Impact of Pressure and Temperature on Charge Accumulation Characteristics of Insulators in Direct-Current Gas-Insulated Switchgear
Abstract
:1. Introduction
2. Simulation Model and Experimental Design
2.1. Geometry Models
2.2. Simulation Model of Charge Distribution
- (1)
- There is no positive charge on the boundary of the current outflows, and the negative charge gradient is 0.
- (2)
- There is no negative charge on the boundary where current occurs, and the positive charge gradient is 0.
2.3. Heat Transfer
2.4. Experimental Platform for Surface Charge Measurement
3. Influence of Gas Pressure
3.1. Simulation Results
3.2. Experimental Results
4. Influence of Temperature Gradient
4.1. Temperature Distribution under Different Load Currents
4.2. Surface Charge Density under Different Thermal Gradients
5. Conclusions and Perspectives
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Huera-Huarte, F. Deep Water: The Next Step for Offshore Wind Energy, European Wind Energy Association (EWEA). Tech. Rep. 2013. Available online: www.ewea.org/report/deep-water (accessed on 16 April 2024).
- Nakane, R.; Hayakawa, N.; Okubo, H. Time and Space Transition of DC Electric Field Distribution Based on Emerging Field by Accumulated Charge in Gas-solid Composite Insulation Structure. IEEE Trans. Dielectr. Electr. Insul. 2021, 28, 440–447. [Google Scholar] [CrossRef]
- Zhang, B.Y.; Li, Y.; Min, D.; Wang, T.; Li, K.; Zhang, G.; Li, S.; Li, X.; Murphy, A.B. Insight into charge-induced flashover at the gas–solid interface in DC gas-insulated systems. J. Phys. D Appl. Phys. 2021, 57, 103001. [Google Scholar] [CrossRef]
- Winter, A.; Kindersberger, J. Transient Field Distribution in Gas-Solid Insulation Systems under DC Voltages. IEEE Trans. Dielectr. Electr. Insul. 2014, 21, 116–128. [Google Scholar] [CrossRef]
- Winter, A.; Kindersberger, J. Stationary Resistive Field Distribution along Epoxy Resin Insulators in Air under DC Voltage. IEEE Trans. Dielectr. Electr. Insul. 2012, 19, 1732–1739. [Google Scholar] [CrossRef]
- Zhang, B.Y.; Qi, Z.; Zhang, G.X. Interpretation of the surface charge decay kinetics on insulators with different neutralization mechanisms. J. Appl. Phys. 2017, 121, 105105. [Google Scholar] [CrossRef]
- Jungblut, H.; Hansen, D.; Schmidt, W. Ion-ion Recombination in Electronegative Gases. IEEE Trans. Electr. Insul. 1989, 24, 343–348. [Google Scholar] [CrossRef]
- Kindersberger, J.; Wiegart, N.; Boggs, S. Ion production rates in SF6 and the relevance thereof to gas-insulated switchgear. In Proceedings of the Conference on Electrical Insulation & Dielectric Phenomena—Annual Report, Amherst, NY, USA, 20–24 October 1985. [Google Scholar]
- Liu, Q.; Yan, J.; Hao, L.; Zhang, B.; Liu, S. Charge transport and accumulation around a spacer insulator for application in HVDC wall bushing. IEEE Trans. Electr. Insul. 2018, 25, 281–293. [Google Scholar] [CrossRef]
- Zavatitoni, L. Conduction Phenomena through Gas and Insulating Solids in HVDC Gas Insulated Substations, and Consequences on Electric Field Distribution; Université de Grenoble: Grenoble, France, 2014. [Google Scholar]
- Zavatitoni, L.; Hanna, R.; Lesaint, O.; Gallot, L. Dark current measurements in humid SF6: Influence of electrode roughness, relative humidity and pressure. J. Phys. D Appl. Phys. 2015, 48, 375501. [Google Scholar] [CrossRef]
- Li, X.; Wan, M.; Zhang, G.; Lin, X. Surface Charge Characteristics of DC-GIL Insulator Under Multiphysics Coupled Field: Effects of Ambient Temperature, Load Current, and Gas Pressure. IEEE Trans. Dielectr. Electr. Insul. 2022, 29, 1530–1539. [Google Scholar] [CrossRef]
- Zhang, B.; Qi, Z.; Zhang, G. Thermal Gradient Effects on Surface Charge of HVDC Spacer in Gas Insulated System. In Proceedings of the 2016 IEEE Conference on Electrical Insulation and Dielectric Phenomena (CEIDP), Toronto, ON, Canada, 16–19 October 2016; pp. 703–706. [Google Scholar]
- Ma, G.; Zhou, H.; Liu, S.; Wang, Y.; Zhao, S.; Lu, S.; Li, C.; Tu, Y.P. Measurement and Simulation of Charge Accumulation on a Disc Spacer with Electro-Thermal Stress in SF6 Gas. IEEE Trans. Dielectr. Electr. Insul. 2018, 25, 1221–1229. [Google Scholar]
- Luo, Y.; Tang, J.; Pan, Z.; Pan, C. How Temperature and Pressure Affect the Electric Field Distribution in HVDC GIS/GIL: A Numerical Study. IEEE Trans. Dielectr. Electr. Insul. 2021, 28, 1334–1342. [Google Scholar] [CrossRef]
