Clustering Electrical Customers with Source Power and Aggregation Constraints: A Reliability-Based Approach in Power Distribution Systems
Abstract
:1. Introduction
- 1.
- The definition of a heuristic approach to clustering customers with a reference point (center) using p-medians;
- 2.
- A MILP model based on the linear formulation of reliability indicators;
- 3.
- MILP complexity control for application in real and large distribution systems;
- 4.
- The possibility of identifying the impact on the reliability performance, with different consumer set configurations;
- 5.
- The analysis of the reduction in the compensation credited to consumers arising from violations of the indicator limits;
- 6.
- The reallocation of investments and optimization of the use of materials, teams, and network, enabling an increase in the quality of the electricity supply service;
- 7.
- In the context of the consumer clustering problem based on the MILP model to group substations, there is a lack of research that addresses the influence of clustering on the costs of financial compensation.
2. Clustering Electrical Customers
3. The Problem Definition
4. The Clustering Approach for Electrical Customers
- (a)
- The combinatorial complexity as the number of power distribution substations grows, requiring a high computational load for its resolution;
- (b)
- The nonlinear nature of the power flow that includes integer and continuous variables.
4.1. The Proposed Algorithm
Algorithm 1: The clustering algorithm for electrical customers. |
4.2. The Proposed Mathematical Model
- (a)
- By considering each customer individually, the corresponding problem presented a high level of complexity, even when scenarios with a number of substations less than a dozen were considered;
- (b)
- The median of each substation could be each one of the thousands of customers linked to it;
- (c)
- The objective function (Equation (10)) was nonlinear due to the reliability indicators involved.
- (d)
- (e)
5. Results and Discussion
5.1. Results Analysis
5.2. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ANEEL | Agência Nacional de Energia Elétrica |
CAIDI | Customer Average Interruption Duration Index |
CAIFI | Customer Average Interruption Frequency Index |
DEC | Duração Equivalente de Interrupção por Unidade Consumidora |
DIC | Duração de Interrupção Individual por Unidade Consumidora ou por Ponto de Conexão |
Approximate DIC indicator | |
FEC | Frequência Equivalente de Interrupção por Unidade Consumidora |
FIC | Frequência de Interrupção Individual por Unidade Consumidora ou por Ponto de Conexão |
Approximate FIC indicator | |
MILP | Mixed Integer Linear Programming |
SAIDI | System Average Interruption Duration Index |
SAIFI | System Average Interruption Frequency Index |
References
- Peyghami, S.; Palensky, P.; Blaabjerg, F. An Overview on the Reliability of Modern Power Electronic Based Power Systems. IEEE Open J. Power Electron. 2020, 1, 34–50. [Google Scholar] [CrossRef] [Green Version]
- Parol, M.; Wasilewski, J.; Wojtowicz, T.; Arendarski, B.; Komarnicki, P. Reliability Analysis of MV Electric Distribution Networks Including Distributed Generation and ICT Infrastructure. Energies 2022, 15, 5311. [Google Scholar] [CrossRef]
- Dětřich, V.; Skala, P.; Matonoha, K.; Špaček, Z.; Göhler, M.; Blažek, V. Modeling of supply interruptions in MV cable distribution networks for a more accurate estimation of the cost of penalty payments. IEEE Trans. Power Syst. 2006, 21, 605–610. [Google Scholar] [CrossRef]
