Coal Properties and Coalbed Methane Potential in the Southern Part of the Upper Silesian Coal Basin, Poland
Abstract
:1. Introduction
2. The Area of Research
2.1. Outline of Geology
2.2. Coal Rank and Maceral Composition
3. Data Sources and Presentation
4. Methane Occurrence and Origin
5. Results and Discussion
5.1. Methane Trends
5.2. Factors Influencing Methane Distribution
5.2.1. Lithology and Tectonics
5.2.2. Moisture and Ash Content
5.3. Coal Sorption Capacity and Methane Saturation
5.4. Coal Permeability
6. Potential for Methane Extraction
7. Environmental Impact
8. Conclusions
- Porous and permeable Łaziska sandstones clearly influence the lower methane contents (ca. 1–3 m3/coaldaf) in coal seams within them. Coal seams in the Upper Bashkirian Mudstone Series are distinguished by clearly higher methane contents (>3 m3/t coaldaf).
- Regional dislocations, e.g., the Jawiszowice Fault, are generally more methane saturated; the brittle fault zones act as gas pathways.
- The saturation of coal seams with methane varies from 14% at 1075 m to 87% at 1140 m, with coals from the study area displaying substantial methane undersaturation.
- At depths of <1200 m in the southern part of the USCB, permeability values are scattered (from 0.02 to more than 100 mD). Deeper, a decrease in permeability with increasing depth is evident. Thus, the coals are weakly permeable for gases.
- From the point of view of CBM recovery, the north-eastern part of the Ćwiklice sub-area 1 adjacent to the Jawiszowice Fault (Gr—50–200 m3/m2) and Dankowice sub-area 2 (Gr—90–150 m3/m2) seem to be the most prospective.
- Conditions for CBM exploitation improve towards the north-east with increasing methane contents and resources. However, relatively low coal permeability and methane saturation levels could inhibit CBM recovery. Stimulating recovery by, e.g., hydraulic fracturing, may be necessary.
- The planned mining of coal and methane in the area of Dankowice 1 will involve the emission of methane to the atmosphere. Therefore, it is important to fully use the gas captured by methane drainage stations due to the need to reduce the greenhouse effect. Underground storage of CO2 combined with borehole extraction of methane may also be helpful.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Karacan, C.Ö.; Ruiz, F.A.; Cotè, M.; Phipps, S. Coal mine methane: A review of capture and utilization practices with benefits of mining safety and to greenhouse gas reduction. Int. J. Coal Geol. 2011, 86, 121–156. [Google Scholar] [CrossRef]
- Kędzior, S.; Dreger, M. Methane occurrence, emissions and hazards in the Upper Silesian Coal Basin. Int. J. Coal Geol. 2019, 211, 103226. [Google Scholar] [CrossRef]
- BZK. Balance Sheet of Mineral Resources in Poland; Polish Geological Institute: Warszawa, Poland, 2022; ISSN 2299-4459. [Google Scholar]
- Wołowiec, T.; Kolosok, S.; Vasylieva, T.; Artyukhov, A.; Skowron, Ł.; Dluhopolskyi, O.; Sergiienko, L. Sustainable Governance, Energy Security, and Energy Losses of Europe in Turbulent Times. Energies 2022, 15, 8857. [Google Scholar] [CrossRef]
- Sutkowska, K.; Teper, L.; Czech, T.; Walker, A. Assessment of the Condition of Soils before Planned Hard Coal Mining in Southern Poland: A Starting Point for Sustainable Management of Fossil Fuel Resources. Energies 2023, 16, 737. [Google Scholar] [CrossRef]
- Kotas, A. (Ed.) Coal-bed Methane Potential of the Upper Silesian Coal Basin; Prace PIG CXLII: Warszawa, Poland, 1994; ISSN 0866-9465. [Google Scholar]
- Kędzior, S.; Kotarba, M.J.; Pękała, Z. Geology, spatial distribution of methane content and origin of coalbed gases in Upper Carboniferous (Upper Mississippian and Pennsylvanian) strata in the south-eastern part of the Upper Silesian Coal Basin, Poland. Int. J. Coal Geol. 2013, 105, 24–35. [Google Scholar] [CrossRef]
