Application of Methods Based on Artificial Intelligence and Optimisation in Power Engineering—Introduction to the Special Issue
Abstract
:1. Introduction
- Transmission and distribution of electricity;
- Generation of electricity;
- Electricity storage;
- Reliability;
- Forecasting;
- Power quality;
- Faults;
- Planning and development;
- Operation;
- Economic issues;
- The impact of sources, energy storage, loads and other elements on the operation of the power grid.
2. Literature Review in the Field of Methods Based on Artificial Intelligence
- Machine learning (e.g., supervised learning, unsupervised learning);
- Deep learning, reinforcement learning, artificial neural network (e.g., deep networks for supervised or discriminative learning, deep networks for unsupervised or generative learning, deep networks for hybrid learning);
- Fuzzy logic-based approach (e.g., fuzzy logic systems);
- Expert system (algorithms for modelling expert systems);
- Hybrid approach, searching and metaheuristic optimisation (hybrid algorithms, combining different algorithms).
- Process automation;
- Quick decision making;
- Easy handling of large data sets;
- Increase in productivity;
- No human errors.
- Lack of creativity and unconventional thinking, work according to fixed schemes;
- Implementation cost;
- Unexpected behaviour of the machine when operated by inappropriate persons;
- No possibility of making corrections—artificial intelligence works on the basis of possessed data and algorithms.
2.1. Renewable Energy and Energy Storage
2.2. Forecasting Generation and Load in the Power System
2.3. Power Quality
2.4. Power System Security
2.5. Identification and Analysis Related to Power System Disturbances
2.6. Stability Issues in the Power System
- Gradient Boosting:
- XGBoost:
2.7. Aspects Related to Forecasting Energy Prices
3. Literature Review of the Application of Optimization Methods in Power Engineering
- To improve the stability of the power system;
- To eliminating line overloads;
- To forecast the generation of solar and wind sources;
- Optimization of voltage profiles in nodes;
- Forecasting;
- Storage;
- Improving the power quality;
- Disturbance analysis.
- Linear programming (simplex method, dual simplex method, interior point method);
- Nonlinear programming (Newton–Raphson method, unconstrained optimisation methods, methods with a penalty function);
- Quadratic programming (trust region reflective algorithm, modified simplex method);
- Mixed-integer programming (branch and bound method, cutting-plane method, Gomory’s mixed-integer programming).
- Population-based methods (e.g., EA—evolutionary algorithm or SI—swarm intelligence);
- Methods based on a single solution (e.g., SA—simulated annealing or TS—tabu search).
4. A General Summary of Methods and Possible Areas of Their Future Application
- Technical and economic analyses allowing to determine the probability of annual loss of electricity generation from renewable energy sources;
- Eliminating overloads of power lines in a high-voltage network saturated with renewable energy sources and energy storage;
- Analyses aimed at examining the possibility of participation of RESs and energy storage in the processes of rebuilding the generating capacity of power plants after a catastrophic failure;
- Analyses for determining the connection possibilities of the power system;
- Minimising the difference in voltage phasor angles when power lines are switched on;
- Optimal redispatching of power with RES installations;
- Optimal selection of a compensation device for a wind or photovoltaic farm connected to the power grid by cable;
- Cable pooling—optimal use of common network infrastructure by various types of renewable energy sources;
- Optimal location of energy storage and electrolysis installations in the power grid;
- Optimal management of inverters of photovoltaic installations,
- Forecasting RES generated power or power demand using modern hybrid algorithms.
5. Summary
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Nomenclature
T–S | Takagi–Sugeno | RBF | Radial basis function |
SVM | Support vector machine | BP | Back propagation |
BPNN | Back-propagation neural network methods | ADALINE | Adaptive linear element networks |
LSTM | Long short-term memory | GR | General regression |
ANN | Artificial neural network | RT | Regression tree |
ELM | Extreme machine learning | DT | Decision tree |
DL | Deep learning | XGBoost | eXtreme gradient boosting |
BESS | Battery energy storage system | AdaBoost | Adaptive boosting over decision trees |
AWE | Alkaline water electrolysers | GPR | Gaussian process regression |
ESS | Energy storage system | LS-SVM | Least-squares support vector machines |
ANFIS | Adaptive neuro-fuzzy inference system | PSO | Particle swarm optimization |
FESS | Flywheel energy storage systems | NARM | Nonlinear autoregressive model |
DT | Decision tree | MFF | Multi-feature fusion |
FVRL | Fuzzy vector reinforcement learning | SAM | Self-attention mechanism |
RNN | Reinforcement neutral network | GCN | Graph convolutional network |
SVR | Support vector regression | Bi-LSTM | Bi-directional long short-term memory |
VMD | Variational mode decomposition | 1D-CNN | One-dimensional convolutional neural networks |
SSSA | Small signal stability analysis | WT | Wavelet transform |
GNN | Graph neural networks | NN | Neural network |
ELS | Emergency load shedding | EA | Evolutionary algorithm |
DBSCAN | Density-based spatial clustering of applications with noise | AI | Artificial intelligence |
EEMD | Ensemble empirical mode decomposition | ML | Machine learning |
RVM | Relevance vector machine | DCNN | Deep convolutional neural network |
IMF | Intrinsic mode functions | MSVM | Multi-class support vector machine |
CNN | Convolutional neural network | SMST | Segmented and modified S-transform |
SE | Sample entropy | I-RNN | Identity-recurrent neural network |
MLP | Multi-layer perceptron | GRU | Gated recurrent units |
GBR | Gradient-boosted regression | PCA | Principal component analysis |
RFR | Random forest regression | GAN | Generative adversarial network |
APSO | Advanced particle swarm optimization | PMU | Phasor measurement units |
FTMA | Fine-tuning metaheuristic algorithm | WPT | Wavelet packet transform |
RF | Random forest | SOM | Self-organizing mapping |
NARX | Nonlinear autoregressive models with exogenous inputs | FFT | Fast Fourier transform |