- Agência Nacional de Energia Elétrica. Procedimentos de Distribuição de Energia Elétrica No Sistema Elétrico Nacional—PRODIST Módulo 8—Qualidade da Energia Elétrica, Revisão 12; Technical Report; Agência Nacional de Energia Elétrica (ANEEL): Brasília, Brazil, 2020. [Google Scholar]
- Küfeoğlu, S.; Lehtonen, M. Interruption costs of service sector electricity customers, a hybrid approach. Int. J. Electr. Power Energy Syst. 2015, 64, 588–595. [Google Scholar] [CrossRef]
- Barbosa, A.d.S.; Shayani, R.A.; de Oliveira, M.A.G. A multi-criteria decision analysis method for regulatory evaluation of electricity distribution service quality. Util. Policy 2018, 53, 38–48. [Google Scholar] [CrossRef]
- Wang, B.; Camacho, J.A.; Pulliam, G.M.; Etemadi, A.H.; Dehghanian, P. New reward and penalty scheme for electric distribution utilities employing load-based reliability indices. IET Gener. Transm. Distrib. 2018, 12, 3647–3654. [Google Scholar] [CrossRef] [Green Version]
- Tur, M.R. Reliability assessment of distribution power system when considering energy storage configuration technique. IEEE Access 2020, 8, 77962–77971. [Google Scholar] [CrossRef]
- IEEE Std 1366-2012 (Revision of IEEE Std 1366-2003); IEEE Guide for Electric Power Distribution Reliability Indices. IEEE: New York, NY, USA, 2012; pp. 1–43. [CrossRef]
- Tragoonthai, S.; Chaitusaney, S. Optimal budget allocation for preventive maintenance of distribution system considering customer outage cost and reliability indices. In Proceedings of the ECTI-CON 2017—2017 14th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology, Phuket, Thailand, 27–30 June 2017; pp. 600–603. [Google Scholar] [CrossRef]
- Majid, S.N.A.A.; Salim, N.A.; Mohamad, H.; Yasin, Z.M. Assessment of expected customer interruption cost due to power system contingency by sensitivity analysis. In Proceedings of the PECon 2020—2020 IEEE International Conference on Power and Energy, Penang, Malaysia, 7–8 December 2020; pp. 171–175. [Google Scholar] [CrossRef]
- Agência Nacional de Energia Elétrica. Nota Técnica No 0102, de 3 de Dezembro de 2014. Revisão da Metodologia de Definição de Limites para os Indicadores de Continuidade DEC e FEC das Distribuidoras; Technical Report; Agência Nacional de Energia Elétrica (ANEEL): Brasília, Brazil, 2014. [Google Scholar]
- Gangwar, P.; Singh, S.N.; Chakrabarti, S. Network reconfiguration for the DG-integrated unbalanced distribution system. IET Gener. Transm. Distrib. 2019, 13, 3896–3909. [Google Scholar] [CrossRef]
- Rodrigues, F.M.; Araújo, L.R.d.; Penido, D.R.R. Optimization of Reliability Through Switch Reconfiguration in Distribution Systems. IEEE Lat. Am. Trans. 2019, 17, 972–982. [Google Scholar] [CrossRef]
- Poudel, S.; Dubey, A.; Bose, A. Risk-Based Probabilistic Quantification of Power Distribution System Operational Resilience. IEEE Syst. J. 2020, 14, 3506–3517. [Google Scholar] [CrossRef] [Green Version]
- Anteneh, D.; Khan, B.; Mahela, O.P.; Alhelou, H.H.; Guerrero, J.M. Distribution network reliability enhancement and power loss reduction by optimal network reconfiguration. Comput. Electr. Eng. 2021, 96, 107518. [Google Scholar] [CrossRef]
- Banerjee, A.; Chattopadhyay, S.; Gavrilas, M.; Grigoras, G. Optimization and estimation of reliability indices and cost of Power Distribution System of an urban area by a noble fuzzy-hybrid algorithm. Appl. Soft Comput. 2021, 102, 107078. [Google Scholar] [CrossRef]