- Gentzis, T.; Deisman, N.; Chalaturnyk, R.J. Geomechanical properties and permeability of coals from the Foothills and Mountain regions of western Canada. Int. J. Coal Geol. 2007, 69, 153–164. [Google Scholar] [CrossRef]
- Gentzis, T.; Goodarzi, F.; Cheung, F.K.; Laggoun-Défarge, F. Coalbed methane production from the Manville coals in Alberta, Canada: A comparison of two areas. Int. J. Coal Geol. 2008, 74, 237–249. [Google Scholar] [CrossRef] [Green Version]
- Wolf, K.A.A.; Van Bergen, F.; Ephraim, R.; Pagnier, H. Determination of the cleat angle distribution of the RECOPOL coal seams, using CT-scans and image analysis on drilling cuttings and coal blocks. Int. J. Coal Geol. 2008, 73, 259–272. [Google Scholar] [CrossRef]
- Palmer, I. Coalbed methane completions: A world view. Int. J. Coal Geol. 2010, 82, 184–195. [Google Scholar] [CrossRef]
- Pashin, J.C. Variable gas saturation in coalbed methane reservoirs of the Black Warrior Basin: Implications for exploration and production. Int. J. Coal Geol. 2010, 82, 135–146. [Google Scholar] [CrossRef]
- Kędzior, S. Accumulation of coal-bed methane in the south-west part of the Upper Silesian Coal Basin (southern Poland). Int. J. Coal Geol. 2009, 80, 20–34. [Google Scholar] [CrossRef]
- Kędzior, S. The occurrence of a secondary zone of coal-bed methane in the southern part of the Upper Silesian Coal Basin (southern Poland): Potential for methane exploitation. Int. J. Coal Geol. 2011, 86, 157–168. [Google Scholar] [CrossRef]
- Kędzior, S. A Near-Roof Gas-Bearing Zone in Carboniferous Rocks of the Southern Part of the Upper Silesian Coal Basin-Occurrence, Coal Reservoir Parameters and Prospects for Methane Extraction; Wydawnictwo Uniwersytetu Śląskiego: Katowice, Poland, 2012; ISBN 978-83-226-2093-9. ISSN 0208-6336. [Google Scholar]
- Tao, S.; Tang, D.; Xu, H.; Gao, L.; Fang, Y. Factors controlling high-yield coalbed methane vertical wells in the Fanzhuang Block, Southern Qinshui Basin. Int. J. Coal Geol. 2014, 134–135, 38–45. [Google Scholar] [CrossRef]
- Tao, S.; Panc, Z.; Tanga, S.; Chena, S. Current status and geological conditions for the applicability of CBM drilling technologies in China: A review. Int. J. Coal Geol. 2021, 202, 95–108. [Google Scholar] [CrossRef]
- Men, X.; Tao, S.; Liu, Z.; Tian, W.; Chen, S. Experimental study on gas mass transfer process in a heterogeneous coal reservoir. Fuel Proc. Tech. 2021, 216, 106779. [Google Scholar] [CrossRef]
- Wu, Y.; Tao, S.; Tian, W.; Chen, H.; Chen, S. Advantageous Seepage Channel in Coal Seam and its Effects on the Distribution of High-yield Areas in the Fanzhuang CBM Block, Southern Qinshui Basin, China. Natur. Res. Res. 2021, 30, 2361–2376. [Google Scholar] [CrossRef]
- Kotas, A.; Buła, Z.; Gądek, S.; Kwarciński, J.; Malicki, R. Geological Atlas of the Upper Silesian Coal Basin, Part II Coal Quality Maps; Wydawnictwa Geologiczne: Warszawa, Poland, 1983. [Google Scholar]
- Dreger, M.; Kędzior, S. Methane emissions against the background of natural and mining conditions in the Budryk and Pniówek mines in the Upper Silesian Coal Basin (Poland). Environ. Earth Sci. 2021, 80, 746. [Google Scholar] [CrossRef]
- United Nations Economic Commission for Europe. ECE Energy Series 31. Economic Commission for Europe; Methane to Markets Partnership. In Best Practice Guidance for Effective Methane Drainage and Use in Coal Mines; United Nations: New York, NY, USA; Geneva, Switzerland, 2010; Available online: https://www.unece.org/fileadmin/DAM/energy/se/pdfs/cmm/pub/BestPractGuide_MethDrain_es31.pdf (accessed on 9 February 2019).