VPP | Virtual power plant | DWT | Discrete wavelet transform |
LASSO | Least absolute shrinkage and selection operator | SGBDER | Synchronous generator-based DER |
EN | Entropy network | LR | Logistic regression |
PVPNet | Powerful deep convolutional neural network model | IBDER | Inverter-based DER |
DNN-MRT | Deep neural network-based meta regression and transfer learning | DSA | Dynamic security assessment |
DBN | Deep belief network | TM | Time margin |
CCT | Critical clearing time | RL | Reinforcement learning |
THD | Total harmonic distortion | LFO | Low-frequency oscillations |
DLNN | Deep learning neural network | PSS | Power system stabilizer |
NA-MED | Noise-assisted multi-variate empirical mode decomposition | NG | Neurogenetic |
MI–LightGBM | Multi-level iterative–LightGBM | MGGP | Multi-gene genetic programming |
FSD | Fault section diagnosis | OLABC | Orthogonal learning artificial bee colony |
HELM | Hierarchical extreme learning machines | GA | Genetic algorithm |
PNN | Probabilistic neural network | CNN-LSTM | Convolutional neural network-long short-term memory |
VSM | Voltage stability margin | AIS | Artificial immune systems |
SVS | Short-term voltage stability | ILM | Imbalance learning machine |
MA-DRL | Multi-agent deep reinforcement learning | DDN | Deep neural network |
GARCH | Generalized autoregressive conditional heteroskedasticity volatility | SV | Stochastic volatility |
MAPE | Mean percentage absolute error | DRNN | Deep recurrent neural network |
STPF | Short-term price forecasting | VMD | Variational mode decomposition |
BooNN | Boosted neural network | RES | Renewable energy sources |
MRFO | Manta ray foraging optimization | ABC | Artificial bee colony |
GWO | Grey wolf optimizer | IGA | Intelligent genetic algorithms |
FCM | Fuzzy c-means | DRN | Deep residual networks |
MAE | Mean absolute error | RMS | Root-mean-square error |
AIG | Algorithm of the innovative gunner | ACO | Colony optimization algorithm |
BCC | Bacterial colony chemotaxis | SCM_CSC | Selectively coherent model of converter system control |
DRL | Deep reinforcement learning | DNN | Deep neural network |
SPR | Seasonal persistence-based regressive | PAR | Persistence-based auto-regressive |
WNN | Wavelet neural networks | SPNN | Seasonal persistence-based neural network |
Multi-SVM | Multi-class support vector machine | GWO-PID | Grey wolf optimise with proportional–integral–differential |
OHPTL | Overhead power transmitting lines | DSO | Distribution system operator |
TGA | Tree growth algorithm | WPS | Wind power system |
GMS | Generator maintenance scheduling | SSO | Shark smell optimisation |
PEV | Plug-in electric vehicles | BA | Bat algorithm |
CSO | Cuckoo search optimiser | TLBO | Teaching–learning-based optimisation |
AGC | Automatic generation control | SA | Simulated annealing |
VNS | Variable neighbourhood search | DE | Differential evolution |
MTLBO | Modified teaching–learner-based optimisation | ALO | Ant-lion optimisation |
MJAYA | Modified JAYA | WOT | Whale optimisation technique |
GOT | Grasshopper optimisation technique | GJO | Golden jackal optimisation |
HWPSOA | Hybrid whale particle swarm optimisation | BFO | Bacterial foraging optimisation |
MWOA | Modified whale optimisation algorithm | EAOA | Eagle arithmetic optimization algorithm |
SOMA | Self-organizing migrating algorithm | IPF | Interval power flow |
References
- Pijarski, P.; Kacejko, P.; Miller, P. Advanced Optimisation and Forecasting Methods in Power Engineering—Introduction to the Special Issue. Energies 2023, 16, 2804. [Google Scholar] [CrossRef]
- do Amaral Burghi, A.C.; Hirsch, T.; Pitz-Paal, R. Artificial Learning Dispatch Planning for Flexible Renewable-Energy Systems. Energies 2020, 13, 1517. [Google Scholar] [CrossRef]
- Liu, F.; Li, R.; Dreglea, A. Wind Speed and Power Ultra Short-Term Robust Forecasting Based on Takagi–Sugeno Fuzzy Model. Energies 2019, 12, 3551. [Google Scholar] [CrossRef]
- Almutairi, A.; Alrumayh, O. An intelligent deep learning based prediction model for wind power generation. Comput. Electr. Eng. 2022, 101, 108000. [Google Scholar] [CrossRef]
- Hasanien, H.M.; Muyeen, S.M. Speed control of grid-connected switched reluctance generator driven by variable speed wind turbine using adaptive neural network controller. Electr. Power Syst. Res. 2012, 84, 206–213. [Google Scholar] [CrossRef]
- Muyeen, S.M.; Hasanien, H.M.; Al-Durra, A. Transient stability enhancement of wind farms connected to a multi-machine power system by using an adaptive ANN-controlled SMES. Energy Convers. Manag. 2014, 78, 412–420. [Google Scholar] [CrossRef]
- Dahhani, O.; El-Jouni, A.; Boumhidi, I. Assessment and control of wind turbine by support vector machines. Sustain. Energy Technol. Assess. 2018, 27, 167–179. [Google Scholar] [CrossRef]
- Wu, S.; Wang, Y.; Cheng, S. Extreme learning machine based wind speed estimation and sensorless control for wind turbine power generation system. Neurocomputing 2013, 102, 163–175. [Google Scholar] [CrossRef]
- Brahmane, A.V.; Deshmukh, S.R. Artificial Intelligence-Based Energy Management System for Renewable Energy Sources. In Proceedings of the 2023 4th International Conference on Electronics and Sustainable Communication Systems (ICESC), Coimbatore, India, 6–8 July 2023; IEEE: Piscataway, NJ, USA, 2023; pp. 727–731, ISBN 979-8-3503-0009-3. [Google Scholar]
- Qadir, Z.; Khan, S.I.; Khalaji, E.; Munawar, H.S.; Al-Turjman, F.; Mahmud, M.P.; Kouzani, A.Z.; Le, K. Predicting the energy output of hybrid PV–wind renewable energy system using feature selection technique for smart grids. Energy Rep. 2021, 7, 8465–8475. [Google Scholar] [CrossRef]
- Shams, M.H.; Niaz, H.; Na, J.; Anvari-Moghaddam, A.; Liu, J.J. Machine learning-based utilization of renewable power curtailments under uncertainty by planning of hydrogen systems and battery storages. J. Energy Storage 2021, 41, 103010. [Google Scholar] [CrossRef]
- Hossain, M.A.; Islam, M.R.; Hossain, M.A.; Hossain, M.J. Control strategy review for hydrogen-renewable energy power system. J. Energy Storage 2023, 72, 108170. [Google Scholar] [CrossRef]
- Huang, X.-Y.; Chen, Y.-W.; Yang, J.-T. Inlet setting strategy via machine learning algorithm for thermal management of container-type battery energy-storage systems (BESS). Int. J. Heat Mass Transf. 2024, 218, 124712. [Google Scholar] [CrossRef]
