The Preparation and Properties of a Hydrogen-Sensing Field-Effect Transistor with a Gate of Nanocomposite C-Pd Film
Abstract
:1. Introduction
2. Materials and Methods
2.1. Transistor Preparation
2.1.1. C-Pd Film Preparation Method
2.1.2. FET Preparation
2.1.3. FET/C-Pd Preparation
2.2. Description of Material Characterization Methods
2.3. Experimental Set-Up for Testing Resistance Changes of FET/C-Pd Transistors under Gas Influence
3. Results and Discussion
3.1. SEM for C-Pd Samples and FET/C-Pd Samples
3.2. Resistive Response in the Presence of Hydrogen
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bergveld, P. Thirty years of Isfetology: What happened in the past 30 years and what may happen in the next 30 years. Sens. Actuators B Chem. 2003, 88, 1–20. [Google Scholar] [CrossRef]
- Wagner, T.; Maris, R.J.; Ackermann, H.J.; Otto, R.; Beging, S.; Poghossian, A.; Schöning, M.J. Handheld measurement device for field-effect sensor structures: Practical evaluation and limitations. Sens. Actuators B Chem. 2007, 127, 217–223. [Google Scholar] [CrossRef]
- Shinwari, M.W.; Deen, M.J.; Landheer, D. Study of the electrolyte-insulator-semiconductor field-effect transistor (EISFET) with applications in biosensor design. Microelectron. Reliab. 2007, 47, 2025–2057. [Google Scholar] [CrossRef]
- Yakimova, R.; Steinhoff, G.; Petoral, R.M., Jr.; Vahlberg, C.; Khranovskyy, V.; Yazdi, G.R.; Uvdal, K.; Spetz, A.L. Novel material concepts of transducers for chemical and biosensors. Biosens. Bioelectron. 2007, 22, 2780–2785. [Google Scholar] [CrossRef] [PubMed]
- Jimenez-Jorquera, C.; Orozco, J.; Baldi, A. Antoni Baldi ISFET Based Microsensors for Environmental Monitoring. Sensors 2010, 10, 61–83. [Google Scholar] [CrossRef]
- Firek, P.; Wáskiewicz, M.; Stonio, B.; Szmidt, J. Properties of AlN thin films deposited by means of magnetron sputtering for ISFET applications. Mater. Sci. 2015, 33, 669–676. [Google Scholar] [CrossRef]
- Chen, K.-I.; Li, B.-R.; Chen, Y.-T. Silicon nanowire field-effect transistor-based biosensors for biomedical diagnosis and cellular recording investigation. Nano Today 2011, 6, 131–154. [Google Scholar] [CrossRef]
- Allen, B.L.; Kichambare, P.D.; Star, A. Carbon Nanotube Field-Effect-Transistor-Based Biosensors. Adv. Mater. 2007, 19, 1439–1451. [Google Scholar] [CrossRef]
- Britnell, L.; Gorbachev, R.V.; Jalil, R.; Belle, B.D.; Schedin, F.; Mishchenko, A.; Georgiou, T.; Katsnelson, M.I.; Eaves, L.; Morozov, S.V.; et al. Field-Effect Tunneling Transistor Based on Vertical Graphene Heterostructures. Science 2012, 335, 947–950. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Zou, X.; Xu, L.; Liao, L.; Liu, W.; Ho, J.; Xiao, X.; Jiang, C.; Li, J. Hydrogen gas sensor based on metal oxide nanoparticles decorated graphene transistor. Nanoscale 2015, 7, 10078–10084. [Google Scholar] [CrossRef]
- Lundström, I.; Shivaraman, S.; Svensson, C.; Lundkvist, L. A hydrogen-sensitive MOS fieldeffect transistor. Appl. Phys. Lett. 1975, 26, 55–57. [Google Scholar] [CrossRef]
- Lundström, K.I.; Shivaraman, M.S.; Svensson, C.M. A hydrogen-sensitive Pd-gate MOS transistor. J. Appl. Phys. 1975, 46, 3876–3881. [Google Scholar] [CrossRef]
- Lundström, I.; Sundgren, H.; Winquist, F.; Eriksson, M.; Krantz-Rülcker, C.; Lloyd-Spetz, A. Twenty-five years of field effect gas sensor research in Linköping. Sens. Actuators B 2007, 121, 247–262. [Google Scholar] [CrossRef]
- Lundstöm, I.K.; Svensson, C.; Spetz, A.; Sundgren, H.; Winquist, F. From hydrogen sensors to olfactory images—Twenty years with catalytic field-effect devices. Sens. Actuators B 1993, 13, 16–23. [Google Scholar] [CrossRef]
- Czerwosz, E.; Krawczyk, S.; Wronka, H.; Firek, P.; Szmidt, J. (Transistor Gas Detector and Its Preparation) Tranzystorowy Czujnik Gazowy i Sposób Jego Wytwarzania. Urząd Patentowy RP Patent 235878, 2018. [Google Scholar]
- Kozłowski, M.; Diduszko, R.; Olszewska, K.; Wronka, H.; Czerwosz, E. Nanostructural palladium films for sensor applications. Vacuum 2008, 82, 956–961. [Google Scholar] [CrossRef]
- Kowalska, E.; Czerwosz, E.; Kozłowski, M.; Surga, W.; Radomska, J.; Wronka, H. Structural, thermal, and electrical properties of carbonaceous films containing palladium nanocrystals. J. Therm. Anal. Calorim. 2010, 101, 737–742. [Google Scholar] [CrossRef]
- Czerwosz, E.; Dłużewski, P.; Kowalska, E.; Kozłowski, M.; Rymarczyk, J. Properties of Pd–C films for hydrogen storage applications. Phys. Status Solidi (C) 2011, 8, 2527–2531. [Google Scholar] [CrossRef]