- Dreger, M. Methane emissions and hard coal production in the Upper Silesian Coal Basin in relation to the greenhouse effect increase in Poland in 1994–2018. Min. Sci. 2021, 28, 59–76. [Google Scholar] [CrossRef]
- Kotas, A. Upper Silesian Coal Basin. Geological Institute. In Geology of Poland, Mineral Deposits; Osika, R., Ed.; Publishing House Wydawnictwa Geologiczne: Warszawa, Poland, 1990; Volume VI, pp. 77–92. ISBN 83-220-0385-4. [Google Scholar]
- Teper, L.; Sagan, G. Geological History and Mining Seismicity in Upper Silesia (Poland). In Mechanics of Joined and Faulted Rock II; Rossmanith, H.P., Ed.; Balkema, Rotterdam-Brookfield: Rotterdam, The Netherlands, 1995; pp. 939–943. [Google Scholar]
- Kotas, A. Upper Silesian Coal Basin; Lithostratigraphy and sedimentologic-paleogeographic development. In The Carboniferous System in Poland; Prace PIG 148; Zdanowski, A., Żakowa, H., Eds.; Polish Geological Institute: Warszawa, Poland, 1995; ISSN 0866-9465. [Google Scholar]
- Jurczak-Drabek, A. Petrographical atlas of coal deposits Upper Silesian Coal Basin; Polish Geological Institute: Warszawa, Poland, 1996. [Google Scholar]
- Jurczak-Drabek, A.; Swadowska, E. Petrographic Characteristics of Coal of Deep Carboniferous Levels in the Upper Silesian Coal Basin; Arch Polish Geological Institute: Sosnowiec, Poland, 1989. [Google Scholar]
- Diamond, W.P.; Irani, M.C.; Aul, G.N.; Thimons, E.D. Instruments, Techniques, Equipment; USBM Bull: Washington, DC, USA, 1980; Volume 687, pp. 79–83. [Google Scholar]
- Hadro, J.; Urban, J. (Eds.) Explanation of the Conditions of Occurrence and Diversity of Methane Content in USCB, LCB and LCB Coal Seams in Comparison with Other Basins in the World; Arch. Polish Geological Institute: Kraków, Poland, 2006. [Google Scholar]
- Makówka, J. (Ed.) Annual Report on the State of Basic Natural and Technical Hazards in the Hard Coal Mining Industry; Central Mining Institute: Katowice, Poland, 2022. [Google Scholar]
- Laxminarayana, C.; Crosdale, P.J. Role of coal type and rank on methane sorption characteristic of Bowen Basin, Australia Coals. Int. J. Coal Geol. 1999, 40, 309–325. [Google Scholar] [CrossRef]
- Scott, A.R. Hydrogeologic factors affecting gas content distribution in coal beds. Int. J. Coal Geol. 2002, 50, 363–387. [Google Scholar] [CrossRef]
- Moore, T.A. Coalbed Methane: A review. Int. J. Coal Geol. 2012, 101, 36–81. [Google Scholar] [CrossRef]
- Kotarba, M.J. Composition and origin of gases in the Upper Silesian and Lublin Coal Basins, Poland. Org. Geochem. 2001, 32, 163–180. [Google Scholar] [CrossRef]
- Kotarba, M.; Pluta, I. Origin of natural waters and gases within the Upper Carboniferous coal-bearing and autochthonous Miocene strata in South-Western part of the Upper Silesian Coal Basin, Poland. Appl. Geochem. 2009, 24, 876–889. [Google Scholar] [CrossRef]
