Review of Construction Technology of Advanced Energy Infrastructure
Abstract
:1. Introduction
- Stability analysis of oil and gas pipelines/tunnels in multi-field coupling environments;
- Multi-hazards on energy infrastructure and lifeline structures;
- Reinforcement analysis of infrastructure and lifeline structures;
- Construction technology of renewable energy infrastructure;
- Hazard analysis of earthquakes and strong winds;
- Monitoring, spatial–temporal prediction modeling, and early warning of facility failures using advanced measurement systems;
- Sustainable and innovative materials for energy infrastructure;
- Construction technology and durability of nuclear waste treatment facilities under extreme conditions;
- New computational and experimental methods investigating the foundations of advanced energy infrastructures.
2. Outlook of This Special Issue
- Submissions: (23);
- Publications: (10);
- Rejections: (13);
3. A Review of This Special Issue
4. Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bridge, G.; Özkaynak, B.; Turhan, E. Energy infrastructure and the fate of the nation: Introduction to special issue. Energy Res. Soc. Sci. 2018, 41, 1–11. [Google Scholar]
- Kumar, N.M.; D’adamo, I.; Hait, S.; Priya, A.; Kichou, S.; Gastaldi, M. Editorial: Sustainable planning and lifecycle thinking of energy infrastructure. Front. Energy Res. 2023, 11, 1196826. [Google Scholar]
- Xie, D.; Tian, Y.L.; Wang, G.Q.; Li, T.J.; Zhong, D.Y. Study on the pathway and strategy of carbon neutralization in Qinghai province. J. Basic Sci. Eng. 2022, 30, 1331–1345. [Google Scholar]
- Jones, C.F. Building More Just Energy Infrastructure: Lessons from the Past. Sci. Cult. 2013, 22, 157–163. [Google Scholar]
- Pandey, V. Energy infrastructure for sustainable development. In Affordable and Clean Energy; Springer: Cham, Switzerland, 2020; pp. 1–13. [Google Scholar]
- Weng, L.X.; Zhao, J.F.; Lin, R.; Wu, B.; Chen, F.B. Investigation of distribution characteristics of typhoon in Fujian coastal area and its influence on transmission lines. J. Chang. Univ. Sci. Technol. (Nat. Sci.) 2020, 17, 95–101. [Google Scholar]
- Zhuo, G.P.; Nazir, S.; Khan, H.U.; Mukhtar, N. An efficient multifeature model for improving the performance of critical energy infrasture. J. Adv. Transp. 2021, 2021, 8411379. [Google Scholar]
- Wang, H.X.; Zhang, B.; Yu, X.; Xu, N.X.; Ye, J.H. Long-Term Stability and Deformation Behaviour of Anhydrite Mine-Out for Crude Oil Storage. Rock Mechnics Rock Eng. 2020, 53, 1719–1735. [Google Scholar]
- Zhang, B.; Wang, H.X.; Wang, L.; Mei, G.; Shi, L.; Xu, N.X.; Li, J.Y. Large-scale field test on abandoned deep anhydrite mine-out for reuse as crude oil storage—A case study. Eng. Geol. 2020, 267, 105477. [Google Scholar]
- Alhazmi, Y.A.; Mostafa, H.A.; Salama, M.M.A. Optimal allocation for electric vehicle charging stations using Trip Success Ratio. Int. J. Electr. Power Energy Syst. 2017, 91, 101–116. [Google Scholar]
- Bayram, I.S.; Galloway, S.; Burt, G. A probabilistic capacity planning methodology for plug-in electric vehicle charging lots with on-site energy storage systems. J. Energy Storage 2021, 32, 101730. [Google Scholar]
