansson, P. Advances in Powder Metallurgy Soft Magnetic Composite Materials for Electrical Machines. In Proceedings of the IEE Colloquium on Impact of New Materials on Design, London, UK, 8 December 1995; pp. 4/1–6. [Google Scholar]
- Guo, Y.; Zhu, J. Applications of Soft Magnetic Composite Materials in Electrical Machines: A Review. Aust. J. Electr. Electron. Eng. 2006, 3, 37–46. [Google Scholar] [CrossRef] [Green Version]
- Schoppa, A.; Delarbre, P. Soft Magnetic Powder Composites and Potential Applications in Modern Electric Machines and Devices. IEEE Trans. Magn. 2014, 50, 2004304. [Google Scholar] [CrossRef]
- Liu, C.; Lu, J.; Wang, Y.; Lei, G.; Zhu, J.; Guo, Y. Design Issues for Claw Pole Machines with Soft Magnetic Composite Cores. Energies 2018, 11, 1998. [Google Scholar] [CrossRef] [Green Version]
- Shokrollahi, H.; Janghorban, K. Soft magnetic composite materials (SMCs). J. Mater. Process. Technol. 2007, 189, 1–12. [Google Scholar] [CrossRef]
- Hwang, M.-H.; Lee, H.-S.; Han, J.-H.; Kim, D.-H.; Cha, H.-R. Densification Mechanism of Soft Magnetic Composites Using Ultrasonic Compaction for Motors in EV Platforms. Materials 2019, 12, 824. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, N.; Atkinson, G.J. A Review of Soft Magnetic Composite Materials and Applications. In Proceedings of the 7th IEE Conference Electrical Machines and Drives, Valencia, Spain, 5–8 September 2022; pp. 551–557. [Google Scholar]
- Soft Magnetic Composites—Enabling More Efficient Electromagnetic Designs. Available online: https://www.hoganas.com/en/powder-technologies/soft-magnetic-composites (accessed on 28 December 2022).
- Sustainability: Powder Metallurgy & Soft Magnetic Composites. Available online: https://www.horizontechnology.biz/blog/sustainability-powder-metallurgy-soft-magnetic-composites (accessed on 25 December 2022).
- Soft Magnetic Materials and Components. Available online: www.hitachi-metals.co.jp/e/products/item/sm (accessed on 29 December 2022).
- Jack, A. Experience with Using Soft Magnetic Composites for Electrical Machines. In Proceedings of the International Conference Electrical Machines (ICEM), Istanbul, Turkey, 28 May 1998; pp. 1441–1448. [Google Scholar]
- Persson, M.; Jansson, P.; Jack, A.G.; Mecrow, B.C. Soft Magnetic Composite Materials—Use for Electrical Machines. In Proceedings of the 7th IEE Conference Electrical Machines and Drives, Durham, UK, 11–13 September 1995; pp. 242–246. [Google Scholar]
- Zhang, Z.; Profumo, F.; Tenconi, A.; Santamaria, M. Analysis and experimental validation of performance for an axial flux permanent magnet brushless DC motor with powder iron metallurgy cores. IEEE Trans. Magn. 1997, 33, 4194–4196. [Google Scholar] [CrossRef]
- Profumo, F.; Tenconi, A.; Zhang, Z.; Cavagnino, A. Novel Axial Flux Interior PM Synchronous Motor Realized with Powdered Soft Magnetic Materials. In Proceedings of the Conference Record of 1998 IEEE Industry Applications Conference, St. Louis, MO, USA, 12–15 October 1998; pp. 152–158. [Google Scholar]
- Cvetkovski, G.; Petkovska, L.; Cundev, M.; Gair, S. Improved design of a novel PM disk motor by using soft magnetic composite material. IEEE Trans. Magn. 2002, 38, 3165–3167. [Google Scholar] [CrossRef]
- Liew, G.S.; Ertugrul, N.; Soong, W.L.; Gehlert, D.B. Analysis and Performance Evaluation of an Axial-Field Brushless PM Machine Utilising Soft Magnetic Composites. In Proceedings of the International Electric Machines & Drives Conference, Antalya, Turkey, 3–5 May 2007; pp. 153–158. [Google Scholar]
- Maloberti, O.; Figueredo, R.; Marchand, C.; Choua, Y.; Condamin, D.; Kobylanski, L.; Bommé, E. 3-D–2-D Dynamic Magnetic Modeling of an Axial Flux Permanent Magnet Motor With Soft Magnetic Composites for Hybrid Electric Vehicles. IEEE Trans. Magn. 2014, 50, 8201511. [Google Scholar]