- Tarnowski, J. Geological conditions of methane occurrence in the Upper Silesian Coal Basin (USCB). Zeszyty Naukowe Politechniki Śląskiej, z. 166; Dział Wydawnictw Politechniki Śląskiej: Gliwice, Poland, 1989. [Google Scholar]
- Kędzior, S. Methane contents and coal-rank variability in the Upper Silesian Coal Basin, Poland. Int. J. Coal Geol. 2015, 139, 152–164. [Google Scholar] [CrossRef]
- Sechman, H.; Kotarba, M.J.; Kędzior, S.; Dzieniewicz, M.; Romanowski, T.; Góra, A. Distribution of methane and carbon dioxide concentrations in the near-surface zone over regional fault zones and their genetic characterization in the Pszczyna-Oświęcim area (SE part of the Upper Silesian Coal Basin, Poland). J. Pet. Sci. Eng. 2020, 187, 106804. [Google Scholar] [CrossRef]
- Pashin, J.C. Stratigraphy and structures of coal-bed methane resources in the United States. An overview. Int. J. Coal Geol. 1998, 35, 209–240. [Google Scholar] [CrossRef]
- Clarkson, C.L.; Bustin, R.M. Binary gas adsorption/desorption isotherms: Effect of moisture and coal composition upon carbon dioxide selectivity over methane. Int. J. Coal Geol. 2000, 42, 241–271. [Google Scholar] [CrossRef]
- Crosdale, P.J.; Moore, T.A.; Mares, T.E. Influence of moisture content and temperature on methane adsorption isotherm analysis for coals from a low-rank, biogenically-sourced gas reservoir. Int. J. Coal Geol. 2008, 76, 166–174. [Google Scholar] [CrossRef]
- Hildenbrand, A.; Krooss, B.M.; Busch, A.; Gaschnitz, R. Evolution of methane sorption capacity of coal seams as a function of burial history—A case study from Campine Basin, NE Belgium. Int. J. Coal Geol. 2006, 66, 179–203. [Google Scholar] [CrossRef]
- Crosdale, P.J.; Beamish, B.B.; Valix, M. Coalbed methane sorption related to coal composition. Int. J. Coal Geol. 1998, 35, 147–158. [Google Scholar] [CrossRef]
- Bustin, R.M.; Clarkson, C.R. Geological controls on coalbed methane reservoir capacity and gas content. Int. J. Coal Geol. 1998, 38, 3–26. [Google Scholar] [CrossRef]
- Karwasiecka, M. Geothermic atlas of the Upper Silesian Coal Basin; Polish Geological Institute: Warszawa, Poland, 1996. [Google Scholar]
- Botor, D. Timing of coalification of the Upper Carboniferous sediments in the Upper Silesia Coal Basin on the basis of apatite fission track and helium dating. Miner. Resour. Manage. 2014, 30, 85–103. [Google Scholar] [CrossRef]
- Botor, D. Burial and thermal history of the Upper Silesian Coal Basin (Poland) constrained by maturity modelling—Implications for coalification and natural gas generation. Ann. Soc. Geol. Pol. 2020, 90, 99–123. [Google Scholar] [CrossRef]
- Laubach, S.E.; Marrett, R.A.; Olson, J.E.; Scott, A.R. Characteristics and origins of coal cleat: A review. Int. J. Coal Geol. 1998, 35, 175–207. [Google Scholar] [CrossRef]
