Investigation of the Near Future Solar Energy Changes Using a Regional Climate Model over Istanbul, Türkiye
Abstract
:1. Introduction
2. Materials and Method
2.1. Study Area
2.2. Solar Energy System Output Data
2.3. RegCM Setup
2.4. Validation
3. Results and Discussion
3.1. The RegCM Optimization Results
3.2. Near Future Solar Simulation Results
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Republic of Türkiye Ministry of Energy and Natural Resources, ETKB. 2024. Available online: https://enerji.gov.tr/eigm-yenilenebilir-enerji-kaynaklar-gunes (accessed on 20 May 2024).
- Aksungur, K.M.; Kıvılcım, M.; Filik, Ü.B. Turkish Chamber of Electrical Engineers. In Türkiye’nin Farklı Bölgelerindeki Güneş Işınım Verilerinin Analizi ve Değerlendirilmesi; 2024; Available online: https://www.emo.org.tr/ekler/4e2e247969185c8_ek.pdf (accessed on 20 May 2024).
- Niu, J.; Qin, W.; Wang, L.; Zhang, M.; Wu, J.; Zhang, Y. Climate change impact on photovoltaic power potential in China based on CMIP6 models. Sci. Total Environ. 2023, 858, 159776. [Google Scholar] [CrossRef] [PubMed]
- Alexandri, G.; Georgoulias, A.K.; Zanis, P.; Katragkou, E.; Tsikerdekis, A.; Kourtidis, K.; Meleti, C. On the ability of RegCM4 regional climate model to simulate surface solar radiation patterns over Europe: An assessment using satellite-based observations. Atmos. Chem. Phys. 2015, 15, 13195–13216. [Google Scholar] [CrossRef]
- Şenkal, O. Modeling of solar radiation using remote sensing and artificial neural network in Turkey. Energy 2010, 35, 4795–4801. [Google Scholar] [CrossRef]
- Ndiaye, A.; Moussa, M.S.; Dione, C.; Sawadogo, W.; Bliefernicht, J.; Dungall, L.; Kunstmann, H. Projected Changes in Solar PV and Wind Energy Potential over West Africa: An Analysis of CORDEX-CORE Simulations. Energies 2022, 15, 9602. [Google Scholar] [CrossRef]
- Zuluaga, C.F.; Avila-Diaz, A.; Justino, F.B.; Martins, F.R.; Ceron, W.L. The climate change perspective of photovoltaic power potential in Brazil. Renew. Energy 2022, 193, 1019–1031. [Google Scholar] [CrossRef]
- Dutta, R.; Chanda, K.; Maity, R. Future of solar energy potential in a changing climate across the world: A CMIP6 multi-model ensemble analysis. Renew. Energy 2022, 188, 819–829. [Google Scholar] [CrossRef]
- Ghanim, M.S.; Farhan, A.A. Projected patterns of climate change impact on photovoltaic energy potential: A case study of Iraq. Renew. Energy 2023, 204, 338–346. [Google Scholar] [CrossRef]
- Wild, M.; Folini, D.; Henschel, F.; Fischer, N.; Müller, B. Projections of long-term changes in solar radiation based on CMIP5 climate models and their influence on energy yields of photovoltaic systems. Sol. Energy 2015, 116, 12–24. [Google Scholar] [CrossRef]
- Gaetani, M.; Huld, T.; Vignati, E.; Monforti-Ferrario, F.; Dosio, A.; Raes, F. The near future availability of photovoltaic energy in Europe and Africa in climate-aerosol modeling experiments. Renew. Sustain. Energy Rev. 2014, 38, 706–716. [Google Scholar] [CrossRef]
- Müller, J.; Folini, D.; Wild, M.; Pfenninger, S. CMIP-5 models project photovoltaics are a no-regrets investment in Europe irrespective of climate change. Energy 2019, 171, 135–148. [Google Scholar] [CrossRef]
- Wu, R.; Niu, X.; Jing, X.; Li, P.; Mao, Y.; Chen, X.; Wang, S. Future Projection and Uncertainty Analysis of Wind and Solar Energy in China Based on an Ensemble of CORDEX-EA-II Regional Climate Simulations. J. Geophys. Res. Atmos. 2024, 129, e2023JD040271. [Google Scholar] [CrossRef]
- Gürel, A.E.; Ağbulut, Ü.; Bakır, H.; Ergün, A.; Yıldız, G. A state of art review on estimation of solar radiation with various models. Heliyon 2023, 9, e13167. [Google Scholar] [CrossRef]
- TURKSTAT. Population Census. 2023. Available online: http://www.tuik.gov.tr (accessed on 20 May 2024).