- Alkhalidi, A.; Qoaider, L.; Khashman, A.; Al-Alami, A.R.; Jiryes, S. Energy and water as indicators for sustainable city site selection and design in Jordan using smart grid. Sustain. Cities Soc. 2018, 37, 125–132. [Google Scholar]
- Köktürk, G.; Tokuç, A. Vision for wind energy with a smart grid in Izmir. Renew. Sustain. Energy Rev. 2017, 73, 332–345. [Google Scholar]
- Mosannenzadeh, F. Smart energy city development: A story told by urban planners. Cities 2017, 64, 54–65. [Google Scholar]
- Adom, P.K.; Amuakwa-Mensah, F.; Amuakwa-Mensah, S. Degree of financialization and energy efficiency in Sub-Saharan Africa: Do institutions matter? Financ. Innov. 2020, 6, 33. [Google Scholar] [CrossRef]
- Zakari, A.; Musibau, H.O. Sustainable economic development in OECD countries: Does energy security matter? Sustain. Dev. 2023, 32, 1337–1353. [Google Scholar] [CrossRef]
- Wang, J.; Han, J.Y.; Zhu, C.G.; Lu, W.Y.; Zhang, Y.; He, X.S.; Liu, K.M.; Chen, Y. Structural optimization and engineering application of concrete-filled steel tubular composite supports. Eng. Fail. Anal. 2024, 159, 108082. [Google Scholar]
- Rees, M.T.; Wu, J.; Jenkins, N.; Abeysekera, M. Carbon constrained design of energy infrastructure for new build schemes. Appl. Energy 2014, 113, 1220–1234. [Google Scholar]
- Resch, B. GIS-Based Planning and Modeling for Renewable Energy: Challenges and Future Research Avenues. IScharging infrastructure planning for integrated transportation aPRS. Int. J. Geo-Inf. 2014, 3, 662–692. [Google Scholar]
- Unterluggauer, T. Electric vehicle nd power distribution networks: A review. E Transp. 2022, 12, 100163. [Google Scholar]
- Liu, Y. Energy-saving pathway exploration of CCS integrated with solar energy: A review of innovative concepts. Renew. Sustain. Energy Rev. 2017, 77, 652–669. [Google Scholar]
- Gallardo-Lozano, J.; Milanés-Montero, M.I.; Guerrero-Martínez, M.A.; Romero-Cadaval, E. Electric vehicle battery charger for smart grids. Electr. Power Syst. Res. 2012, 90, 18–29. [Google Scholar]
- Kesler, M.; Kisacikoglu, M.C.; Tolbert, L.M. Vehicle-to-Grid Reactive Power Operation Using Plug-In Electric Vehicle Bidirectional Offboard Charger. IEEE Trans. Ind. Electron. 2014, 61, 6778–6784. [Google Scholar]
- Dai, Y.F.; Zhou, Z.F. Steady seepage simulation of underground oil storage caverns based on Signorini type variational inequality formulation. Geosci. J. 2015, 19, 341–355. [Google Scholar]
- Qiao, L.P.; Wang, Z.C.; Li, S.C.; Bi, L.P.; Xu, Z.H. Assessing containment properties of underground oil storage caverns: Methods and a case study. Geosci. J. 2017, 21, 579–593. [Google Scholar]
- Güney, T. Renewable energy, non-renewable energy and sustainable development. Int. J. Sustain. Dev. World Ecol. 2019, 26, 389–397. [Google Scholar]
- Barone, G.; Buonomano, A.; Giuzio, G.F.; Palombo, A. Towards zero energy infrastructure buildings: Optimal design of envelope and cooling system. Energy 2023, 279, 128039. [Google Scholar]
- Ostergaard, P.A.; Duic, N.; Noorollahi, Y.; Kalogirou, S. Renewable energy for sustainable development. Renew. Energy 2022, 199, 1145–1152. [Google Scholar] [CrossRef]
- Shrestha, A.; Mustafa, A.A.; Htike, M.M.; You, V.; Kakinaka, M. Evolution of energy mix in emerging countries: Modern renewable energy, traditional renewable energy, and non-renewable energy. Renew. Energy 2022, 199, 419–432. [Google Scholar] [CrossRef]