- Dawson, G.K.W.; Esterle, J.S. Controls on coal cleat spacing. Int. J. Coal Geol. 2010, 82, 213–218. [Google Scholar] [CrossRef]
- Kędzior, S.; Jelonek, I. Reservoir parameters and maceral composition of coal in different Carboniferous lithostratigraphical series of the Upper Silesian Coal Basin, Poland. Int. J. Coal Geol. 2013, 111, 98–105. [Google Scholar] [CrossRef]
- Mc Cants, C.Y.; Spafford, S.; Stevens, S.H. Five-Spot Production Pilot in Tight Spacing: Rapid Evaluation of a Coalbed Methane Block in the Upper Silesian Coal Basin, Poland. In Proceedings of the 2001 International Coalbed Methane Symposium, Tuscaloosa, Tuscaloosa, USA, 14–18 May 2001 2001; pp. 193–204. [Google Scholar]
- Jakubów, A.; Tor, A.; Wierzbicki, M. Some structural properties of coal sample collected from outburst masses from “Zofiówka” coal mine. In Proceedings of the XIII International Scientific-Technical Conference: Natural Mining Hazards, Depth of Mining and Mining Hazards, Główny Instytut Górnictwa, Katowice, Poland, Ustroń, Poland, 21–23 November 2006; pp. 86–93. [Google Scholar]
- Kędzior, S.; Dreger, M. Time variability of methane extraction from hard coal deposits in the Upper Silesian Coal Basin (Poland) in relation to geological and mining conditions. J. Sustain. Min. 2023, 22. [Google Scholar] [CrossRef]
- Omotilewa, O.J.; Panja, P.; Vega-Ortis, C.; McLennan, J. Evaluation of enhanced coalbed methane recovery and carbon dioxide sequestration potential in high volatile bituminous coal. J. Nat. Gas Sci. Eng. 2021, 91, 103979. [Google Scholar] [CrossRef]
- Zhang, C.; Wang, E.; Li, B.; Kong, X.; Xu, J.; Peng, S.; Chen, Y. Laboratory experiments of CO2-enhanced coalbed methane recovery considering CO2 sequestration in a coal seam. Energy 2023, 262, 125473. [Google Scholar] [CrossRef]
No. | Borehole | Number of Data | ||||
---|---|---|---|---|---|---|
G | Ma | Aa | Gas Composition (CH4, C+, N2, CO2, H2) | Sub-Area | ||
1 | Ćwiklice 1 | 19 | 19 | 19 | 133 | 1 |
2 | Ćwiklice 2 | 28 | 28 | 28 | 196 | 1 |
3 | Ćwiklice 3 | 33 | 33 | 33 | 231 | 1 |
4 | Ćwiklice 4 | 11 | 10 | 10 | 77 | 1 |
5 | Ćwiklice 5 | 24 | 23 | 23 | 168 | 1 |
6 | Ćwiklice 6 | 31 | 30 | 30 | 217 | 1 |
7 | Ćwiklice 7 | 21 | 21 | 21 | 147 | 1 |
8 | Ćwiklice 8 | 25 | 25 | 25 | 175 | 1 |
9 | Ćwiklice 9 | 32 | 32 | 32 | 224 | 1 |
10 | Pszczyna 32 | 10 | 5 | 5 | 70 | 1 |
11 | Międzyrzecze-Bieruń 18 | 3 | 1 | 1 | - | 1 |
12 | Międzyrzecze-Bieruń 78 | 10 | 10 | 10 | - | 1 |
13 | Międzyrzecze-Bieruń 81 | 11 | 11 | 11 | - | 1 |
14 | Międzyrzecze-Bieruń 82 | 11 | 9 | 9 | - | 1 |
15 | Międzyrzecze-Bieruń 83 | 11 | 10 | 10 | - | 1 |
16 | Międzyrzecze-Bieruń 84 | 8 | 8 | 8 | 56 | 1 |
17 | Międzyrzecze-Bieruń 85 | 8 | 8 | 8 | 56 | 1 |
18 | Międzyrzecze-Bieruń 86 | 6 | 6 | 6 | - | 1 |
19 | Międzyrzecze-Bieruń 87 | 10 | 8 | 8 | - | 1 |