- Al-Wakeel, A.; Wu, J.; Jenkins, N. K-means based load estimation of domestic smart meter measurements. Appl. Energy 2017, 194, 333–342. [Google Scholar] [CrossRef] [Green Version]
- Salyani, P.; Nourollahi, R.; Zare, K.; Razzaghi, R. A new MILP model of switch placement in distribution networks with consideration of substation overloading during load transfer. Sustain. Energy Grids Netw. 2022, 32, 1–12. [Google Scholar] [CrossRef]
- Esmaeili, S.; Anvari-Moghaddam, A.; Jadid, S.; Guerrero, J.M. Optimal simultaneous day-ahead scheduling and hourly reconfiguration of distribution systems considering responsive loads. Int. J. Electr. Power Energy Syst. 2019, 104, 537–548. [Google Scholar] [CrossRef]
- Queiroga, E.; Subramanian, A.; dos Anjos, F.; Cabral, L. Continuous greedy randomized adaptive search procedure for data clustering. Appl. Soft Comput. 2018, 72, 43–55. [Google Scholar] [CrossRef]
- Araújo, R.J.P.; Strauch, M.T.; Kagan, N. Optimization of Distribution Systems Continuity Indicators using Immunological Artificial Algorithms. In Proceedings of the 2010 IEEE/PES Transmission and Distribution Conference and Exposition: Latin America (T&D-LA), São Paulo, Brazil, 8–10 November 2010; IEEE: Piscataway, NJ, USA, 2010; pp. 875–882. [Google Scholar] [CrossRef]
- Bernardon, D.P.; Garcia, V.J.; Ferreira, A.S.Q.; Canha, L.N.; Abaide, A.d.R. Distribution Network Reconfiguration Starting from Fuzzy Multicriteria Decision Making Algorithms. In Proceedings of the 2009 Electronics, Robotics and Automotive Mechanics Conference (CERMA), Cuernavaca, Mexico, 22–25 September 2009; pp. 440–445. [Google Scholar] [CrossRef]
- Chen, X.; Chen, Y.; Wu, Z.; Yi, Y.; Rong, H. Flexible Distribution System Reconfiguration Using Graph Theory and Topology Identification Technology. In Proceedings of the 2018 International Conference on Power System Technology (POWERCON), Guangzhou, China, 6–8 November 2018; pp. 2008–2014. [Google Scholar] [CrossRef]
- Bernardon, D.P.; Pfistcher, L.L.; Canha, L.N.; de Mello, A.P.C.; Abaide, A.d.R.; Sperandio, M.; Garcia, V.J.; Ramos, M.J.S. Sistemas de Distribuição no Contexto das Redes Elétricas Inteligentes: Uma Abordagem para Reconfiguração de redes, 1st ed.; AGEPOC: Santa Maria, CA, USA, 2015; p. 163. [Google Scholar]
- Jafari, A.; Ganjeh Ganjehlou, H.; Baghal Darbandi, F.; Mohammdi-Ivatloo, B.; Abapour, M. Dynamic and multi-objective reconfiguration of distribution network using a novel hybrid algorithm with parallel processing capability. Appl. Soft Comput. 2020, 90, 1–20. [Google Scholar] [CrossRef]
- Guimarães, I.G.; Bernardon, D.P.; Garcia, V.J.; Schmitz, M.; Pfitscher, L.L. A decomposition heuristic algorithm for dynamic reconfiguration after contingency situations in distribution systems considering island operations. Electr. Power Syst. Res. 2021, 192, 106969. [Google Scholar] [CrossRef]
- Bichels, A. Sistemas Elétricos de Potência: Métodos de análise e Solução; EDUTFPR: Curitiba, Brazil, 2018; p. 466. [Google Scholar]
- Nguyen, T.T.; Truong, A.V.; Phung, T.A. A novel method based on adaptive cuckoo search for optimal network reconfiguration and distributed generation allocation in distribution network. Int. J. Electr. Power Energy Syst. 2016, 78, 801–815. [Google Scholar] [CrossRef]
- Falabretti, D.; Sabbatini, G. A new clustering method for the optimization of distribution networks layout considering energy efficiency and continuity of service. Sustain. Energy Grids Netw. 2022, 30, 100654. [Google Scholar] [CrossRef]