- Xu, K.; Guo, Y.; Lei, G.; Zhu, J. A Review of Flywheel Energy Storage System Technologies. Energies 2023, 16, 6462. [Google Scholar] [CrossRef]
- Yin, L.; Li, Y. Fuzzy vector reinforcement learning algorithm for generation control of power systems considering flywheel energy storage. Appl. Soft Comput. 2022, 125, 109149. [Google Scholar] [CrossRef]
- Zhang, Z.; Meng, K.; Li, Y.; Liu, Q.; Wu, H. Hierarchical energy optimization of flywheel energy storage array systems for wind farms based on deep reinforcement learning. J. Renew. Sustain. Energy 2023, 15, 044101. [Google Scholar] [CrossRef]
- He, D.; Liu, C.; Jin, Z.; Ma, R.; Chen, Y.; Shan, S. Fault diagnosis of flywheel bearing based on parameter optimization variational mode decomposition energy entropy and deep learning. Energy 2022, 239, 122108. [Google Scholar] [CrossRef]
- Wen, Z.; Fang, P.; Yin, Y.; Królczyk, G.; Gardoni, P.; Li, Z. A novel machine learning model for safety risk analysis in flywheel-battery hybrid energy storage system. J. Energy Storage 2022, 49, 104072. [Google Scholar] [CrossRef]
- Lan, T.; Jermsittiparsert, K.; Alrashood, S.T.; Rezaei, M.; Al-Ghussain, L.; Mohamed, M.A. An Advanced Machine Learning Based Energy Management of Renewable Microgrids Considering Hybrid Electric Vehicles’ Charging Demand. Energies 2021, 14, 569. [Google Scholar] [CrossRef]
- Murshed, M.; Chamana, M.; Schmitt, K.E.K.; Pol, S.; Adeyanju, O.; Bayne, S. Sizing PV and BESS for Grid-Connected Microgrid Resilience: A Data-Driven Hybrid Optimization Approach. Energies 2023, 16, 7300. [Google Scholar] [CrossRef]
- Mroczek, B.; Pijarski, P. Machine Learning in Operating of Low Voltage Future Grid. Energies 2022, 15, 5388. [Google Scholar] [CrossRef]
- Pepiciello, A.; Vaccaro, A. Artificial Neural Network-based Small Signal Stability Analysis of Power Systems. In Proceedings of the 2021 IEEE Madrid PowerTech, Madrid, Spain, 28 June–2 July 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 1–5, ISBN 978-1-6654-3597-0. [Google Scholar]
- Teeuwsen, S.P.; Erlich, I.; El-Sharkawi, M.A. Small-signal stability assessment based on advanced neural network methods. In Proceedings of the 2003 IEEE Power Engineering Society General Meeting, Toronto, ON, Canada, 13–17 July 2003; IEEE: Piscataway, NJ, USA, 2003; pp. 2349–2354, ISBN 0-7803-7989-6. [Google Scholar]
- Liu, R.; Verbic, G.; Ma, J. A machine learning approach for fast future grid small-signal stability scanning. In Proceedings of the 2016 IEEE International Conference on Power System Technology (POWERCON), Wollongong, Australia, 28 September–1 October 2016; IEEE: Piscataway, NJ, USA, 2016; pp. 1–6, ISBN 978-1-4673-8848-1. [Google Scholar]
- Liu, J.; Zhang, Y.; Meng, K.; Xu, Y.; Dong, Z.Y. Risk-Averse Graph Learning for Real-time Power System Emergency Load Shedding. In Proceedings of the 2022 IEEE PES Innovative Smart Grid Technologies—Asia (ISGT Asia), Singapore, 1–5 November 2022; IEEE: Piscataway, NJ, USA, 2022; pp. 520–524, ISBN 979-8-3503-9966-0. [Google Scholar]
- Zhao, N.; You, F. Sustainable power systems operations under renewable energy induced disjunctive uncertainties via machine learning-based robust optimization. Renew. Sustain. Energy Rev. 2022, 161, 112428. [Google Scholar] [CrossRef]
- Wang, S.; Sun, Y.; Zhou, Y.; Jamil Mahfoud, R.; Hou, D. A New Hybrid Short-Term Interval Forecasting of PV Output Power Based on EEMD-SE-RVM. Energies 2020, 13, 87. [Google Scholar] [CrossRef]
- Jakoplić, A.; Franković, D.; Havelka, J.; Bulat, H. Short-Term Photovoltaic Power Plant Output Forecasting Using Sky Images and Deep Learning. Energies 2023, 16, 5428. [Google Scholar] [CrossRef]
- Elsaraiti, M.; Merabet, A. Solar Power Forecasting Using Deep Learning Techniques. IEEE Access 2022, 10, 31692–31698. [Google Scholar] [CrossRef]
- Gala, Y.; Fernández, Á.; Díaz, J.; Dorronsoro, J.R. Hybrid machine learning forecasting of solar radiation values. Neurocomputing 2016, 176, 48–59. [Google Scholar] [CrossRef]
- Zamee, M.A.; Won, D. Novel Mode Adaptive Artificial Neural Network for Dynamic Learning: Application in Renewable Energy Sources Power Generation Prediction. Energies 2020, 13, 6405. [Google Scholar] [CrossRef]
- Fadare, D.A. Modelling of solar energy potential in Nigeria using an artificial neural network model. Appl. Energy 2009, 86, 1410–1422. [Google Scholar] [CrossRef]
- Amrouche, B.; Le Pivert, X. Artificial neural network based daily local forecasting for global solar radiation. Appl. Energy 2014, 130, 333–341. [Google Scholar] [CrossRef]
- Meng, M.; Song, C. Daily Photovoltaic Power Generation Forecasting Model Based on Random Forest Algorithm for North China in Winter. Sustainability 2020, 12, 2247. [Google Scholar] [CrossRef]
- Monteiro, R.V.; Guimarães, G.C.; Moura, F.A.; Albertini, M.R.; Albertini, M.K. Estimating photovoltaic power generation: Performance analysis of artificial neural networks, Support Vector Machine and Kalman filter. Electr. Power Syst. Res. 2017, 143, 643–656. [Google Scholar] [CrossRef]
- Tang, N.; Mao, S.; Wang, Y.; Nelms, R.M. Solar Power Generation Forecasting With a LASSO-Based Approach. IEEE Internet Things J. 2018, 5, 1090–1099. [Google Scholar] [CrossRef]
- Rosato, A.; Panella, M.; Araneo, R.; Andreotti, A. A Neural Network Based Prediction System of Distributed Generation for the Management of Microgrids. IEEE Trans. Ind. Applicat. 2019, 55, 7092–7102. [Google Scholar] [CrossRef]
- Akhter, M.N.; Mekhilef, S.; Mokhlis, H.; Almohaimeed, Z.M.; Muhammad, M.A.; Khairuddin, A.S.M.; Akram, R.; Hussain, M.M. An Hour-Ahead PV Power Forecasting Method Based on an RNN-LSTM Model for Three Different PV Plants. Energies 2022, 15, 2243. [Google Scholar] [CrossRef]
- Huang, C.-J.; Kuo, P.-H. Multiple-Input Deep Convolutional Neural Network Model for Short-Term Photovoltaic Power Forecasting. IEEE Access 2019, 7, 74822–74834. [Google Scholar] [CrossRef]
- Qureshi, A.S.; Khan, A.; Zameer, A.; Usman, A. Wind power prediction using deep neural network based meta regression and transfer learning. Appl. Soft Comput. 2017, 58, 742–755. [Google Scholar] [CrossRef]
- Dehghan Manshadi, M.; Mousavi, M.; Soltani, M.; Mosavi, A.; Kovacs, L. Deep Learning for Modeling an Offshore Hybrid Wind–Wave Energy System. Energies 2022, 15, 9484. [Google Scholar] [CrossRef]
- Troncoso, A.; Salcedo-Sanz, S.; Casanova-Mateo, C.; Riquelme, J.C.; Prieto, L. Local models-based regression trees for very short-term wind speed prediction. Renew. Energy 2015, 81, 589–598. [Google Scholar] [CrossRef]