- Kobler, R.; Andessner, D.; Weidenholzer, G.; Amrhein, W. Development of a Compact and Low Cost Axial Flux Machine Using Soft Magnetic Composite and Hard Ferrite. In Proceedings of the IEEE International Conference on Power Electronics and Drive Systems, Sydney, Australia, 9–12 June 2015; pp. 810–815. [Google Scholar]
- Aliyu, N.; Atkinson, G.; Stannard, N. Concentrated Winding Permanent Magnet Axial Flux Motor with Soft Magnetic Composite Core for Domestic Application. In Proceedings of the 31st International Conference on Electro-Technology for National Development, Owerri, Nigeria, 7–10 November 2017; pp. 1156–1159. [Google Scholar]
- Washington, J.; Jordan, S.; Sjoberg, L. Methods for the Construction of Single-Sided Axial Flux Machines using Soft Magnetic Composites. In Proceedings of the IEEE Energy Conversion Congress and Exposition (ECCE), Portland, OR, USA, 23–27 September 2018; pp. 3279–3336. [Google Scholar]
- Nakamura, K.; Takemoto, M.; Orikawa, K.; Ogasawara, S.; Saito, T.; Watanabe, A.; Ueno, T. A Study of Soft Magnetic Composite for High Efficiency of an Axial Gap Motor. In Proceedings of the International Conference on Electrical Machines (ICEM), Alexandroupoli, Greece, 3–6 September 2018; pp. 32–38. [Google Scholar]
- Asama, J.; Oiwa, T.; Shinshi, T.; Chiba, A. Experimental Evaluation for Core Loss Reduction of a Consequent-Pole Bearingless Disk Motor Using Soft Magnetic Composites. IEEE Trans. Energy Convers. 2018, 33, 324–332. [Google Scholar] [CrossRef]
- Wei, S.; Xu, Y.; Tian, X. Presentation of a Double-Stator Axial-Flux Permanent-Magnet Disk Motor With Soft Magnetic Com-posite Cores and Its Cogging Torque Reduction. In Proceedings of the 22nd International Conference on Electrical Machines and Systems (ICEMS), Harbin, China, 11–14 August 2019; pp. 1–4. [Google Scholar]
- Meier, M.; Strangas, E. Improved Cooling for a High-Speed Axial-Flux Machine Using Soft Magnetic Composites. In Proceedings of the IEEE Energy Conversion Congress and Exposition (ECCE), Detroit, MI, USA, 9–13 October 2022; pp. 1–8. [Google Scholar]
- Haddad, R.Z. Iron Loss Analysis in Axial Flux Permanent Magnet Synchronous Motors With Soft Magnetic Composite Core Material. IEEE Trans. Energy Convers. 2022, 37, 295–303. [Google Scholar] [CrossRef]
- Jack, A.G.; Mecrow, B.C.; Maddison, C.P.; Wahab, N.A. Claw Pole Permanent Magnet Machines Exploring Soft Iron Powder Metallurgy. In Proceedings of the International Conference Electrical Machines and Drives (ICEMD), Milwaukee, WI, USA, 18–21 May 1997; pp. MA1/5.1–5.3. [Google Scholar]
- Guo, Y.G.; Zhu, J.G.; Ramsden, V.S. Development of a Single Phase Claw Pole Permanent Magnet Motor Using Composite Soft Magnetic Material. In Proceedings of the Australasian Universities Power Engineering Conference (AUPEC), Hobart, Australia, 27–30 September 1998; pp. 659–664. [Google Scholar]
- Guo, Y.; Zhu, J.; Ramsden, V. Design and construction of a single phase claw pole permanent magnet motor using composite magnetic material. Renew. Energy 2001, 22, 185–195. [Google Scholar] [CrossRef]
- Guo, Y.G.; Zhu, J.G.; Watterson, P.A.; Wu, W. Comparative Study of 3-D Flux Electrical Machines With Soft Magnetic Com-posite Cores. IEEE Trans. Ind. Appl. 2003, 39, 1696–1703. [Google Scholar]
- Guo, Y.; Zhu, J.; Watterson, P.; Wu, W. Development of a permanent magnet claw pole motor with soft magnetic composite core. Aust. J. Electr. Electron. Eng. 2005, 2, 21–30. [Google Scholar] [CrossRef]
- Guo, Y.; Zhu, J.; Zhong, J.; Wu, W. Core Losses in Claw Pole Permanent Magnet Machines with Soft Magnetic Composite Stators. IEEE Trans. Magn. 2003, 39, 3199–3201. [Google Scholar]
- Guo, Y.; Zhu, J.; Zhong, J.; Watterson, P.; Wu, W. An improved method for predicting magnetic power losses in SMC electrical machines. Int. J. Appl. Electromagn. Mech. 2004, 19, 75–78. [Google Scholar] [CrossRef] [Green Version]
- Guo, Y.G.; Zhu, J.G.; Lin, Z.W.; Zhong, J.J.; Wu, W. Measurement and Modeling of Core Losses of Soft Magnetic Composites Under 3-D Magnetic Excitations in Rotating Motors. IEEE Trans. Magn. 2005, 41, 3925–3927. [Google Scholar]