- Biscarri, F.; Monedero, I.; García, A.; Guerrero, J.I.; León, C. Electricity clustering framework for automatic classification of customer loads. Expert Syst. Appl. 2017, 86, 54–63. [Google Scholar] [CrossRef]
- Piao, M.; Ryu, K.H. Local characterization-based load shape factor definition for electricity customer classification. IEEJ Trans. Electr. Electron. Eng. 2017, 12, S110–S116. [Google Scholar] [CrossRef]
- Granell, R.; Axon, C.J.; Wallom, D.C. Impacts of Raw Data Temporal Resolution Using Selected Clustering Methods on Residential Electricity Load Profiles. IEEE Trans. Power Syst. 2015, 30, 3217–3224. [Google Scholar] [CrossRef] [Green Version]
- Sharma, D.D.; Singh, S.N. Aberration detection in electricity consumption using clustering technique. Int. J. Energy Sect. Manag. 2015, 9, 451–470. [Google Scholar] [CrossRef]
- Hsu, D. Comparison of integrated clustering methods for accurate and stable prediction of building energy consumption data. Appl. Energy 2015, 160, 153–163. [Google Scholar] [CrossRef] [Green Version]
- Tureczek, A.; Nielsen, P.S.; Madsen, H. Electricity consumption clustering using smart meter data. Energies 2018, 11, 859. [Google Scholar] [CrossRef] [Green Version]
- Cai, H.; Shen, S.; Lin, Q.; Li, X.; Xiao, H. Predicting the Energy Consumption of Residential Buildings for Regional Electricity Supply-Side and Demand-Side Management. IEEE Access 2019, 7, 30386–30397. [Google Scholar] [CrossRef]
- Jasiński, M.; Sikorski, T.; Borkowski, K. Clustering as a tool to support the assessment of power quality in electrical power networks with distributed generation in the mining industry. Electr. Power Syst. Res. 2019, 166, 52–60. [Google Scholar] [CrossRef]
- Benítez, I.; Quijano, A.; Díez, J.L.; Delgado, I. Dynamic clustering segmentation applied to load profiles of energy consumption from Spanish customers. Int. J. Electr. Power Energy Syst. 2014, 55, 437–448. [Google Scholar] [CrossRef]
- Rhodes, J.D.; Cole, W.J.; Upshaw, C.R.; Edgar, T.F.; Webber, M.E. Clustering analysis of residential electricity demand profiles. Appl. Energy 2014, 135, 461–471. [Google Scholar] [CrossRef] [Green Version]
- Panapakidis, I.P.; Moschakis, M.N. Consumer Load Profile Determination with Entropy-Based K-Means Algorithm. Int. J. Electr. Electron. Commun. Sci. 2019, 13, 144–149. [Google Scholar] [CrossRef]
- Jiang, Z.; Wu, H.; Zhan, Z. Compound substation characteristics analysis based on multi-objective model and cluster-correct algorithm. Electr. Power Syst. Res. 2019, 175, 105880. [Google Scholar] [CrossRef]
- Corigliano, S.; Rosato, F.; Ortiz Dominguez, C.; Merlo, M. Clustering Techniques for Secondary Substations Siting. Energies 2021, 14, 28. [Google Scholar] [CrossRef]
- Huang, M.; Zheng, X.; Liao, Z.; Huang, X. Modeling and Analysis for Power Substation Load Data based on Spectral Clustering. In Proceedings of the 2021 IEEE 4th International Electrical and Energy Conference (CIEEC), Wuhan, China, 28–30 May 2021; pp. 1–4. [Google Scholar] [CrossRef]
- Cembranel, S.S.; Lezama, F.; Soares, J.; Ramos, S.; Gomes, A.; Vale, Z. A Short Review on Data Mining Techniques for Electricity Customers Characterization. In Proceedings of the 2019 IEEE PES GTD Grand International Conference and Exposition Asia, (GTD Asia 2019), Bangkok, Thailand, 19–23 March 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 194–199. [Google Scholar] [CrossRef]