- Heinermann, J.; Kramer, O. Machine learning ensembles for wind power prediction. Renew. Energy 2016, 89, 671–679. [Google Scholar] [CrossRef]
- Wang, H.; Li, G.; Wang, G.; Peng, J.; Jiang, H.; Liu, Y. Deep learning based ensemble approach for probabilistic wind power forecasting. Appl. Energy 2017, 188, 56–70. [Google Scholar] [CrossRef]
- Wen, L.; Zhou, K.; Yang, S.; Lu, X. Optimal load dispatch of community microgrid with deep learning based solar power and load forecasting. Energy 2019, 171, 1053–1065. [Google Scholar] [CrossRef]
- Li, G.; Shi, J. On comparing three artificial neural networks for wind speed forecasting. Appl. Energy 2010, 87, 2313–2320. [Google Scholar] [CrossRef]
- Sideratos, G.; Hatziargyriou, N.D. Probabilistic Wind Power Forecasting Using Radial Basis Function Neural Networks. IEEE Trans. Power Syst. 2012, 27, 1788–1796. [Google Scholar] [CrossRef]
- Zhong, J.; Liu, L.; Sun, Q.; Wang, X. Prediction of Photovoltaic Power Generation Based on General Regression and Back Propagation Neural Network. Energy Procedia 2018, 152, 1224–1229. [Google Scholar] [CrossRef]
- Saigustia, C.; Pijarski, P. Time Series Analysis and Forecasting of Solar Generation in Spain Using eXtreme Gradient Boosting: A Machine Learning Approach. Energies 2023, 16, 7618. [Google Scholar] [CrossRef]
- Guo, W.; Che, L.; Shahidehpour, M.; Wan, X. Machine-Learning based methods in short-term load forecasting. Electr. J. 2021, 34, 106884. [Google Scholar] [CrossRef]
- Dai, W.; Wang, P. Application of Pattern Recognition and Artificial Neural Network to Load Forecasting in Electric Power System. In Proceedings of the Third International Conference on Natural Computation (ICNC 2007), Haikou, China, 24–27 August 2007; IEEE: Piscataway, NJ, USA, 2007; pp. 381–385, ISBN 0-7695-2875-9. [Google Scholar]
- Matrenin, P.; Safaraliev, M.; Dmitriev, S.; Kokin, S.; Ghulomzoda, A.; Mitrofanov, S. Medium-term load forecasting in isolated power systems based on ensemble machine learning models. Energy Rep. 2022, 8, 612–618. [Google Scholar] [CrossRef]
- Chen, H.; Wang, S.; Wang, S.; Li, Y. Day-ahead aggregated load forecasting based on two-terminal sparse coding and deep neural network fusion. Electr. Power Syst. Res. 2019, 177, 105987. [Google Scholar] [CrossRef]
- Karampelas, P.; Vita, V.; Pavlatos, C.; Mladenov, V.; Ekonomou, L. Design of artificial neural network models for the prediction of the Hellenic energy consumption. In Proceedings of the 2010 10th Symposium on Neural Network Applications in Electrical Engineering (NEUREL 2010), Belgrade, Serbia, 23–25 September 2010; IEEE: Piscataway, NJ, USA, 2010; pp. 41–44, ISBN 978-1-4244-8821-6. [Google Scholar]
- Aly, H.H. A proposed intelligent short-term load forecasting hybrid models of ANN, WNN and KF based on clustering techniques for smart grid. Electr. Power Syst. Res. 2020, 182, 106191. [Google Scholar] [CrossRef]
- Zou, Y.; Feng, W.; Zhang, J.; Li, J. Forecasting of Short-Term Load Using the MFF-SAM-GCN Model. Energies 2022, 15, 3140. [Google Scholar] [CrossRef]
- Sideratos, G.; Ikonomopoulos, A.; Hatziargyriou, N.D. A novel fuzzy-based ensemble model for load forecasting using hybrid deep neural networks. Electr. Power Syst. Res. 2020, 178, 106025. [Google Scholar] [CrossRef]
- Saitoh, H.; Shoji, T.; Yamamoto, H.; Toyoda, J. (Eds.) Rule-Based Short-Term Load Forecast Emphasizing Temperature Effects. In Proceedings of the 3rd Symposium on Expert Systems Application to Power Systems, Boston, MA, USA, 8–11 September 1991; Electric Power Research Institute: Palo Alto, CA, USA, 1991. [Google Scholar]
- Rahman, S.; Bhatnagar, R. An expert system based algorithm for short term load forecast. IEEE Trans. Power Syst. 1988, 3, 392–399. [Google Scholar] [CrossRef]
- Gajowniczek, K.; Ząbkowski, T. Two-Stage Electricity Demand Modeling Using Machine Learning Algorithms. Energies 2017, 10, 1547. [Google Scholar] [CrossRef]
- Zazoum, B. Solar photovoltaic power prediction using different machine learning methods. Energy Rep. 2022, 8, 19–25. [Google Scholar] [CrossRef]
- Geem, Z.W.; Roper, W.E. Energy demand estimation of South Korea using artificial neural network. Energy Policy 2009, 37, 4049–4054. [Google Scholar] [CrossRef]
- Muralitharan, K.; Sakthivel, R.; Vishnuvarthan, R. Neural network based optimization approach for energy demand prediction in smart grid. Neurocomputing 2018, 273, 199–208. [Google Scholar] [CrossRef]
- Ekonomou, L. Greek long-term energy consumption prediction using artificial neural networks. Energy 2010, 35, 512–517. [Google Scholar] [CrossRef]
- Kaytez, F.; Taplamacioglu, M.C.; Cam, E.; Hardalac, F. Forecasting electricity consumption: A comparison of regression analysis, neural networks and least squares support vector machines. Int. J. Electr. Power Energy Syst. 2015, 67, 431–438. [Google Scholar] [CrossRef]
- Wu, X.; Dou, C.; Yue, D. Electricity load forecast considering search engine indices. Electr. Power Syst. Res. 2021, 199, 107398. [Google Scholar] [CrossRef]
- Oreshkin, B.N.; Dudek, G.; Pełka, P.; Turkina, E. N-BEATS neural network for mid-term electricity load forecasting. Appl. Energy 2021, 293, 116918. [Google Scholar] [CrossRef]
- Kychkin, A.V.; Chasparis, G.C. Feature and model selection for day-ahead electricity-load forecasting in residential buildings. Energy Build. 2021, 249, 111200. [Google Scholar] [CrossRef]
- Fan, G.-F.; Yu, M.; Dong, S.-Q.; Yeh, Y.-H.; Hong, W.-C. Forecasting short-term electricity load using hybrid support vector regression with grey catastrophe and random forest modeling. Util. Policy 2021, 73, 101294. [Google Scholar] [CrossRef]
- Shi, J.; Liu, Y.; Yang, Y.; Lee, W.-J. Short-term wind power prediction based on wavelet transform-support vector machine and statistic characteristics analysis. In Proceedings of the 2011 IEEE Industrial and Commercial Power Systems Technical Conference, CPS, Newport Beach, CA, USA, 1–5 May 2011; IEEE: Piscataway, NJ, USA, 2011; pp. 1–7, ISBN 978-1-4244-9999-1. [Google Scholar]
- Zhao, X.; Gao, W.; Qian, F.; Ge, J. Electricity cost comparison of dynamic pricing model based on load forecasting in home energy management system. Energy 2021, 229, 120538. [Google Scholar] [CrossRef]
- Maciejowska, K.; Nitka, W.; Weron, T. Enhancing load, wind and solar generation for day-ahead forecasting of electricity prices. Energy Econ. 2021, 99, 105273. [Google Scholar] [CrossRef]