- Guo, Y.; Zhu, J.; Dorrell, D.G. Design and Analysis of a Claw Pole Permanent Magnet Motor With Molded Soft Magnetic Composite Core. IEEE Trans. Magn. 2009, 45, 4582–4585. [Google Scholar]
- Liu, C.; Lu, J.; Wang, Y.; Lei, G.; Zhu, J.; Guo, Y. Techniques for Reduction of the Cogging Torque in Claw Pole Machines with SMC Cores. Energies 2017, 10, 1541. [Google Scholar] [CrossRef] [Green Version]
- Liu, C.; Zhu, J.; Wang, Y.; Guo, Y.; Lei, G. Comparison of Claw-Pole Machines With Different Rotor Structures. IEEE Trans. Magn. 2015, 51, 8110904. [Google Scholar] [CrossRef]
- Ma, B.; Lei, G.; Liu, C.; Zhu, J.; Guo, Y. Robust Tolerance Design Optimization of a PM Claw Pole Motor With Soft Magnetic Composite Cores. IEEE Trans. Magn. 2018, 54, 8102404. [Google Scholar] [CrossRef]
- Cros, J.; Viarouge, P. New Structures of Polyphase Claw-Pole Machines. In Proceedings of the 37th IEEE Industry Applications Society Annual Conference, Pittsburg, PA, USA, 13–18 October 2002; pp. 2267–2274. [Google Scholar]
- Qu, R.; Kliman, G.; Carl, R. Split-Phase Claw-Pole Induction Machines with Soft Magnetic Composite Cores. In Proceedings of the 39th IEEE Industry Applications Society Annual Conference, Seattle, WA, USA, 3–7 October 2004; pp. 2514–2519. [Google Scholar]
- Huang, Y.; Zhu, J.; Guo, Y.; Lin, Z.; Hu, Q. Design and Analysis of a High-Speed Claw Pole Motor With Soft Magnetic Composite Core. IEEE Trans. Magn. 2007, 43, 2492–2494. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.; Liu, H.; Song, T. Optimization Design and Performance Analysis of a PM Brushless Rotor Claw Pole Motor with FEM. Machines 2016, 4, 15. [Google Scholar] [CrossRef] [Green Version]
- Liu, C.C.; Wang, D.Y.; Wang, S.P.; Wang, Y.H. A Novel Flux Reversal Claw Pole Machine With Soft Magnetic Composite Cores. IEEE Trans. Appl. Supercond. 2020, 30, 5202905. [Google Scholar] [CrossRef]
- Du, W.; Zhao, S.; Zhang, H.; Zhang, M.; Gao, J. A Novel Claw Pole Motor With Soft Magnetic Composites. IEEE Trans. Magn. 2021, 57, 8200904. [Google Scholar] [CrossRef]
- Chu, S.; Liang, D.; Jia, S.; Liang, Y. Research and Analysis on Design Characteristics of High-Speed Permanent Magnet Claw Pole Motor With Soft Magnetic Composite Cores for Wide Temperature Range. IEEE Trans. Ind. Appl. 2022, 58, 7201–7213. [Google Scholar] [CrossRef]
- Li, B.; Li, X.; Wang, S.; Liu, R.; Wang, Y.; Lin, Z. Analysis and Cogging Torque Minimization of a Novel Flux Reversal Claw Pole Machine with Soft Magnetic Composite Cores. Energies 2022, 15, 1285. [Google Scholar] [CrossRef]
- Mecrow, B.C.; Jack, A.G.; Maddison, C.P. Permanent Magnet Machines for High Torque, Low Speed Applications. In Proceedings of the International Conference Electrical Machines (ICEM), Vigo, Spain, 10–12 September 1996; pp. 461–466. [Google Scholar]
- Guo, Y.G.; Zhu, J.G.; Watterson, P.A.; Wu, W. Comparative Study of 3D Flux Electrical Machines With Soft Magnetic Com-posite Cores. In Proceedings of the 37th IEEE Industry Applications Society Annual Conference, Pittsburg, PA, USA, 13–18 October 2002; pp. 1147–1154. [Google Scholar]
- Guo, Y.G.; Zhu, J.G.; Watterson, P.A.; Wu, W. Design and Analysis of a Transverse Flux Machine with Soft Magnetic Composite Core. In Proceedings of the 6th International Conference Electrical Machines and Systems (ICEMS), Beijing, China, 9–12 November 2003; pp. 153–157. [Google Scholar]
- Guo, Y.; Zhu, J.G.; Watterson, P.A.; Wu, W. Development of a PM Transverse Flux Motor With Soft Magnetic Composite Core. IEEE Trans. Energy Convers. 2006, 21, 426–434. [Google Scholar] [CrossRef] [Green Version]
- Doering, J.; Steinborn, G.; Hofmann, W.; Dresden, T. Torque, Power, Losses and Heat Calculation of a Transverse Flux Reluctance Machine with Soft Magnetic Composite Materials and Disc-Shaped Rotor. In Proceedings of the IEEE Energy Conversion Congress and Exposition (ECCE), Denver, CO, USA, 15–19 September 2013; pp. 4326–4335. [Google Scholar]