- Volkl, J.; Alefeld, G. Diffusion of hydrogen in metals in Hydrogen in Metals I, edited by G. Alefeld and J. Volkl. Top. Appl. Phys. 1978, 28, 321–348. [Google Scholar]
- Akiba, H.; Kofu, M.; Kobayashi, H.; Kitagawa, H.; Ikeda, K.; Otomo, T.; Yamamuro, O. Nanometer-Size Effect on Hydrogen Sites in Palladium Lattice. J. Am. Chem. Soc. 2016, 138, 10238–10243. [Google Scholar] [CrossRef] [PubMed]
- Hoitsema, C. Palladium und Wasserstoff. Z. Phys. Chem. 1895, 17, 1–42. [Google Scholar] [CrossRef]
- Cobden, P.D.; Nieuwenhuys, B.E.; Gorodetskii, Y.V. Formation and Decomposition of Palladium Hvdride Particles. Platinum Metals Rev. 1998, 42, 141–144. [Google Scholar] [CrossRef]
- Kowalska, E.; Czerwosz, E.; Diduszko, R.; Kamińska, A.; Danila, M. Influence of PdHx formation ability on hydrogen sensing properties of palladium-carbonaceous films. Sens. Actuators A 2013, 203, 434–440. [Google Scholar] [CrossRef]
- Harumoto, T.; Ohnishi, Y.; Nishio, K.; Ishiguro, T.; Shi, J.; Nakamura, Y. In-situ X-ray diffraction study of hydrogen absorption and desorption processes in Pd thin films: Hydrogen composition dependent anisotropic expansion and its quantitative description. AIP Adv. 2017, 7, 065108. [Google Scholar] [CrossRef]
- Ndaya, C.C.; Javahiraly, N.; Brioude, A. Recent Advances in Palladium Nanoparticles-Based Hydrogen Sensors for Leak Detection. Sensors 2019, 19, 4478. [Google Scholar] [CrossRef] [PubMed]
- Konda, S.K.; Chen, A. Palladium based nanomaterials for enhanced hydrogen spillover and storage. Mater. Today 2016, 19, 100–108. [Google Scholar] [CrossRef]
- Yan, X.; Li, Q.; Li, L.-S. Formation and Stabilization of Palladium Nanoparticles on Colloidal Graphene Quantum Dots. J. Am. Chem. Soc. 2012, 134, 16095–16098. [Google Scholar] [CrossRef] [PubMed]
- Kozłowski, M.; Radomska, J.; Wronka, H.; Czerwosz, E.; Firek, P.; Sobczak, K.; Dłużewski, P. Annealing time effects on the surface morphology of C-Pd films prepared on silicon covered with SiO2. Opt. Appl. 2013, XLIII, 81–89. [Google Scholar]
- Firek, P.; Cichomski, M.; Waskiewicz, M.; Piwoński, I.; Kisielewska, A. ISFET structures with chemically modified membrane for bovine serum albumin detection. Circuit World 2018, 44, 45–50. [Google Scholar] [CrossRef]
- Firek, P.; Krawczyk, S.; Wronka, H.; Czerwosz, E.; Szmidt, J. Hydrogen sensor based on field effect transistor with C-Pd layer. Metrol. Meas. Syst. 2020, 27, 313–321. [Google Scholar] [CrossRef]
- Krawczyk, S. Analysis of metrological properties of the measurement system to study changes in the resistance of nanocomposite carbon-palladium thin films under the influence of hydrogen. In Photonics Applications in Astronomy, Communications, Industry, and High-Energy Physics Experiments; SPIE: Bellingham, WA, USA, 2019; Volume 11176, pp. 1456–1462. [Google Scholar]
Process/Transistor | t [min] | D [cm] | MC60 [W] | MPd [W] | Resistance [kOhm] |
---|---|---|---|---|---|
P1/T1-884 | 6 | 72 | 14 | 122 | 5 |
P2/T2-885 | 5 | 72 | 10 | 130 | 20 |
P3/T3-898 | 5 | 95 | - | 100 | - |
P4/T4-935 | 10 | 95 | 14 | 130 | 0.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Firek, P.; Czerwosz, E.; Wronka, H.; Krawczyk, S.; Kozłowski, M.; Sochacki, M.; Moszczyńska, D.; Szmidt, J. The Preparation and Properties of a Hydrogen-Sensing Field-Effect Transistor with a Gate of Nanocomposite C-Pd Film. Energies 2024, 17, 3261. https://doi.org/10.3390/en17133261
Firek P, Czerwosz E, Wronka H, Krawczyk S, Kozłowski M, Sochacki M, Moszczyńska D, Szmidt J. The Preparation and Properties of a Hydrogen-Sensing Field-Effect Transistor with a Gate of Nanocomposite C-Pd Film. Energies. 2024; 17(13):3261. https://doi.org/10.3390/en17133261
Chicago/Turabian StyleFirek, Piotr, Elżbieta Czerwosz, Halina Wronka, Sławomir Krawczyk, Mirosław Kozłowski, Mariusz Sochacki, Dorota Moszczyńska, and Jan Szmidt. 2024. "The Preparation and Properties of a Hydrogen-Sensing Field-Effect Transistor with a Gate of Nanocomposite C-Pd Film" Energies 17, no. 13: 3261. https://doi.org/10.3390/en17133261
APA StyleFirek, P., Czerwosz, E., Wronka, H., Krawczyk, S., Kozłowski, M., Sochacki, M., Moszczyńska, D., & Szmidt, J. (2024). The Preparation and Properties of a Hydrogen-Sensing Field-Effect Transistor with a Gate of Nanocomposite C-Pd Film. Energies, 17(13), 3261. https://doi.org/10.3390/en17133261