- Ahmad, T.; Chen, H. Nonlinear autoregressive and random forest approaches to forecasting electricity load for utility energy management systems. Sustain. Cities Soc. 2019, 45, 460–473. [Google Scholar] [CrossRef]
- Guo, Z.; Zhou, K.; Zhang, X.; Yang, S. A deep learning model for short-term power load and probability density forecasting. Energy 2018, 160, 1186–1200. [Google Scholar] [CrossRef]
- Chen, K.; Chen, K.; Wang, Q.; He, Z.; Hu, J.; He, J. Short-Term Load Forecasting With Deep Residual Networks. IEEE Trans. Smart Grid 2019, 10, 3943–3952. [Google Scholar] [CrossRef]
- Rafiei, M.; Niknam, T.; Aghaei, J.; Shafie-Khah, M.; Catalao, J.P.S. Probabilistic Load Forecasting Using an Improved Wavelet Neural Network Trained by Generalized Extreme Learning Machine. IEEE Trans. Smart Grid 2018, 9, 6961–6971. [Google Scholar] [CrossRef]
- Ribeiro, G.T.; Mariani, V.C.; Coelho, L.d.S. Enhanced ensemble structures using wavelet neural networks applied to short-term load forecasting. Eng. Appl. Artif. Intell. 2019, 82, 272–281. [Google Scholar] [CrossRef]
- Badri, A.; Ameli, Z.; Birjandi, A. Application of Artificial Neural Networks and Fuzzy logic Methods for Short Term Load Forecasting. Energy Procedia 2012, 14, 1883–1888. [Google Scholar] [CrossRef]
- Amjady, N.; Keynia, F. Short-term load forecasting of power systems by combination of wavelet transform and neuro-evolutionary algorithm. Energy 2009, 34, 46–57. [Google Scholar] [CrossRef]
- Memarzadeh, G.; Keynia, F. Short-term electricity load and price forecasting by a new optimal LSTM-NN based prediction algorithm. Electr. Power Syst. Res. 2021, 192, 106995. [Google Scholar] [CrossRef]
- Wazirali, R.; Yaghoubi, E.; Abujazar, M.S.S.; Ahmad, R.; Vakili, A.H. State-of-the-art review on energy and load forecasting in microgrids using artificial neural networks, machine learning, and deep learning techniques. Electr. Power Syst. Res. 2023, 225, 109792. [Google Scholar] [CrossRef]
- Hassan, S.; Khosravi, A.; Jaafar, J.; Khanesar, M.A. A systematic design of interval type-2 fuzzy logic system using extreme learning machine for electricity load demand forecasting. Int. J. Electr. Power Energy Syst. 2016, 82, 1–10. [Google Scholar] [CrossRef]
- Samanta, I.S.; Panda, S.; Rout, P.K.; Bajaj, M.; Piecha, M.; Blazek, V.; Prokop, L. A Comprehensive Review of Deep-Learning Applications to Power Quality Analysis. Energies 2023, 16, 4406. [Google Scholar] [CrossRef]
- Caicedo, J.E.; Agudelo-Martínez, D.; Rivas-Trujillo, E.; Meyer, J. A systematic review of real-time detection and classification of power quality disturbances. Prot. Control Mod. Power Syst. 2023, 8, 3. [Google Scholar] [CrossRef]
- Chojaa, H.; Derouich, A.; Taoussi, M.; Chehaidia, S.; Zamzoum, O.; Mosaad, M.; Alhejji, A.; Yessef, M. Nonlinear Control Strategies for Enhancing the Performance of DFIG-Based WECS under a Real Wind Profile. Energies 2022, 15, 6650. [Google Scholar] [CrossRef]
- Mosaad, M.I.; Abu-Siada, A.; Ismaiel, M.M.; Albalawi, H.; Fahmy, A. Enhancing the Fault Ride-through Capability of a DFIG-WECS Using a High-Temperature Superconducting Coil. Energies 2021, 14, 6319. [Google Scholar] [CrossRef]
- Liu, M.; Chen, Y.; Zhang, Z.; Deng, S. Classification of Power Quality Disturbance Using Segmented and Modified S-Transform and DCNN-MSVM Hybrid Model. IEEE Access 2023, 11, 890–899. [Google Scholar] [CrossRef]
- Ekici, S.; Ucar, F.; Dandil, B.; Arghandeh, R. Power quality event classification using optimized Bayesian convolutional neural networks. Arch. F. Elektrotechnik 2021, 103, 67–77. [Google Scholar] [CrossRef]
- Manikonda, S.K.G.; Santhosh, J.; Kumar Sreekala, S.P.; Gangwani, S.; Gaonkar, D.N. Power Quality Event Classification Using Long Short-Term Memory Networks. In Proceedings of the 2019 IEEE International Conference on Distributed Computing, VLSI, Electrical Circuits and Robotics (DISCOVER), Manipal, India, 11–12 August 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 1–5, ISBN 978-1-7281-3735-3. [Google Scholar]
- Mohan, N.; Soman, K.P.; Vinayakumar, R. Deep power: Deep learning architectures for power quality disturbances classification. In Proceedings of the 2017 International Conference on Technological Advancements in Power and Energy (TAP Energy), Kollam, India, 21–23 December 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 1–6, ISBN 978-1-5386-4021-0. [Google Scholar]
- Shen, Y.; Abubakar, M.; Liu, H.; Hussain, F. Power Quality Disturbance Monitoring and Classification Based on Improved PCA and Convolution Neural Network for Wind-Grid Distribution Systems. Energies 2019, 12, 1280. [Google Scholar] [CrossRef]
- Lee, D.; Srikantha, P.; Kundur, D. Online Power Quality Disturbance Classification with Recurrent Neural NetworkIn. In Proceedings of the 2018 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm), Aalborg, Denmark, 29–31 October 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 1–6, ISBN 978-1-5386-7954-8. [Google Scholar]
- Dawood, Z.; Babulal, C.K. Red deer optimized recurrent neural network for the classification of power quality disturbance. Arch. F. Elektrotechnik 2023, 105, 1937–1953. [Google Scholar] [CrossRef]
- Nagata, E.A.; Ferreira, D.D.; Bollen, M.H.; Barbosa, B.H.; Ribeiro, E.G.; Duque, C.A.; Ribeiro, P.F. Real-time voltage sag detection and classification for power quality diagnostics. Measurement 2020, 164, 108097. [Google Scholar] [CrossRef]
- Aggarwal, A.; Das, N.; Arora, M.; Tripathi, M.M. A novel hybrid architecture for classification of power quality disturbances. In Proceedings of the 2019 6th International Conference on Control, Decision and Information Technologies (CoDIT), Paris, France, 23–26 April 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 1829–1834, ISBN 978-1-7281-0521-5. [Google Scholar]
- Cheng, Y.; Yu, N.; Foggo, B.; Yamashita, K. Online Power System Event Detection via Bidirectional Generative Adversarial Networks. IEEE Trans. Power Syst. 2022, 37, 4807–4818. [Google Scholar] [CrossRef]
- Jian, X.; Wang, X. A novel semi-supervised method for classification of power quality disturbance using generative adversarial network. IFS 2021, 40, 3875–3885. [Google Scholar] [CrossRef]
- de Oliveira, R.A.; Bollen, M.H. Deep learning for power quality. Electr. Power Syst. Res. 2023, 214, 108887. [Google Scholar] [CrossRef]