- Yang, J.; Zhao, J.; Wen, F.; Dong, Z. A Model of Customizing Electricity Retail Prices Based on Load Profile Clustering Analysis. IEEE Trans. Smart Grid 2019, 10, 3374–3386. [Google Scholar] [CrossRef]
- Moreno, S.; Pereira, J.; Yushimito, W. A hybrid K-means and integer programming method for commercial territory design: A case study in meat distribution. Ann. Oper. Res. 2020, 286, 87–117. [Google Scholar] [CrossRef]
- Assis, L.S.d.; Franca, P.M.; Usberti, F.L. A redistricting problem applied to meter reading in power distribution networks. Comput. Oper. Res. 2014, 41, 65–75. [Google Scholar] [CrossRef] [Green Version]
- Rajabi, A.; Eskandari, M.; Ghadi, M.J.; Li, L.; Zhang, J.; Siano, P. A comparative study of clustering techniques for electrical load pattern segmentation. Renew. Sustain. Energy Rev. 2020, 120. [Google Scholar] [CrossRef]
- Lorena, L.A.N.; Senne, E.L.F. Local Search Heuristics for Capacitated p-Median Problems. Netw. Spat. Econ. 2003, 3, 407–419. [Google Scholar] [CrossRef]
- Ríos-Mercado, R.Z.; Álvarez-Socarrás, A.M.; Castrillón, A.; López-Locés, M.C. A location-allocation-improvement heuristic for districting with multiple-activity balancing constraints and p-median-based dispersion minimization. Comput. Oper. Res. 2021, 126, 105106. [Google Scholar] [CrossRef]
- Oksuz, M.K.; Buyukozkan, K.; Bal, A.; Satoglu, S.I. A genetic algorithm integrated with the initial solution procedure and parameter tuning for capacitated P-median problem. Neural Comput. Appl. 2022, 35, 6313–6330. [Google Scholar] [CrossRef]
- Wang, Y.; Wu, Z.; Li, Q.; Zhu, Y. A model of telecommunication network performance anomaly detection based on service features clustering. IEEE Access 2017, 5, 17589–17596. [Google Scholar] [CrossRef]
- Lin, S.C.; Chen, C.J.; Lee, T.J. A Multi-Label Classification with Hybrid Label-Based Meta-Learning Method in Internet of Things. IEEE Access 2020, 8, 42261–42269. [Google Scholar] [CrossRef]
- Teichgraeber, H.; Brandt, A.R. Clustering methods to find representative periods for the optimization of energy systems: An initial framework and comparison. Appl. Energy 2019, 239, 1283–1293. [Google Scholar] [CrossRef]
- Ahmadi, S.; Osman, I.H. Greedy random adaptive memory programming search for the capacitated clustering problem. Eur. J. Oper. Res. 2005, 162, 30–44. [Google Scholar] [CrossRef]
- Bäck, T. Evolutionary Algorithms in Theory and Practice: Evolution Strategies, Evolutionary Programming, Genetic Algorithms; Oxford University Press: New York, NY, USA, 1996; p. 328. [Google Scholar] [CrossRef]
- Zhu, Y.P.; Yang, Q.; Gao, X.D.; Lu, Z.Y. A Ranking Weight Based Roulette Wheel Selection Method for Comprehensive Learning Particle Swarm optimization. In Proceedings of the 2022 IEEE International Conference on Systems, Man, and Cybernetics (SMC), Prague, Czech Republic, 9–12 October 2022; pp. 1–7. [Google Scholar] [CrossRef]
- Gnägi, M.; Baumann, P. A matheuristic for large-scale capacitated clustering. Comput. Oper. Res. 2021, 132, 1–15. [Google Scholar] [CrossRef]
- Yan, Y.; Ma, M.; Bao, W.; Liu, C.; Lin, H.; Peng, L.; Cui, C. Load Balancing Distribution Network Reconfiguration Based on Constraint Satisfaction Problem Model. In Proceedings of the 2018 China International Conference on Electricity Distribution (CICED), Tianjin, China, 17–19 September 2018; pp. 2515–2519. [Google Scholar] [CrossRef]