- Du, B.; Dong, J.; Li, J.; Liang, H.; Kong, X. Gas Convection Affecting Surface Charge and Electric Field Distribution around Tri-post Insulators in ±800 kV GIL. IEEE Trans. Dielectr. Electr. Insul. 2021, 28, 1372–1379. [Google Scholar] [CrossRef]
- Wang, Q.; Zhang, G.; Wang, X. Characteristics and mechanisms of surface charge accumulation on cone-type insulator under dc voltage. IEEE Trans. Dielectr. Electr. Insul. 2012, 19, 150–155. [Google Scholar] [CrossRef]
- Zhang, B.; Qi, Z.; Zhang, G. Charge Accumulation Patterns on Spacer Surface in HVDC Gas-Insulated System: Dominant Uniform Charging and Random Charge Speckles. IEEE Trans. Dielectr. Electr. Insul. 2017, 24, 1229–1238. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, Y.; Yu, D.; Pan, W.; Zhang, Z.; Tschentscher, M. Conductor surface roughness-dependent gas conduction process for HVDC GIS—Part I: Simulation. IEEE Trans. Dielectr. Electr. Insul. 2021, 28, 511–519. [Google Scholar] [CrossRef]
- Li, C.; Zhang, L.; Wang, Y.; Yu, D.; Wang, Z.; Zhang, Z.; Connelly, L.; Lin, C.; Chen, G.; Mazzanti, G.; et al. Conductor surface rough ness-dependent gas conduction process for HVDC GIS—Part II: Experiment. IEEE Trans. Dielectr. Electr. Insul. 2021, 28, 988–995. [Google Scholar] [CrossRef]
- Luo, Y.; Tang, J.; Pan, C.; Pan, Z.; Meng, G. Transition of the dominant charge accumulation mechanism at a Gas-solid interface under DC voltage. IET Gener. Transm. Distrib. 2020, 14, 3078–3088. [Google Scholar] [CrossRef]
- Chen, G.; Xu, H.; Xu, Y.; Shao, Y.; Wang, C.; Li, C.; Tu, Y. Standardizing conductor surface roughness for DC gas-insulated equipment-a careful analysis on local morphology. J. Phys. D Appl. Phys. 2022, 55, 23LT01. [Google Scholar] [CrossRef]
- Zhang, B.Y.; Li, X.; Wang, T.; Zhang, G. Surface charging characteristics of GIL model spacers under DC stress in C4F7N/CO2 gas mixture. IEEE Trans. Dielectr. Electr. Insul. 2020, 27, 597–605. [Google Scholar] [CrossRef]
- Juhre, K.; Kosse, M.; Klein, C. Feasibility Tests of a 320 kV Gas Insulated DC Switchgear with Clean Air; Cigré: Paris, France, 2022. [Google Scholar]
- Zhang, B.; Ji, K.; Li, Y.; Tao, H.; Li, X.; Yao, X.; Nan, Z. Surface Charging Characteristics of a Real Sized DC GIS Insulator in Pressurized Clean Air as a Feasible SF6 Alternative. IEEE Trans. Power Deliv. 2024, 1–10. [Google Scholar] [CrossRef]
- Zhang, B.; Xiong, J.; Chen, L.; Li, X. Fundamental physicochemical properties of SF6-alternative gases: A review of recent progress. J. Phys. D Appl. Phys. 2020, 53, 173001. [Google Scholar] [CrossRef]
- Hao, M.; Zhang, B.; Li, X.; Liu, P.; Yao, Y.; Murphy, A.B. Determining the swarm parameters of gases considering ion kinetics by parallel genetic algorithm on GPU platform. Plasma Sources Sci. Technol. 2024, 33, 035005. [Google Scholar] [CrossRef]
- Zhang, B.; Xiong, J.; Hao, M.; Yao, Y.; Li, X.; Murphy, A.B. Pulsed Townsend measurement of electron swarm parameters in C4F7N-CO2 and C4F7N-N2 mixtures as eco-friendly insulation gas. J. Appl. Phys. 2022, 131, 033304. [Google Scholar] [CrossRef]
- Zhang, B.; Hao, M.; Yao, Y.; Xiong, J.; Li, X.; Murphy, A.B.; Sinha, N.; Antony, B.; Ambalampitiya, H.B. Determination and assessment of a complete and self-consistent electron-neutral collision cross-section set for the C4F7N molecule. J. Phys. D Appl. Phys. 2023, 56, 134001. [Google Scholar] [CrossRef]
Location | Differences in Temperature (°C) | |
---|---|---|
Measured | Simulated | |
Central Conductor | 29.7 | 32.606 |
28 | ||
29.2 | ||
Gas | 12.4 | 30–10 |
16.1 | ||
20.1 | ||
Shell | 14.1 | 10.3 |
10.1 | ||
12.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, L.; Li, Y.; Zhu, Y.; Yin, J. Impact of Pressure and Temperature on Charge Accumulation Characteristics of Insulators in Direct-Current Gas-Insulated Switchgear. Energies 2024, 17, 2739. https://doi.org/10.3390/en17112739
Xu L, Li Y, Zhu Y, Yin J. Impact of Pressure and Temperature on Charge Accumulation Characteristics of Insulators in Direct-Current Gas-Insulated Switchgear. Energies. 2024; 17(11):2739. https://doi.org/10.3390/en17112739
Chicago/Turabian StyleXu, Lu, Yixuan Li, Yan Zhu, and Jianning Yin. 2024. "Impact of Pressure and Temperature on Charge Accumulation Characteristics of Insulators in Direct-Current Gas-Insulated Switchgear" Energies 17, no. 11: 2739. https://doi.org/10.3390/en17112739
APA StyleXu, L., Li, Y., Zhu, Y., & Yin, J. (2024). Impact of Pressure and Temperature on Charge Accumulation Characteristics of Insulators in Direct-Current Gas-Insulated Switchgear. Energies, 17(11), 2739. https://doi.org/10.3390/en17112739