- Lei, G.; Liu, C.; Guo, Y.; Zhu, J. Multidisciplinary Design Analysis and Optimization of a PM Transverse Flux Machine With Soft Magnetic Composite Core. IEEE Trans. Magn. 2015, 51, 8109704. [Google Scholar] [CrossRef]
- Liu, C.; Zhu, J.; Wang, Y.; Lei, G.; Guo, Y. Design Considerations of PM Transverse Flux Machines With Soft Magnetic Composite Core. IEEE Trans. Appl. Supercond. 2016, 26, 5203505. [Google Scholar] [CrossRef]
- Liu, C.; Zhu, J.; Wang, Y.; Lei, G.; Guo, Y. Cogging Torque Minimization of SMC PM Transverse Flux Machines Using Shifted and Unequal-Width Stator Teeth. IEEE Trans. Appl. Supercond. 2016, 26, 5204704. [Google Scholar] [CrossRef]
- Liu, C.; Lei, G.; Ma, B.; Wang, Y.; Guo, Y.; Zhu, J. Development of a New Low-Cost 3-D Flux Transverse Flux FSPMM With Soft Magnetic Composite Cores and Ferrite Magnets. IEEE Trans. Magn. 2017, 53, 8109805. [Google Scholar] [CrossRef]
- Liu, C.; Wang, S.; Wang, Y.; Lei, G.; Guo, Y.; Zhu, J. Development of a new flux switching transverse flux machine with the ability of linear motion. CES Trans. Electr. Mach. Syst. 2018, 2, 384–391. [Google Scholar] [CrossRef]
- Fu, D.; Si, H.; Wu, X.; Xu, Y. Nonlinear Equivalent Magnetic Network of a Transverse-Flux Permanent Magnet Linear Motor Based on Combine Steel with SMC. In Proceedings of the International Symposium on Linear Drives for Industry Applications (LDIA), Wuhan, China, 1–3 July 2021; pp. 1–4. [Google Scholar]
- Liu, C.; Wang, X.; Wang, Y.; Lei, G.; Guo, Y.; Zhu, J. Comparative study of rotor PM transverse flux machine and stator PM transverse flux machine with SMC cores. Electr. Eng. 2022, 104, 1153–1161. [Google Scholar] [CrossRef]
- Maddison, C.P.; Mecrow, B.C.; Jack, A.G. Claw pole geometries for high performance transverse flux machines. In Proceedings of the International Conference on Electrical Machines, Istanbul, Turkey, 2–4 September 1998; pp. 340–345. [Google Scholar]
- Guo, Y.; Zhu, J.; Lu, H. Design and Analysis of a Permanent Magnet Claw Pole/Transverse Flux Motor with SMC Core. In Proceedings of the 6th IEEE International Conference Power Electronics and Drive Systems (PEDS), Kuala Lumpur, Malaysia, 28 November–1 December 2005; pp. 1413–1418. [Google Scholar]
- Lemieux, P.; Delma, O.J.; Dubois, M.R.; Guthrie, R. Soft Magnetic Composite with Lamellar Particles—Application to the Clawpole Transverse-Flux Machine with Hybrid Stator. In Proceedings of the International Conference on Electrical Machines, Vilamoura, Portugal, 6–9 September 2008; pp. 1–6. [Google Scholar]
- Rabenstein, L.; Dietz, A.; Parspour, N. Design Concept of a Wound Field Transverse Flux Machine using Soft Magnetic Composite Claw-Poles. In Proceedings of the 10th International Electric Dives Production Conference (EDPC), Ludwigsburg, Germany, 8–9 December 2020; pp. 1–5. [Google Scholar]
- Zhang, W.; Xu, Y.; Sun, M. Design of a Novel Claw Pole Transverse Flux Permanent Magnet Motor Based on Hybrid Stator Core. IEEE Trans. Magn. 2021, 57, 8104705. [Google Scholar] [CrossRef]
- Jack, A.G.; Mecrow, B.C.; Maddison, C.P. Combined Radial and Axial Permanent Magnet Motors Using Soft Magnetic Composites. In Proceedings of the International Conference Electrical Machines and Drives, Canterbury, UK, 1–3 September 1999; pp. 25–29. [Google Scholar]
- Nord, G.; Jansson, P.; Petersen, C.; Yamada, T. Vertical Electrical Motor using Soft Magnetic Composites. In Proceedings of the International Conference Electrical Machines and Systems (ICEMS), San Antonio, TX, USA, 15 May 2005; pp. 373–377. [Google Scholar]
- Okada, Y.; Dohmeki, H.; Konushi, S. Proposal of 3D-Stator Structure Using Soft Magnetic Composite for PM Motor. In Proceedings of the XIX International Conference on Electrical Machines, Rome, Italy, 6–8 September 2010; pp. 1–6. [Google Scholar]
- Jack, A.G.; Mecrow, B.C.; Dickinson, P.G.; Stephenson, D.; Burdess, J.S.; Fawcett, J.S.; Evans, J.N. Permanent Magnet Machines with Powder Iron Cores and Pre-Pressed Windings. In Proceedings of the 34th IEEE Industry Applications Society Annual Conference, Phoenix, AZ, USA, 3–7 October 1999; pp. 97–103. [Google Scholar]