- Grell, G.; Dudhia, J.; Stauffer, D. A Description of the Fifth-Generation Penn State/Ncar Mesoscale Model (MM5); NCAR Tech TN-398+STR; University Corporation for Atmospheric Research: Boulder, CO, USA, 1994. [Google Scholar] [CrossRef]
- Elguindi, G.G.N.; Bi, X.; Giorgi, F.; Nagarajan, B.; Pal, J.; Solmon, F.; Rauscher, S.; Zakey, A.; Zakey, A.; O’Brien, T.; et al. Regional Climate Model RegCM Reference Manual; International Centre for Theoretical Physics: Trieste, Italy, 2017. [Google Scholar]
- Anthes, R.A. A cumulus parameterization scheme utilizing a one-dimensional cloud model. Mon. Weather Rev. 1977, 105, 270–286. [Google Scholar] [CrossRef]
- Grell, G.A. Prognostic Evaluation of Assumptions Used by Cumulus Parameterizations. Mon. Weather Rev. 1993, 121, 764–787. [Google Scholar] [CrossRef]
- Emanuel, K.A. A scheme for representing cumulus convection in large-scale models. J. Atmos. Sci. 1991, 48, 2313–2329. [Google Scholar] [CrossRef]
- Emanuel, K.A.; Živković-Rothman, M. Development and evaluation of a convection scheme for use in climate models. J. Atmos. Sci. 1999, 56, 1766–1782. [Google Scholar] [CrossRef]
- Tiedtke, M. An extension of cloud-radiation parameterization in the ECMWF model: The representation of subgrid-scale variations of optical depth. Mon. Weather Rev. 1996, 124, 745–750. [Google Scholar] [CrossRef]
- Kain, J.M.; Fritsch, J.S. A one-dimensional entraining/detraining plume model and its application in convective parameterization. J. Atmos. Sci. 1990, 47, 2784–2802. [Google Scholar] [CrossRef]
- Donner, L.J. A Cumulus Parameterization Including Mass Fluxes, Vertical Momentum Dynamics, and Mesoscale Effects. J. Atmos. Sci. 1993, 50, 889–906. [Google Scholar] [CrossRef]
- Kain, J.S. The Kain–Fritsch Convective Parameterization: An Update. J. Appl. Meteorol. 2004, 43, 170–181. [Google Scholar] [CrossRef]
- Holtslag, A.A.M.; De Bruijn, E.I.F.; Pan, H.-L. A High Resolution Air Mass Transformation Model for Short-Range Weather Forecasting. Mon. Weather Rev. 1990, 118, 1561–1575. [Google Scholar] [CrossRef]
- Pal, J.S.; Small, E.E.; Eltahir, E.A.B. Simulation of regional-scale water and energy budgets: Representation of subgrid cloud and precipitation processes within RegCM. J. Geophys. Res. Atmos. 2000, 105, 29579–29594. [Google Scholar] [CrossRef]
- Zeng, X.; Zhao, M.; Dickinson, R.E. Intercomparison of Bulk Aerodynamic Algorithms for the Computation of Sea Surface Fluxes Using TOGA COARE and TAO Data. J. Clim. 1998, 11, 2628–2644. [Google Scholar] [CrossRef]
- Jones, C.D.; Hughes, J.K.; Bellouin, N.; Hardiman, S.C.; Jones, G.S.; Knight, J.; Liddicoat, S.; O’connor, F.M.; Andres, R.J.; Bell, C.; et al. The HadGEM2-ES implementation of CMIP5 centennial simulations. Geosci. Model Dev. 2011, 4, 543–570. [Google Scholar] [CrossRef]