- Golestaneh, F.; Pinson, P.; Gooi, H.B. Very Short-Term Nonparametric Probabilistic Forecasting of Renewable Energy Generation—With Application to Solar Energy. IEEE Trans. Power Syst. 2016, 31, 3850–3863. [Google Scholar] [CrossRef]
- Wan, C.; Lin, J.; Song, Y.; Xu, Z.; Yang, G. Probabilistic Forecasting of Photovoltaic Generation: An Efficient Statistical Approach. IEEE Trans. Power Syst. 2017, 32, 2471–2472. [Google Scholar] [CrossRef]
- Özer, İ.; Efe, S.B.; Özbay, H. CNN/Bi-LSTM-based deep learning algorithm for classification of power quality disturbances by using spectrogram images. Int. Trans. Electr. Energ. Syst. 2021, 31, e13204. [Google Scholar] [CrossRef]
- Ramalingappa, L.; Manjunatha, A. Power quality event classification using complex wavelets phasor models and customized convolution neural network. Int. J. Electr. Comput. Eng. 2022, 12, 22. [Google Scholar] [CrossRef]
- Abdelsalam, A.A.; Hassanin, A.M.; Hasanien, H.M. Categorisation of power quality problems using long short-term memory networks. IET Gener. Transm. Distrib. 2021, 15, 1626–1639. [Google Scholar] [CrossRef]
- Mahela, O.P.; Shaik, A.G.; Gupta, N. A critical review of detection and classification of power quality events. Renew. Sustain. Energy Rev. 2015, 41, 495–505. [Google Scholar] [CrossRef]
- Chiam, D.H.; Lim, K.H.; Law, K.H. LSTM power quality disturbance classification with wavelets and attention mechanism. Arch. F. Elektrotechnik 2023, 105, 259–266. [Google Scholar] [CrossRef]
- Rahul; Rajiv, K.; Tripathi, M.M. Long Short-Term Memory-Convolution Neural Network Based Hybrid Deep Learning Approach for Power Quality Events Classification. In Innovations in Electronics and Communication Engineering; Saini, H.S., Singh, R.K., Kumar, G., Rather, G.M., Santhi, K., Eds.; Springer: Singapore, 2019; pp. 501–510. ISBN 978-981-13-3764-2. [Google Scholar]
- Rodriguez, M.A.; Sotomonte, J.F.; Cifuentes, J.; Bueno-López, M. A Classification Method for Power-Quality Disturbances Using Hilbert–Huang Transform and LSTM Recurrent Neural Networks. J. Electr. Eng. Technol. 2021, 16, 249–266. [Google Scholar] [CrossRef]
- Rodrigues Junior, W.L.; Silva Borges, F.A.; Lira Rabelo, R.d.A.; de Lima, B.V.A.; Almeida de Alencar, J.E. Classification of Power Quality Disturbances Using Convolutional Network and Long Short-Term Memory Network. In Proceedings of the 2019 International Joint Conference on Neural Networks (IJCNN), Budapest, Hungary, 14–19 July 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 1–6, ISBN 978-1-7281-1985-4. [Google Scholar]
- Bentley, E.C.; Putrus, G.A.; McDonald, S.; Minns, P. Power quality disturbance source identification using self-organising maps. IET Gener. Transm. Distrib. 2010, 4, 1188. [Google Scholar] [CrossRef]
- Huang, N.; Liu, X.; Xu, D.; Qi, J. Power Quality Disturbance Recognition Based on S-Transform and SOM Neural Network. In Proceedings of the 2009 2nd International Congress on Image and Signal Processing (CISP), Tianjin, China, 17–19 October 2009; IEEE: Piscataway, NJ, USA, 2009; pp. 1–5, ISBN 978-1-4244-4129-7. [Google Scholar]
- Kwack, S.-G.; Chung, G.-B.; Choi, J.; Choi, G. Development of artificial-intelligent power quality diagnosis equipment for single-phase power system. In Proceedings of the 2008 IEEE 2nd International Power and Energy Conference (PECon), Johor Bahru, Malaysia, 1–3 December 2008; IEEE: Piscataway, NJ, USA, 2008; pp. 351–356, ISBN 978-1-4244-2404-7. [Google Scholar]
- Rajeshbabu, S.; Manikandan, B.V. Detection and classification of power quality events by expert system using analytic hierarchy method. Cogn. Syst. Res. 2018, 52, 729–740. [Google Scholar] [CrossRef]
- David, A.K.; Rongda, Z. Advances in AI Applications for Power System Planning. In Proceedings of the First International Conference on Expert Planning Systems, Brighton, UK, 27–29 June 1990. [Google Scholar]
- Li, W.; Ying, J. Design and analysis artificial intelligence (AI) research for power supply—power electronics expert system (PEES). In Proceedings of the 2008 IEEE Applied Power Electronics Conference and Exposition—APEC 2008, Austin, TX, USA, 24–28 February 2008; IEEE: Piscataway, NJ, USA, 2008; pp. 2009–2015, ISBN 978-1-4244-1873-2. [Google Scholar]
- Entezari, A.; Aslani, A.; Zahedi, R.; Noorollahi, Y. Artificial intelligence and machine learning in energy systems: A bibliographic perspective. Energy Strategy Rev. 2023, 45, 101017. [Google Scholar] [CrossRef]
- Farhoumandi, M.; Zhou, Q.; Shahidehpour, M. A review of machine learning applications in IoT-integrated modern power systems. Electr. J. 2021, 34, 106879. [Google Scholar] [CrossRef]
- Chen, Y.Q.; Fink, O.; Sansavini, G. Combined Fault Location and Classification for Power Transmission Lines Fault Diagnosis With Integrated Feature Extraction. IEEE Trans. Ind. Electron. 2018, 65, 561–569. [Google Scholar] [CrossRef]
- Chothani, N.G.; Bhalja, B.R.; Parikh, U.B. Development of a new bus zone identification algorithm using support vector machine. IET Gener. Transm. Distrib. 2012, 6, 710. [Google Scholar] [CrossRef]
- Frizzo Stefenon, S.; Zanetti Freire, R.; dos Santos Coelho, L.; Meyer, L.H.; Bartnik Grebogi, R.; Gouvêa Buratto, W.; Nied, A. Electrical Insulator Fault Forecasting Based on a Wavelet Neuro-Fuzzy System. Energies 2020, 13, 484. [Google Scholar] [CrossRef]
- Dobbe, R.; Hidalgo-Gonzalez, P.; Karagiannopoulos, S.; Henriquez-Auba, R.; Hug, G.; Callaway, D.S.; Tomlin, C.J. Learning to control in power systems: Design and analysis guidelines for concrete safety problems. Electr. Power Syst. Res. 2020, 189, 106615. [Google Scholar] [CrossRef]
- Aminifar, F.; Teimourzadeh, S.; Shahsavari, A.; Savaghebi, M.; Golsorkhi, M.S. Machine learning for protection of distribution networks and power electronics-interfaced systems. Electr. J. 2021, 34, 106886. [Google Scholar] [CrossRef]
- Aligholian, A.; Shahsavari, A.; Cortez, E.; Stewart, E.; Mohsenian-Rad, H. Event Detection in Micro-PMU Data: A Generative Adversarial Network Scoring Method. In Proceedings of the 2020 IEEE Power & Energy Society General Meeting (PESGM), Montreal, QC, Canada, 2–6 August 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 1–5, ISBN 978-1-7281-5508-1. [Google Scholar]
- Shahsavari, A.; Farajollahi, M.; Stewart, E.M.; Cortez, E.; Mohsenian-Rad, H. Situational Awareness in Distribution Grid Using Micro-PMU Data: A Machine Learning Approach. IEEE Trans. Smart Grid 2019, 10, 6167–6177. [Google Scholar] [CrossRef]