- Liew., G.S.; Tsang, E.C.Y.; Ertugrul, N.; Soong, W.L.; Atkinson, D.; Gehlert, D.B. Analysis of a Segmented Brushless PM Machine Utilising Soft Magnetic Composites. In Proceedings of the 33rd Annual Conference of the IEEE Industrial Electronics Society (IECON), Taipei, Taiwan, 5–8 November 2007; pp. 1268–1273. [Google Scholar]
- Ishikawa, T.; Sato, Y.; Kurita, N. Performance of Novel Permanent Magnet Synchronous Machines Made of Soft Magnetic Composite Core. IEEE Trans. Magn. 2014, 50, 8105304. [Google Scholar] [CrossRef]
- Pang, D.-C.; Shi, Z.-J.; Xie, P.-X.; Huang, H.-C.; Bui, G.-T. Investigation of an Inset Micro Permanent Magnet Synchronous Motor Using Soft Magnetic Composite Material. Energies 2022, 13, 4445. [Google Scholar] [CrossRef]
- Muthusamy, M.; Pillay, P. Design of an Outer Rotor PMSM with Soft Magnetic Composite Stator Core. In Proceedings of the IEEE Energy Conversion Congress and Exposition (ECCE), Vancouver, BC, Canada, 10–14 October 2021; pp. 3987–3992. [Google Scholar]
- Jack, A.; Mecrow, B.; Dickinson, P.; Jansson, P.; Hultman, L. Design and Testing of a Universal Motor Using Soft Magnetic Composite Stator. In Proceedings of the 35th IEEE Industry Applications Society Annual Conference, Rome, Italy, 8–12 October 2000; pp. 46–50. [Google Scholar]
- Cros, J.; Viarouge, P.; Chalifour, Y.; Figueroa, J. A New Structure of Universal Motor Using Soft Magnetic Composites. IEEE Trans. Ind. Appl. 2004, 40, 550–557. [Google Scholar] [CrossRef]
- Fukuda, T.; Morimoto, M. Load Characteristics of Induction Motor Made of Soft Magnetic Composite (SMC). In Proceedings of the International Conference Electrical Machines and Systems (ICEMS), Wuhan, China, 17–20 October 2008; pp. 53–56. [Google Scholar]
- Meguro, T.; Morimoto, M. Performance Improvement of an Induction Motor by Soft Magnetic Composite (SMC). In Proceedings of the International Conference Electrical Machines and Systems (ICEMS), Sapporo, Japan, 21–24 October 2012; pp. 1–4. [Google Scholar]
- Vijayakumar, K.; Karthikeyan, R.; Rajkumar, S.; Arumugam, R. An Investigation into Vibration in High Speed Switched Re-luctance Motor with Soft Magnetic Composite Material. In Proceedings of the IEEE Region 10 Colloquium and the Third ICIIS, Kharagpur, India, 8–10 December 2008; pp. 1–4. [Google Scholar]
- Gaing, Z.-L.; Kuo, K.-Y.; Hu, J.-S.; Hsieh, M.-F.; Tsai, M.-H. Design and Optimization of High-Speed Switched Reluctance Motor Using Soft Magnetic Composite Material. In Proceedings of the International Power Electronics Conference (IPEC), Hiroshima, Japan, 18–21 May 2014; pp. 278–282. [Google Scholar]
- Nikman, S.P.; Fernandes, B.G. Design of Soft Magnetic Composites Based Modular Four Phase SRM for Electric Vehicle Ap-plication. In Proceedings of the International Conference Electrical Machines (ICEM), Berlin, Germany, 2–5 September 2014; pp. 1–5. [Google Scholar]
- Przybylski, M.; Ślusarek, B.; Di Barba, P.; Mognaschi, M.E.; Wiak, S. Thermal measurements of the drive with a switched reluctance motor with a magnetic circuit made of soft magnetic composite. In Proceedings of the 19th International Symposium on Electromagnetic Fields in Mechatronics, Electrical and Electronic Engineering, Nancy, France, 29–31 August 2019; pp. 1–2. [Google Scholar]
- Guo, Y.; Liu, L.; Ba, X.; Lu, H.; Lei, G.; Yin, W.; Zhu, J. Measurement and Modeling of Magnetic Materials under 3D Vectorial Magnetization for Electrical Machine Design and Analysis. Energies 2022, 16, 417. [Google Scholar] [CrossRef]
- Zhong, J.J.; Zhu, J. Electromagnetic design of a 3D tester for magnetic properties of soft magnetic materials. In Proceedings of the Fifth International Conference on Electrical Machines and Systems (IEEE Cat. No.01EX501), Shenyang, China, 6 August 2002; 1, pp. 392–395. [Google Scholar]