- Han, J.Y.; Wang, J.; Cheng, C.; Zhang, C.Z.; Liang, E.B.; Wang, Z.K.; Song, J.J.; Leem, J. Mechanical response and parametric analysis of a deep excavation structure overlying an existing subway station: A case study of the Beijing subway station expansion. Front. Earth Sci. 2023, 10, 1079837. [Google Scholar]
- Han, J.Y.; Wang, J.; Jia, D.F.; Yan, F.S.; Zhao, Y.; Bai, X.Y.; Yan, N.; Yang, G.; Liu, D. Construction technologies and mechanical effects of the pipe-jacking crossing anchor-cable group in soft stratum. Front. Earth Sci. 2023, 10, 1019801. [Google Scholar]
- Bagheri, M. Optimal planning of hybrid renewable energy infrastructure for urban sustainability: Green Vancouver. Renew. Sustain. Energy Rev. 2018, 95, 254–264. [Google Scholar]
- Kabeyi, M.J.B.; Olanrewaju, O.A. The levelized cost of energy and modifications for use in electricity generation planning. Energy Rep. 2023, 9, 495–534. [Google Scholar] [CrossRef]
- Shea, R.P.; Ramgolam, Y.K. Applied levelized cost of electricity for energy technologies in a small island developing state: A case study in Mauritius. Renew. Energy 2019, 132, 1415–1424. [Google Scholar] [CrossRef]
- Samatar, A.M. The utilization and potential of solar energy in Somalia: Current state and prospects. Energy Strategy Rev. 2023, 48, 101108. [Google Scholar]
- Paraschiv, S. Analysis of the variability of low-carbon energy sources, nuclear technology and renewable energy sources, in meeting electricity demand. Energy Rep. 2023, 9, 276–283. [Google Scholar] [CrossRef]
- Todd, A.C.; Optis, M.; Bodini, N.; Fields, M.J.; Perr-Sauer, J.; Lee, J.C.Y.; Simley, E.; Hammond, R. An independent analysis of bias sources and variability in wind plant pre-construction energy yield estimation methods. Wind Energy 2022, 25, 1775–1790. [Google Scholar] [CrossRef]
- Liu, J.; Huang, Z.Y.; Fan, M.; Yang, J.H.; Xiao, J.; Wang, Y. Future energy infrastructure, energy platform and energy storage. Nano Energy 2022, 104, 107915. [Google Scholar]
- Shally, S.K.; Gupta, P. Energy efficient resource optimization algorithm for cloud infrastructure. J. Intell. Fuzzy Syst. 2023, 44, 409–419. [Google Scholar]
- Yu, J.L.; Jia, Q.; Hu, H.Q. Charging infrastructure construction from the perspective of new infrastructure. Energy Rep. 2021, 7, 224–229. [Google Scholar]
- Campana, R.; Sabatini, L.; Frangipani, E. Moulds on cementitious building materials-problems, prevention and future perspectives. Appl. Microbiol. Biotechnol. 2020, 104, 509–514. [Google Scholar] [CrossRef]
- Ma, Y.X.; Li, D.; Yang, R.T.; Zhang, S.; Arici, M.; Liu, C.Y.; Zhang, C.J. Energy and daylighting performance of a building containing an innovative glazing window with solid-solid phase change material and silica aerogel integration. Energy Convers. Manag. 2022, 271, 116341. [Google Scholar] [CrossRef]
- Baetens, R.; Jelle, B.P.; Gustavsen, A. Phase change materials for building applications: A state-of-the-art review. Energy Build. 2010, 42, 1361–1368. [Google Scholar]
- Mahmoud Zaghloul, M.Y.; Yousry Zaghloul, M.M.; Yousry Zaghloul, M.M. Physical analysis and statistical investigation of tensile and fatigue behaviors of glass fiber-reinforced polyester via novel fibers arrangement. J. Compos. Mater. 2023, 57, 147–166. [Google Scholar]