- Shahsavari, A.; Farajollahi, M.; Stewart, E.; Cortez, E.; Mohsenian-Rad, H. A Machine Learning Approach to Event Analysis in Distribution Feeders Using Distribution Synchrophasors. In Proceedings of the 2019 International Conference on Smart Grid Synchronized Measurements and Analytics (SGSMA), College Station, TX, USA, 21–23 May 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 1–7, ISBN 978-1-7281-1607-5. [Google Scholar]
- Singh, M.; Chauhan, S. A hybrid-extreme learning machine based ensemble method for online dynamic security assessment of power systems. Electr. Power Syst. Res. 2023, 214, 108923. [Google Scholar] [CrossRef]
- Karapidakis, E.S. Machine learning for frequency estimation of power systems. Appl. Soft Comput. 2007, 7, 105–114. [Google Scholar] [CrossRef]
- Sarajcev, P. Machine Learning in Power System Dynamic Security Assessment. Energies 2022, 15, 3962. [Google Scholar] [CrossRef]
- Sarajcev, P.; Kunac, A.; Petrovic, G.; Despalatovic, M. Artificial Intelligence Techniques for Power System Transient Stability Assessment. Energies 2022, 15, 507. [Google Scholar] [CrossRef]
- Cui, W.; Zhang, B. Lyapunov-Regularized Reinforcement Learning for Power System Transient Stability. IEEE Control Syst. Lett. 2022, 6, 974–979. [Google Scholar] [CrossRef]
- Pereslytskikh, O.O.; Suvorova, V.S.; Belyaev, A.N. Synthesis of Centralized Adaptive Excitation Control System by Reinforcement Learning Approach. In Proceedings of the 2021 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (ElConRus), St. Petersburg, Moscow, Russia, 26–29 January 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 1514–1519, ISBN 978-1-6654-0476-1. [Google Scholar]
- Zhang, K.; Xu, P.; Zhang, J. Explainable AI in Deep Reinforcement Learning Models: A SHAP Method Applied in Power System Emergency Control. In Proceedings of the 2020 IEEE 4th Conference on Energy Internet and Energy System Integration (EI2), Wuhan, China, 30 October–1 November 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 711–716, ISBN 978-1-7281-9606-0. [Google Scholar]
- Hou, J.; Xie, C.; Wang, T.; Yu, Z.; Lu, Y.; Dai, H. Power System Transient Stability Assessment Based on Voltage Phasor and Convolution Neural Network. In Proceedings of the 2018 2nd IEEE International Conference on Energy Internet (ICEI), Beijing, China, 21–25 May 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 247–251, ISBN 978-1-5386-4131-6. [Google Scholar]
- Yu, J.J.Q.; Hill, D.J.; Lam, A.Y.S.; Gu, J.; Li, V.O.K. Intelligent Time-Adaptive Transient Stability Assessment System. IEEE Trans. Power Syst. 2018, 33, 1049–1058. [Google Scholar] [CrossRef]
- Du, Y.; Hu, Z.; Wang, F. A hierarchical power system transient stability assessment method considering sample imbalance. Energy Rep. 2021, 7, 224–232. [Google Scholar] [CrossRef]
- Du, Y.; Hu, Z. Power System Transient Stability Assessment Based on Snapshot Ensemble LSTM Network. Sustainability 2021, 13, 6953. [Google Scholar] [CrossRef]
- Shahriar, M.S.; Shafiullah, M.; Pathan, M.; Sha’aban, Y.A.; Bouchekara, H.R.; Ramli, M.A.; Rahman, M.M. Stability improvement of the PSS-connected power system network with ensemble machine learning tool. Energy Rep. 2022, 8, 11122–11138. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, T.; Na, G.; Li, G.; Li, Y. Optimized Extreme Learning Machine for Power System Transient Stability Prediction Using Synchrophasors. Math. Probl. Eng. 2015, 2015, 529724. [Google Scholar] [CrossRef]
- Sedghi, M.; Zolfaghari, M.; Mohseni, A.; Nosratian-Ahour, J. Real-time transient stability estimation of power system considering nonlinear limiters of excitation system using deep machine learning: An actual case study in Iran. Eng. Appl. Artif. Intell. 2024, 127, 107254. [Google Scholar] [CrossRef]
- Mehinović, A.; Grebović, S.; Fejzić, A.; Oprašić, N.; Konjicija, S.; Akšamović, A. Application of artificial intelligence methods for determination of transients in the power system. Electr. Power Syst. Res. 2023, 223, 109634. [Google Scholar] [CrossRef]
- Yang, H.; Yi, J.; Zhao, J.; Dong, Z. Extreme learning machine based genetic algorithm and its application in power system economic dispatch. Neurocomputing 2013, 102, 154–162. [Google Scholar] [CrossRef]
- Huy, T.H.B.; Vo, D.N.; Nguyen, H.D.; Truong, H.P.; Dang, K.T.; Truong, K.H. Enhanced Power System State Estimation Using Machine Learning Algorithms. In Proceedings of the 2023 International Conference on System Science and Engineering (ICSSE), Ho Chi Minh, Vietnam, 27–28 July 2023; IEEE: Piscataway, NJ, USA, 2023; pp. 401–405, ISBN 979-8-3503-2294-1. [Google Scholar]
- Liu, Y.; Singh, C. A Methodology for Evaluation of Hurricane Impact on Composite Power System Reliability. IEEE Trans. Power Syst. 2011, 26, 145–152. [Google Scholar] [CrossRef]
- Baghaee, H.R.; Abedi, M. Calculation of weighting factors of static security indices used in contingency ranking of power systems based on fuzzy logic and analytical hierarchy process. Int. J. Electr. Power Energy Syst. 2011, 33, 855–860. [Google Scholar] [CrossRef]
- Rodriguez, M.; Arcos-Aviles, D.; Guinjoan, F. Simple fuzzy logic-based energy management for power exchange in isolated multi-microgrid systems: A case study in a remote community in the Amazon region of Ecuador. Appl. Energy 2024, 357, 122522. [Google Scholar] [CrossRef]
- Zhao, X.; Zhang, X. Artificial Intelligence Applications in Power System. In Proceedings of the 2nd International Conference on Artificial Intelligence and Industrial Engineering, Beijing, China, 20–21 November 2016. [Google Scholar]
- Nath, R.P.; Balaji, V.N. Artificial Intelligence in Power Systems. In National Electronic Conference on Communication and Networking; Pasupathi Nath, V.B.R., Ed.; Jeppiaar Engineering College: Chennai, India, 2014. [Google Scholar]
- Osaka, S.; Kono, Y.; Fujiwara, R.; Yamanishi, A. Development of the expert system for operation planning of power system. In Proceedings of the International Workshop on Artificial Intelligence for Industrial Applications, Hitachi City, Japan, 25–27 May 1988; IEEE: Piscataway, NJ, USA, 1988; pp. 545–550. [Google Scholar]
- Osaka, S.; Amano, M.; Kawakami, J. An expert system for power generation scheduling. In Proceedings of the International Workshop on Artificial Intelligence for Industrial Applications, Hitachi City, Japan, 25–27 May 1988; IEEE: Piscataway, NJ, USA, 1988; pp. 557–562. [Google Scholar]