- Yang, Q.; Li, Y.; Zhao, Z.; Zhu, L.; Luo, Y.; Zhu, J. Design of a 3-D Rotational Magnetic Properties Measurement Structure for Soft Magnetic Materials. IEEE Trans. Appl. Supercond. 2014, 24, 8200804. [Google Scholar] [CrossRef]
- Zhu, J.G.; Zhong, J.J.; Lin, Z.W.; Sievert, J. Measurement of magnetic properties under 3-D magnetic excitations. IEEE Trans. Magn. 2003, 39, 3429–3431. [Google Scholar]
- Guo, Y.; Zhu, J.; Lin, Z.; Zhong, J. 3D vector magnetic properties of soft magnetic composite material. J. Magn. Magn. Mater. 2006, 302, 511–516. [Google Scholar] [CrossRef] [Green Version]
- Lin, Z.W.; Zhu, J.G.; Guo, Y.G.; Wang, X.L.; Ding, S.Y. Three-dimensional hysteresis of soft magnetic composite. J. Appl. Phys. 2006, 99, 08D909. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Zhu, J.; Yang, Q.; Lin, Z.W.; Guo, Y.; Zhang, C. Study on Rotational Hysteresis and Core Loss Under Three-Dimensional Magnetization. IEEE Trans. Magn. 2011, 47, 3520–3523. [Google Scholar] [CrossRef] [Green Version]
- Zhao, X.; Liu, X.; Zhao, H.; Li, Y.; Liu, Y.; Yuan, D. Two-Dimensional Vector Hysteresis Modeling for Soft Magnetic Composite Materials Considering Anisotropic Property. In Proceedings of the IEEE Industry Application Society Annual Meeting, Detroit, MI, USA, 10–16 October 2020; pp. 1–6. [Google Scholar]
- Asari, A.R.; Guo, Y.; Zhu, J. Measurement of Magnetic Properties of Soft Magnetic Composite Material (SOMALOY 700) by Using 3-D Magnetic Tester. In Proceedings of the International Conference Electrical Machines and Systems (ICEMS), Chiba, Japan, 13–16 November 2016; pp. 1–5. [Google Scholar]
- Huang, Y.; Zhu, J.; Guo, Y.; Hu, Q. Core Loss and Thermal Behavior of High-Speed SMC Motor Based on 3-D FEA. In Proceedings of the IEEE International Conference Electrical Machines and Drives, Antalya, Turkey, 3–5 May 2007; pp. 1569–1573. [Google Scholar]
- Guo, Y.; Zhu, J.; Lu, H.; Lin, Z.; Li, Y. Core Loss Calculation for Soft Magnetic Composite Electrical Machines. IEEE Trans. Magn. 2012, 48, 3112–3114. [Google Scholar] [CrossRef]
- Guo, Y.; Zhu, J.; Lu, H.; Li, Y.; Jin, J. Core Loss Computation in a Permanent Magnet Transverse Flux Motor With Rotating Fluxes. IEEE Trans. Magn. 2014, 50, 6301004. [Google Scholar] [CrossRef] [Green Version]
- Huang, Y.; Dong, J.; Zhu, J.; Guo, Y. Core Loss Modeling for Permanent-Magnet Motor Based on Flux Variation Locus and Finite-Element Method. IEEE Trans. Magn. 2012, 48, 1023–1026. [Google Scholar] [CrossRef]
- Enokizono, M.; Yuki, K.; Kawano, S. An improved magnetic field analysis in oriented steel sheet by finite element method considering tensor reluctivity. IEEE Trans. Magn. 1995, 31, 1797–1800. [Google Scholar] [CrossRef]
- Mohammed, O.; Calvert, T.; McConnell, R. Coupled magnetoelastic finite element formulation including anisotropic reluctivity tensor and magnetostriction effects for machinery applications. IEEE Trans. Magn. 2001, 37, 3388–3390. [Google Scholar] [CrossRef]
- Guo, Y.; Zhu, J.G.; Lin, Z.W.; Zhong, J.J.; Lu, H.Y.; Wang, S. Determination of 3D magnetic reluctivity tensor of soft magnetic composite material. J. Magn. Magn. Mater. 2007, 312, 458–463. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Yang, Q.; Zhu, J.; Lin, Z.; Guo, Y.; Sun, J. Research of Three-Dimensional Magnetic Reluctivity Tensor Based on Meas-urement of Magnetic properties. IEEE Trans. Appl. Supercond. 2010, 20, 1932–1935. [Google Scholar]
- Miyagi, D.; Miki, K.; Nakano, M.; Takahashi, N. Influence of Compressive Stress on Magnetic Properties of Laminated Electrical Steel Sheets. IEEE Trans. Magn. 2010, 46, 318–321. [Google Scholar] [CrossRef]
- Liu, L.; Guo, Y.; Lei, G.; Zhu, J.G. Iron Loss Calculation for High-Speed Permanent Magnet Machines Considering Rotating Magnetic Field and Thermal Effects. IEEE Trans. Appl. Supercond. 2021, 31, 5205105. [Google Scholar] [CrossRef]