- Nazir, C.P. Offshore hydroelectric plant: A techno-economic analysis of a renewable energy source. Renew. Sustain. Energy Rev. 2014, 34, 174–184. [Google Scholar]
- Doria-Iriarte, J.J.; Doria-Elejoste, I. A new theory on ocean wave mechanics and its application in energy power generation. Dyna 2021, 96, 276–280. [Google Scholar]
- Silva, A.R.; Pimenta, F.M.; Assireu, A.T.; Spyrides, M.H.C. Complementarity of Brazil’s hydro and offshore wind power. Renew. Sustain. Energy Rev. 2016, 56, 413–427. [Google Scholar]
- Shan, F. Performance evaluations and applications of photovoltaic–thermal collectors and systems. Renew. Sustain. Energy Rev. 2014, 33, 467–483. [Google Scholar]
- Alazemi, J.; Andrews, J. Automotive hydrogen fuelling stations: An international review. Renew. Sustain. Energy Rev. 2015, 48, 483–499. [Google Scholar]
- Bo, W.; Jun, W.; Bing, L.; Zonggang, X.F.W.; Tongle, J. Performance test and application of steel pipe concrete support structure for soft rock tunnel in deep wells. Rock Mech. Eng. 2010, 29, 2604–2609. [Google Scholar]
- Chen, Y.; Okudan, G.E.; Riley, D.R. Sustainable performance criteria for construction method selection in concrete buildings. Autom. Constr. 2010, 19, 235–244. [Google Scholar]
- Choi, Y.S.; Lim, I.; Kim, T.; Cho, H.; Kang, K.I. Case Study of the Core Structure Succeeding Method for Tall Building Construction. J. Constr. Eng. Manag. 2016, 142, 05016017. [Google Scholar]
- Ferrada, X.; Serpell, A. Selection of Construction Methods for Construction Projects: A Knowledge Problem. J. Constr. Eng. Manag. 2014, 140, B4014002. [Google Scholar]
- Abeysundara, U.G.Y.; Babel, S.; Gheewala, S. A matrix in life cycle perspective for selecting sustainable materials for buildings in Sri Lanka. Build. Environ. 2009, 44, 997–1004. [Google Scholar]
- Kanniyapan, G.; Nesan, L.J.; Mohammad, I.S.; Keat, T.S.; Ponniah, V. Selection criteria of building material for optimising maintainability. Constr. Build. Mater. 2019, 221, 651–660. [Google Scholar]
- Zhan, J.Y.; Liu, W.; Wu, F.; Li, Z.H.; Wang, C. Life cycle energy consumption and greenhouse gas emissions of urban residential buildings in Guangzhou city. J. Clean. Prod. 2018, 194, 318–326. [Google Scholar]
- Xie, S.; Ji, Z.J.; Zhu, L.C.; Zhang, J.J.; Cao, Y.X.; Chen, J.H.; Liu, R.R.; Wang, J. Recent progress in electromagnetic wave absorption building materials. J. Build. Eng. 2020, 27, 100963. [Google Scholar]
- Zhang, C. A Review of Efficient and Low-Carbon Pile Technologies for Extra-Thick Soft Strata. Energies 2023, 16, 2836. [Google Scholar] [CrossRef]
- Ngo, D.; Lim, J.; Kim, D. Reliability Analysis and Life Prediction of Aging LNG Unloading Arms Based on Non-Destructive Test Data. Energies 2022, 15, 9408. [Google Scholar] [CrossRef]
- Yu, H.; Li, H.; Zhang, Z.Q.; Zhang, G.F.; Wang, D.H.; Zheng, H.D. Failure Patterns of Transmission Tower-Line System Caused by Landslide Events. Energies 2022, 15, 7155. [Google Scholar] [CrossRef]
- Chi, S.; Liang, Y.; Chen, W.; Hou, Z.; Luan, T. Numerical Simulation of Tail Over-Fire Air Supply of a Grate Biomass Boiler. Energies 2022, 15, 7664. [Google Scholar] [CrossRef]
- Zhang, S.; Ren, G.; Zhang, G.; Ren, Z.; Xia, C.; Gao, Y. Seepage Performance of Fibre Bundle Drainage Pipes: Particle Flow Simulation and Laboratory Testing. Energies 2022, 15, 7270. [Google Scholar] [CrossRef]