- Xu, Y.; Yu, T.; Yang, B. Reliability assessment of distribution networks through graph theory, topology similarity and statistical analysis. IET Gener. Transm. Distrib. 2019, 13, 37–45. [Google Scholar] [CrossRef]
- Li, H.; Zhu, L.; Hou, K.; Jia, H. Application of Adjacency Matrix in Probabilistic Energy Flow Calculation Method considering Coupling Failure. In Proceedings of the 2021 IEEE 5th Conference on Energy Internet and Energy System Integration (EI2), Taiyuan, China, 22–25 October 2021; pp. 1596–1601. [Google Scholar] [CrossRef]
- Liu, Z.; Barahona, M. Graph-based data clustering via multiscale community detection. Appl. Netw. Sci. 2020, 5, 1–20. [Google Scholar] [CrossRef] [Green Version]
Set | Description |
---|---|
T | The set of customers; |
The outage time for customer i; | |
The outage frequency for customer i; | |
S | The set of substations; |
The set of customers in the substation s, ; | |
The set of sets of customers for all substations: ; | |
The set of new substations: ; | |
The maximum distance between each customer and the reference point of the substation to which the customer is linked; | |
The normalization factor for the magnitude associated with the objective function: for distance; for ; and for ; | |
The cardinality of a hypothetical set G; | |
Input data | Description |
M | A large number, typically ; |
The distance from customer i to the substation that has its center at point j; | |
Variable | Domain / Description |
1 if the customer i is assigned to a substation whose reference point is located at point j; 0 otherwise; | |
1 when the point j is used as the center of a substation, and 0 otherwise. |
Year | Utility Values (USD) | Values of the Proposed Methodology (USD) |
---|---|---|
2017 | 1,028,948.02 | 988,206.40 |
2018 | 1,104,963.62 | 1,002,307.18 |
2019 | 1,332,717.73 | 1,083,477.35 |
Total | 3,466,629.37 | 3,073,990.93 |
Indicator | 2017 | 2018 | 2019 | 2020 | Average |
---|---|---|---|---|---|
SAIDI Initial | 20.07 | 18.67 | 26.39 | 33.74 | 24.72 |
SAIDI Final | 17.09 | 19.47 | 22.75 | 25.42 | 21.18 |
SAIFI Initial | 11.43 | 12.91 | 13.52 | 15.92 | 13.44 |
SAIFI Final | 11.39 | 14.84 | 13.91 | 14.70 | 13.71 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gomes, T.E.d.O.; Borniatti, A.R.; Garcia, V.J.; Santos, L.L.C.d.; Knak Neto, N.; Garcia, R.A.F. Clustering Electrical Customers with Source Power and Aggregation Constraints: A Reliability-Based Approach in Power Distribution Systems. Energies 2023, 16, 2485. https://doi.org/10.3390/en16052485
Gomes TEdO, Borniatti AR, Garcia VJ, Santos LLCd, Knak Neto N, Garcia RAF. Clustering Electrical Customers with Source Power and Aggregation Constraints: A Reliability-Based Approach in Power Distribution Systems. Energies. 2023; 16(5):2485. https://doi.org/10.3390/en16052485
Chicago/Turabian StyleGomes, Thiago Eliandro de Oliveira, André Ross Borniatti, Vinícius Jacques Garcia, Laura Lisiane Callai dos Santos, Nelson Knak Neto, and Rui Anderson Ferrarezi Garcia. 2023. "Clustering Electrical Customers with Source Power and Aggregation Constraints: A Reliability-Based Approach in Power Distribution Systems" Energies 16, no. 5: 2485. https://doi.org/10.3390/en16052485
APA StyleGomes, T. E. d. O., Borniatti, A. R., Garcia, V. J., Santos, L. L. C. d., Knak Neto, N., & Garcia, R. A. F. (2023). Clustering Electrical Customers with Source Power and Aggregation Constraints: A Reliability-Based Approach in Power Distribution Systems. Energies, 16(5), 2485. https://doi.org/10.3390/en16052485