- Zhang, D.; Shi, K.; Ren, Z.; Jia, M.; Koh, C.-S.; Zhang, Y. Measurement of Stress and Temperature Dependent Vector Magnetic Properties of Electrical Steel Sheet. IEEE Trans. Ind. Electron. 2022, 69, 980–990. [Google Scholar] [CrossRef]
- Liu, L.; Ba, X.; Guo, Y.; Lei, G.; Sun, X.; Zhu, J. Improved Iron Loss Prediction Models for Interior PMSMs Considering Coupling Effects of Multiphysics Factors. IEEE Trans. Transp. Electrif. 2022; early access. [Google Scholar] [CrossRef]
- Lei, G.; Xu, W.; Hu, J.; Zhu, J.G.; Guo, Y.; Shao, K. Multilevel Design Optimization of a FSPMM Drive System by Using Sequential Subspace Optimization Method. IEEE Trans. Magn. 2014, 50, 685–688. [Google Scholar] [CrossRef]
- Lei, G.; Wang, T.; Guo, Y.; Zhu, J.; Wang, S. System-Level Design Optimization Methods for Electrical Drive Systems: Deter-ministic Approach. IEEE Trans. Ind. Electron. 2014, 61, 6591–6602. [Google Scholar] [CrossRef]
- Lei, G.; Wang, T.; Zhu, J.; Guo, Y.; Wang, S. System-Level Design Optimization Method for Electrical Drive Systems—Robust Approach. IEEE Trans. Ind. Electron. 2015, 62, 4702–4713. [Google Scholar] [CrossRef]
- Cheong, B.; Giangrande, P.; Zhang, X.; Galea, M.; Zanchetta, P.; Wheeler, P. System-Level Motor Drive Modelling for Opti-mization-based Designs. In Proceedings of the 21st European Conference Power Electronics and Applications, Genova, Italy, 3–5 September 2019; pp. 1–9. [Google Scholar]
- Xu, W.; Hu, D.; Lei, G.; Zhu, J. System-level efficiency optimization of a linear induction motor drive system. CES Trans. Electr. Mach. Syst. 2019, 3, 285–291. [Google Scholar] [CrossRef]
- Mohammadi, A.S.; Trovao, J.P.F. System-Level Optimization of Hybrid Excitation Synchronous Machines for a Three-Wheel Electric Vehicle. IEEE Trans. Transp. Electrif. 2020, 6, 690–701. [Google Scholar] [CrossRef]
- Zhang, Y.; Xu, J.; Han, Z.; Wu, Z.; Huang, C.; Li, M. System-Level Optimization Design of Tubular Permanent-Magnet Linear Synchronous Motor for Electromagnetic Emission. In Proceedings of the 13th International Symposium on Linear Drives for Industry Applications (LDIA), Wuhan, China, 1–3 July 2021; pp. 1–4. [Google Scholar]
- Meng, X.; Wang, S.; Qiu, J.; Zhu, J.; Wang, Y.; Guo, Y.; Liu, D.; Xu, W. Dynamic Multilevel Optimization of Machine Design and Control Parameters for PMSM Drive System Based on Correlation Analysis. IEEE Trans. Magn. 2010, 46, 2779–2782. [Google Scholar] [CrossRef] [Green Version]
- Lei, G.; Liu, C.; Zhu, J.; Guo, Y. Techniques for Multilevel Design Optimization of Permanent Magnet Motors. IEEE Trans. Energy Convers. 2015, 30, 1547–1584. [Google Scholar] [CrossRef]
- Dai, Z.; Wang, L.; Meng, L.; Yang, S.; Mao, L. Multi-Level Modeling Methodology for Optimal Design of Electric Machines Based on Multi-Disciplinary Design Optimization. Energies 2019, 12, 4173. [Google Scholar] [CrossRef] [Green Version]
- Sun, X.; Shi, Z.; Lei, G.; Guo, Y.; Zhu, J. Multi-Objective Design Optimization of an IPMSM Based on Multilevel Strategy. IEEE Trans. Ind. Electron. 2020, 68, 139–149. [Google Scholar] [CrossRef]
- Meng, X.; Wang, S.; Qiu, J.; Zhang, Q.; Zhu, J.G.; Guo, Y.; Liu, D. Robust Multilevel Optimization of PMSM Using Design for Six Sigma. IEEE Trans. Magn. 2011, 47, 3248–3251. [Google Scholar] [CrossRef] [Green Version]
- Lei, G.; Zhu, J.G.; Guo, Y.G.; Hu, J.F.; Xu, W.; Shao, K.R. Robust Design Optimization of PM-SMC Motors for Six Sigma Quality Manufacturing. IEEE Trans. Magn. 2013, 49, 3953–3956. [Google Scholar] [CrossRef] [Green Version]
- Lei, G.; Liu, C.; Guo, Y.; Zhu, J. Robust Multidisciplinary Design Optimization of PM Machines With Soft Magnetic Composite Cores for Batch Production. IEEE Trans. Magn. 2016, 52, 8102304. [Google Scholar] [CrossRef]
- Ma, B.; Lei, G.; Zhu, J.; Guo, Y.; Liu, C. Application-Oriented Robust Design Optimization Method for Batch Production of Permanent-Magnet Motors. IEEE Trans. Ind. Electron. 2018, 65, 1728–1739. [Google Scholar] [CrossRef]