- Liu, H.; Liu, K.; Xiao, Y.; Zhang, P.; Zhang, M.; Zhu, Y.; Liu, K.; Xu, T.; Huang, R. Properties of Lightweight Controlled Low-Strength Materials Using Construction Waste and EPS for Oil and Gas Pipelines. Energies 2022, 15, 4301. [Google Scholar]
- Chen, Y.; Gao, T.; Yin, F.; Liu, X.; Wang, J. Study on Influence of Joint Locations and Hydraulic Coupling Actions on Rock Masses’ Failure Process. Energies 2022, 15, 4024. [Google Scholar] [CrossRef]
- Xu, T.; Wang, L.; Zhang, P.; Zhou, Y.; Liu, K.; Feng, X.; Qi, Y.; Zeng, C. Key Techniques for Rapid Jacking and Laying of Pipelines: A Case Study on ‘Jingshihan’ Gas Pipelines in China. Energies 2022, 15, 2918. [Google Scholar] [CrossRef]
- Li, J.; Gao, F.; Wang, L.; Ren, Y.; Liu, C.; Yang, A.; Yan, Z.; Jiang, T.; Li, C. Collapse Mechanism of Transmission Tower Subjected to Strong Wind Load and Dynamic Response of Tower-Line System. Energies 2022, 15, 3925. [Google Scholar] [CrossRef]
- Li, P.; Dai, Z.; Wang, X.; Liu, J.; Rui, Y.; Li, X.; Fan, J.; Chen, P. A Study of the Segment Assembly Error and Quality Control Standard of Special-Shaped Shield Tunnels. Energies 2022, 15, 2512. [Google Scholar] [CrossRef]
Country | Authors |
---|---|
China | 18 |
Korea | 2 |
Author | First Affiliation | Country | Reference |
---|---|---|---|
Chaozhe Zhang | Southeast University | China | [58] |
Jianyong Han | School of Civil Engineering, Shandong Jianzhu University | China | [58] |
Li Tian | Shandong University | China | [58] |
Duc-Vu Ngo | Kunsan National University | Korea | [59] |
Dong-Hyawn Kim | Kunsan National University | Korea | [59] |
Hong Yu | Electric Power Research Institute, Yunnan Power Grid Co., Ltd. | China | [60] |
Hua-Dong Zheng | Wuhan University of Technology | China | [60] |
Shidan Chi | Shandong Electric Power Engineering Consulting Institute Co., Ltd. | China | [61] |
Tao Luan | Shandong University | China | [61] |
Sifeng Zhang | Shandong Jianzhu University | China | [62] |
Guojian Zhang | Shandong Jianzhu University | China | [62] |
Hao Liu | China University of Geosciences | China | [63] |
Meixia Zhang | China University of Geosciences | China | [63] |
Yunjuan Chen | Shandong Jianzhu University | China | [64] |
Tianshuo Xu | China University of Geosciences | China | [65] |
Peng Zhang | China University of Geosciences | China | [65] |
Junkuo Li | State Grid Hebei Economic Research Institute | China | [66] |
Chuncheng Liu | Northeast Electric Power University | China | [66] |
Peinan Li | Donghua University | China | [67] |
Xi Wang | Tongji University | China | [67] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, J.; Tian, L. Review of Construction Technology of Advanced Energy Infrastructure. Energies 2024, 17, 4157. https://doi.org/10.3390/en17164157
Han J, Tian L. Review of Construction Technology of Advanced Energy Infrastructure. Energies. 2024; 17(16):4157. https://doi.org/10.3390/en17164157
Chicago/Turabian StyleHan, Jianyong, and Li Tian. 2024. "Review of Construction Technology of Advanced Energy Infrastructure" Energies 17, no. 16: 4157. https://doi.org/10.3390/en17164157
APA StyleHan, J., & Tian, L. (2024). Review of Construction Technology of Advanced Energy Infrastructure. Energies, 17(16), 4157. https://doi.org/10.3390/en17164157