20 | Międzyrzecze-Bieruń 88 | 14 | 13 | 13 | 98 | 1 |
21 | Międzyrzecze-Bieruń 89 | 6 | 6 | 6 | 98 | 1 |
22 | Międzyrzecze-Bieruń 90 | 8 | 8 | 8 | 56 | 1 |
23 | Silesia 6 | 8 | 8 | 8 | - | 2 |
24 | Silesia 8 | 18 | 17 | 17 | - | 2 |
25 | Silesia 14 | 26 | 26 | 26 | - | 2 |
26 | Silesia 16 | 42 | 41 | 41 | - | 2 |
27 | Silesia 17 | 18 | 18 | 18 | - | 2 |
28 | Silesia 18 | 25 | 25 | 25 | - | 1 |
29 | Silesia 19 | 40 | 40 | 40 | - | 1 |
30 | Silesia 20 | 47 | 47 | 47 | - | 1 |
31 | Silesia 22 | 59 | 59 | 62 | - | 1 |
32 | Silesia 24 | 41 | 41 | 41 | 189 | 2 |
33 | Silesia 25 | 25 | 25 | 25 | 175 | 2 |
34 | Silesia 26 | 35 | 35 | 35 | 203 | 2 |
35 | Silesia 27 | 36 | 36 | 36 | 238 | 2 |
36 | Silesia 28 | 11 | 11 | 11 | 77 | 2 |
37 | Silesia 29 | 12 | 12 | 12 | 84 | 2 |
38 | Silesia 30 | 22 | 22 | 22 | 154 | 2 |
39 | G4 SDJ | 22 | 22 | 22 | 154 | 2 |
TOTAL | 827 | 809 | 812 | 3276 |
Depth (m below Ground Level) | Sorption Capacity (m3/t coaldaf) | Methane Content (m3/t coaldaf) | Methane Saturation (%) | Ro (%) | T (°C) |
---|---|---|---|---|---|
736 | 11.67 | 4.134 | 41.1 | 0.79 | 34 |
1075 | 7.02 | 1.000 | 14.2 | 0.80 | 43 |
1140 | 12.33 | 10.712 | 86.9 | 0.92 | 46 |
1347 | 13.25 | 8.527 | 64.4 | 1.05 | 51 |
1470 | 11.67 | 8.194 | 70.2 | 0.76 | 55 |
Depth (m below Ground Level) | Stratigraphy | Coal Permeability (mD) |
---|---|---|
395 | CSS | 299.270 |
490 | CSS | 143.890 |
700 | MS | 0.076 |
705 | USSS | 0.891 |
865 | MS | 15.843 |
900 | MS | 1.194 |
903 | USSS | 1.190 |
1034 | PS | 0.023 |
Coal Mine | Total Methane Emission (Million m3) | Methane Used (Million m3) | Methane Emission into the Atmosphere (Million m3) | Equivalent CO2 (Million t) | |
---|---|---|---|---|---|
Methane Used | Methane Emission into the Atmosphere | ||||
Brzeszcze | 87.79 | 49.94 | 37.85 | 1.07 | 0.81 |
Silesia | 28.31 | 4.07 | 24.24 | 0.09 | 0.52 |
USCB (Polish part) | 815.30 | 214.16 | 601.14 | 4.61 | 12.93 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kędzior, S.; Teper, L. Coal Properties and Coalbed Methane Potential in the Southern Part of the Upper Silesian Coal Basin, Poland. Energies 2023, 16, 3219. https://doi.org/10.3390/en16073219
Kędzior S, Teper L. Coal Properties and Coalbed Methane Potential in the Southern Part of the Upper Silesian Coal Basin, Poland. Energies. 2023; 16(7):3219. https://doi.org/10.3390/en16073219
Chicago/Turabian StyleKędzior, Sławomir, and Lesław Teper. 2023. "Coal Properties and Coalbed Methane Potential in the Southern Part of the Upper Silesian Coal Basin, Poland" Energies 16, no. 7: 3219. https://doi.org/10.3390/en16073219
APA StyleKędzior, S., & Teper, L. (2023). Coal Properties and Coalbed Methane Potential in the Southern Part of the Upper Silesian Coal Basin, Poland. Energies, 16(7), 3219. https://doi.org/10.3390/en16073219