- Lei, G.; Wang, T.; Zhu, J.; Guo, Y. Robust multiobjective and multidisciplinary design optimization of electrical drive systems. CES Trans. Electr. Mach. Syst. 2018, 2, 409–416. [Google Scholar] [CrossRef]
- Lei, G.; Bramerdorfer, G.; Liu, C.; Guo, Y.; Zhu, J. Robust Design Optimization of Electrical Machines: A Comparative Study and Space Reduction Strategy. IEEE Trans. Energy Convers. 2021, 36, 300–313. [Google Scholar] [CrossRef]
- Lei, G.; Bramerdorfer, G.; Ma, B.; Guo, Y.; Zhu, J. Robust Design Optimization of Electrical Machines: Multi-Objective Approach. IEEE Trans. Energy Convers. 2021, 36, 390–401. [Google Scholar] [CrossRef]
- Li, W.; Wang, Z.; Li, J.; Che, S. A Review on Soft Magnetic Composites Applying to Magnetic Cores of High Speed Electric Motor. Mater. Rep. 2018, 34, 1139–1144. [Google Scholar]
- Zhao, G.; Wu, C.; Yan, M. Enhanced magnetic properties of Fe soft magnetic composites by surface oxidation. J. Magn. Magn. Mater. 2016, 399, 51–57. [Google Scholar] [CrossRef]
- Yaghtin, M.; Taghvaei, A.H.; Hashemi, B.; Janghorban, K. Effect of heat treatment on magnetic properties of iron-based soft magnetic composites with Al2O3 insulation coating produced by sol–gel method. J. Alloys Compd. 2013, 581, 293–297. [Google Scholar] [CrossRef]
- Sunday, K.J.; Darling, K.A.; Hanejko, F.G.; Anasori, B.; Liu, Y.-C.; Taheri, M.L. Al2O3 “Self-coated” Iron Powder Composites via Mechanical Milling. J. Alloys Compd. 2015, 653, 61–68. [Google Scholar] [CrossRef] [Green Version]
- Wan, D.; Ma, X. Magnetic Physics; University of Electronic Science and Technology Press: Chengdu, China, 1999; p. 416. [Google Scholar]
- Guo, Y.; Zhu, J.; Zhong, J. Measurement and modelling of magnetic properties of soft magnetic composite material under 2D vector magnetisations. J. Magn. Magn. Mater. 2006, 302, 14–19. [Google Scholar] [CrossRef] [Green Version]
- Axial Flux Machines Save Space, Weight and Cost. Available online: https://www.hoganas.com/en/Industries/automotive-transportation/get-inspired/axial-flux-machines-save-space-weight-and-cost/ (accessed on 25 January 2023).
- Hamler, A.; Goričan, V.; Šuštaršič, B.; Sirc, A. The use of soft magnetic composite materials in synchronous electric motor. J. Magn. Magn. Mater. 2006, 304, 816–819. [Google Scholar] [CrossRef]
- Kim, C.-W.; Jang, G.-H.; Kim, J.-M.; Ahn, J.-H.; Baek, C.-H.; Choi, J.-Y. Comparison of Axial Field Permanent Magnet Syn-chronous Machines With Electrical Steel Core and Soft Magnetic Composite Core. IEEE Trans. Magn. 2017, 53, 8210004. [Google Scholar] [CrossRef]
- Lim, Y.L.; Soong, W.L.; Ertugrul, N.; Kahourzade, S. Embedded Stator End-Windings in Soft Magnetic Composite and Lam-inated Surface PM Machines. In Proceedings of the IEEE Energy Conversion Congress and Exposition (ECCE), Portland, OR, USA, 23–27 September 2018; pp. 5387–5394. [Google Scholar]
- Wang, S.; Wang, Y.; Liu, C.; Lei, G.; Guo, Y.; Zhu, J. Performance Comparison of Tubular Flux-Switching Permanent Magnet Machines Using Soft Magnetic Composite Material and Hybrid Material Magnetic Cores. IEEE Trans. Energy Convers. 2023; early access. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, Y.; Ba, X.; Liu, L.; Lu, H.; Lei, G.; Yin, W.; Zhu, J. A Review of Electric Motors with Soft Magnetic Composite Cores for Electric Drives. Energies 2023, 16, 2053. https://doi.org/10.3390/en16042053
Guo Y, Ba X, Liu L, Lu H, Lei G, Yin W, Zhu J. A Review of Electric Motors with Soft Magnetic Composite Cores for Electric Drives. Energies. 2023; 16(4):2053. https://doi.org/10.3390/en16042053
Chicago/Turabian StyleGuo, Youguang, Xin Ba, Lin Liu, Haiyan Lu, Gang Lei, Wenliang Yin, and Jianguo Zhu. 2023. "A Review of Electric Motors with Soft Magnetic Composite Cores for Electric Drives" Energies 16, no. 4: 2053. https://doi.org/10.3390/en16042053
APA StyleGuo, Y., Ba, X., Liu, L., Lu, H., Lei, G., Yin, W., & Zhu, J. (2023). A Review of Electric Motors with Soft Magnetic Composite Cores for Electric Drives. Energies, 16(4), 2053. https://doi.org/10.3390/en16042053