- Sosa-Tinoco, I.; Otero-Casal, C.; Peralta-Jaramillo, J.; Miguez-Macho, G.; Rodríguez-Cabo, I. Sensitivity analysis of cumulus parameterizations for an irradiation simulation case. Sustain. Energy Technol. Assess. 2018, 28, 1–13. [Google Scholar] [CrossRef]
- Rakesh, V.; Singh, R.; Pal, P.K.; Joshi, P.C. Sensitivity of Mesoscale Model Forecast During a Satellite Launch to Different Cumulus Parameterization Schemes in MM5. Pure Appl. Geophys. 2007, 164, 1617–1637. [Google Scholar] [CrossRef]
- Crook, J.A.; Jones, L.A.; Forster, P.M.; Crook, R. Climate change impacts on future photovoltaic and concentrated solar power energy output. Energy Environ. Sci. 2011, 4, 3101–3109. [Google Scholar] [CrossRef]
- de Jong, P.; Barreto, T.B.; Tanajura, C.A.; Kouloukoui, D.; Oliveira-Esquerre, K.P.; Kiperstok, A.; Torres, E.A. Estimating the impact of climate change on wind and solar energy in Brazil using a South American regional climate model. Renew. Energy 2019, 141, 390–401. [Google Scholar] [CrossRef]
- Bazyomo, S.D.Y.B.; Lawin, E.A.; Coulibaly, O.; Ouedraogo, A. Forecasted Changes in West Africa Photovoltaic Energy Output by 2045. Climate 2016, 4, 53. [Google Scholar] [CrossRef]
- Danso, D.K.; Anquetin, S.; Diedhiou, A.; Lavaysse, C.; Hingray, B.; Raynaud, D.; Kobea, A.T. A CMIP6 assessment of the potential climate change impacts on solar photovoltaic energy and its atmospheric drivers in West Africa. Environ. Res. Lett. 2022, 17, 044016. [Google Scholar] [CrossRef]
Experiment Number | Cumulus Scheme over Land | Cumulus Scheme over Ocean | Experiment Number | Cumulus Scheme over Land | Cumulus Scheme over Ocean |
---|---|---|---|---|---|
1 | The Grell Scheme | The MIT-Emanuel Scheme | 14 | MM5 Shallow Scheme | The Kain–Fritsch Scheme |
2 | The MIT-Emanuel Scheme | The MIT-Emanuel Scheme | 15 | MM5 Shallow Scheme | The Tiedtke Scheme |
3 | The Grell Scheme | The Tiedtke Scheme | 16 | The Kain–Fritsch Scheme | The Tiedtke Scheme |
4 | The Grell Scheme | The Grell Scheme | 17 | The Kain–Fritsch Scheme | The MIT-Emanuel Scheme |
5 | The Grell Scheme | The Kain–Fritsch Scheme | 18 | MM5 Shallow Scheme | The Grell Scheme |
6 | The MIT-Emanuel Scheme | The Kain–Fritsch Scheme | 19 | The MIT-Emanuel Scheme | MM5 Shallow Scheme |
7 | The Tiedtke Scheme | The Grell Scheme | 20 | The Grell Scheme | MM5 Shallow Scheme |
8 | The Tiedtke Scheme | The MIT-Emanuel Scheme | 21 | The Kain–Fritsch Scheme | MM5 Shallow Scheme |
9 | The MIT-Emanuel Scheme | The Tiedtke Scheme | 22 | The Tiedtke Scheme | MM5 Shallow Scheme |
10 | The Tiedtke Scheme | The Tiedtke Scheme | 23 | MM5 Shallow Scheme | The MIT-Emanuel Scheme |
11 | The MIT-Emanuel Scheme | The Grell Scheme | 24 | MM5 Shallow Scheme | MM5 Shallow Scheme |
12 | The Tiedtke Scheme | The Kain–Fritsch Scheme | 25 | The Kain–Fritsch Scheme | The Kain–Fritsch Scheme |
13 | The Kain–Fritsch Scheme | The Grell Scheme | 26 | The Kuo Scheme | The Kuo Scheme |
Physical Parameter | Scheme |
---|---|
Planetary boundary layer (PBL) scheme | Holtslag PBL scheme [26] |
Moisture scheme | SUBEX moisture scheme [27] |
Radiation scheme | NCAR CCSM atmospheric radiation scheme and ocean flow scheme [28] |
Cumulus convection schemes | The modified Kuo scheme [18] |
The Grell scheme [19] | |
The MIT-Emanuel scheme [20,21] | |
The Tiedtke scheme [22] | |
The Kain–Fritsch scheme [23] | |
The MM5 Shallow scheme |
Experiment Number | R2 | MAE | RMSE | Experiment Number | R2 | MAE | RMSE |
---|---|---|---|---|---|---|---|
1 | 0.95 | 0.10 | 39.81 | 14 | 0.87 | 2.56 | 66.51 |
2 | 0.93 | 3.94 | 46.43 | 15 | 0.87 | 2.30 | 66.43 |
3 | 0.89 | 0.70 | 60.70 | 16 | 0.86 | 6.98 | 65.03 |
4 | 0.89 | 0.87 | 61.57 | 17 | 0.86 | 6.29 | 65.37 |
5 | 0.89 | 0.60 | 61.78 | 18 | 0.86 | 2.78 | 66.66 |
6 | 0.88 | 8.37 | 60.63 | 19 | 0.86 | 3.63 | 66.60 |
7 | 0.88 | 0.71 | 63.61 | 20 | 0.86 | 3.17 | 67.00 |
8 | 0.88 | 1.63 | 63.76 | 21 | 0.86 | 2.17 | 67.48 |
9 | 0.88 | 8.83 | 61.04 | 22 | 0.86 | 3.17 | 67.25 |
10 | 0.83 | 0.09 | 75.24 | 23 | 0.86 | 2.24 | 68.16 |
11 | 0.88 | 7.94 | 61.71 | 24 | 0.81 | 4.70 | 78.13 |
12 | 0.88 | 0.71 | 64.63 | 25 | 0.81 | 8.04 | 77.77 |
13 | 0.87 | 6.33 | 64.41 | 26 | 0.75 | 2.50 | 90.89 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Duran, Y.; Yavuz, E.; Özkaya, B.; Yalçin, Y.; Variş, Ç.; Kuzu, S.L. Investigation of the Near Future Solar Energy Changes Using a Regional Climate Model over Istanbul, Türkiye. Energies 2024, 17, 2644. https://doi.org/10.3390/en17112644
Duran Y, Yavuz E, Özkaya B, Yalçin Y, Variş Ç, Kuzu SL. Investigation of the Near Future Solar Energy Changes Using a Regional Climate Model over Istanbul, Türkiye. Energies. 2024; 17(11):2644. https://doi.org/10.3390/en17112644
Chicago/Turabian StyleDuran, Yusuf, Elif Yavuz, Bestami Özkaya, Yüksel Yalçin, Çağatay Variş, and S. Levent Kuzu. 2024. "Investigation of the Near Future Solar Energy Changes Using a Regional Climate Model over Istanbul, Türkiye" Energies 17, no. 11: 2644. https://doi.org/10.3390/en17112644
APA StyleDuran, Y., Yavuz, E., Özkaya, B., Yalçin, Y., Variş, Ç., & Kuzu, S. L. (2024). Investigation of the Near Future Solar Energy Changes Using a Regional Climate Model over Istanbul, Türkiye. Energies, 17(11), 2644. https://doi.org/10.3390/en17112644