- Tanaka, H.; Tsuchimori, N.; Wada, N.; Kawakami, J.; Suzuki, M.; Sekine, Y. Research and development on expert systems applications to power systems in Japan. Int. J. Electr. Power Energy Syst. 1992, 14, 71–85. [Google Scholar] [CrossRef]
- Chowdhury, B.H.; Swan, L.; Clark, D.; Shobair, A. An expert system as a system operator’s aid in real-time solutions of the optimal power flow. Electr. Power Syst. Res. 1993, 26, 21–30. [Google Scholar] [CrossRef]
- Cheriaux, F.; Ancelin, J.; Drelon, R.; Pichot, D. An Expert System for Monitoring the Electric Power Supplies of a Nuclear Power Plant (3SE): Techniques of Artificial Intelligence. IFAC Proc. Vol. 1989, 22, 269–272. [Google Scholar] [CrossRef]
- Naser, J.A.; Cain, D.G.; Sun, B.K.-H.; Colley, R.W.; Hirota, N.S.; Gelhaus, F.E. Expert system applications to nuclear power for enhancement of productivity and performance. Nucl. Eng. Des. 1989, 117, 275–286. [Google Scholar] [CrossRef]
- Lupton, L.R.; Basso, R.A.J.; Anderson, L.L.; Anderson, J.W.D. Expert System use in present and future Candu nuclear power supply systems. In Proceedings of the Conference on Expert Systems Applications for the Electric Power Industry, Orlando, FL, USA, 5–8 June 1989. [Google Scholar]
- Naser, J.A. Expert Systems Applications for the Electric Power Industry; Hemisphere Pub. Corp.: New York, NY, USA, 1990; ISBN 1-56032-102-4. [Google Scholar]
- Lin, C.E.; Huang, C.-J.; Huang, C.-L.; Liang, C.-C.; Lee, S.-Y. An expert system for generator maintenance scheduling using operation index. IEEE Trans. Power Syst. 1992, 7, 1141–1148. [Google Scholar] [CrossRef]
- Podbury, C. An expert System for Maintenance Scheduling in a Power System. Ph.D. Thesis, La Trobe University, Melbourne, Australia, 1986. [Google Scholar]
- Bretthauer, G.; Gamaleja, T.; Jacobs, A.; Wilfert, H.-H. Determination of Favourable Maintenance Schedules for Improving the Power System Reliability. IFAC Proc. Vol. 1990, 23, 109–114. [Google Scholar] [CrossRef]
- Choueiry, B.S.Y. Knowledge based method for power generators maintenance scheduling. In Proceedings of the Expert Systems Applications to Power Systems (ESAP), Stockholm, Sweden, August 1988. [Google Scholar]
- Mitsuhashi, A.; Maruyama, T.; Inoue, H.; Takeda, T. An expert system for power systems maintenance. In Proceedings of the Intelec 93: 15th International Telecommunications Energy Conference, Paris, France, 27–30 September 1993; IEEE: Piscataway, NJ, USA, 1993; pp. 154–162, ISBN 0-7803-1842-0. [Google Scholar]
- Balu, N.J.; Adapa, R.; Cauley, G.; Lauby, M.; Maratukulam, D.J. Review of expert systems in bulk power system planning and operation. Proc. IEEE 1992, 80, 727–731. [Google Scholar] [CrossRef]
- Liu, C.-C.; Tomsovic, K. An Expert System Assisting Decision-Making of Reactive Power/Voltage Control. IEEE Trans. Power Syst. 1986, 1, 195–201. [Google Scholar] [CrossRef]
- Hong, Y.-Y. An enhanced expert system with fuzzy reasoning for line flow control in power systems. Electr. Power Syst. Res. 1996, 39, 1–8. [Google Scholar] [CrossRef]
- Sobajic, D.J.; Pao, Y.H. An artificial intelligence system for power system contingency screening. IEEE Trans. Power Syst. 1988, 3, 647–653. [Google Scholar] [CrossRef]
- Handschin, E.; Hoffmann, W. Integration of an expert system for security assessment into an energy management system. Int. J. Electr. Power Energy Syst. 1992, 14, 243–248. [Google Scholar] [CrossRef]
- Krost, G.; Rumpel, D.; N’guessan, E. Design of a Network Restoration Expert System with Training Facilities. In Proceedings of the 2nd Expert Systems Application to Power Systems, Seattle, WA, USA, July 1989. [Google Scholar]
- Liu, C.-C.; Lee, S.J.; Venkata, S.S. An expert system operational aid for restoration and loss reduction of distribution systems. IEEE Trans. Power Syst. 1988, 3, 619–626. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, M.; Bao, Z. Deep learning neural network for power system fault diagnosis. In Proceedings of the 2016 35th Chinese Control Conference (CCC), Chengdu, China, 27–29 July 2016; IEEE: Piscataway, NJ, USA, 2016; pp. 6678–6683, ISBN 978-9-8815-6391-0. [Google Scholar]
- Damborg, M.J.; El-Sharkawi, M.A.; Aggoune, M.E.; Marks, R.J. Potential of artificial neural networks in power system operation. In Proceedings of the IEEE International Symposium on Circuits and Systems, New Orleans, LA, USA, 1–3 May 1990; IEEE: Piscataway, NJ, USA, 1990; pp. 2933–2937. [Google Scholar]
- Rahman Fahim, S.; Sarker, S.K.; Muyeen, S.M.; Sheikh, M.R.I.; Das, S.K. Microgrid Fault Detection and Classification: Machine Learning Based Approach, Comparison, and Reviews. Energies 2020, 13, 3460. [Google Scholar] [CrossRef]
- Da Silva, V.; Zubulum, R.S. An integration of neural networks and fuzzy logic for power systems diagnosis. In Proceedings of the International Conference on Intelligent System Application to Power Systems, Orlando, FL, USA, 28 January–2 February 1996; IEEE: Piscataway, NJ, USA, 1996; pp. 237–241, ISBN 0-7803-3115-X. [Google Scholar]
- Yang, H.; Liu, X.; Di, Z.; Chen, T.; Li, C.; Huang, W. Machine learning for power system protection and control. Electr. J. 2021, 34, 106881. [Google Scholar] [CrossRef]
- Xiong, G.; Xie, X.; Yuan, Z.; Fu, X. Differential evolution-based optimized hierarchical extreme learning machines for fault section diagnosis of large-scale power systems. Expert Syst. Appl. 2023, 233, 120937. [Google Scholar] [CrossRef]
- Liu, S.; Sun, Y.; Zhang, L.; Su, P. Fault diagnosis of shipboard medium-voltage DC power system based on machine learning. Int. J. Electr. Power Energy Syst. 2021, 124, 106399. [Google Scholar] [CrossRef]
- Yuan, Z.; Xiong, G.; Fu, X.; Mohamed, A.W. Improving fault tolerance in diagnosing power system failures with optimal hierarchical extreme learning machine. Reliab. Eng. Syst. Saf. 2023, 236, 109300. [Google Scholar] [CrossRef]
- Yuan, Z.; Xiong, G.; Fu, X. Artificial Neural Network for Fault Diagnosis of Solar Photovoltaic Systems: A Survey. Energies 2022, 15, 8693. [Google Scholar] [CrossRef]
- Mekki, H.; Mellit, A.; Salhi, H. Artificial neural network-based modelling and fault detection of partial shaded photovoltaic modules. Simul. Model. Pract. Theory 2016, 67, 1–13. [Google Scholar] [CrossRef]
- Kara Mostefa Khelil, C.; Amrouche, B.; Kara, K.; Chouder, A. The impact of the ANN’s choice on PV systems diagnosis quality. Energy Convers. Manag. 2021, 240, 114278. [Google Scholar] [CrossRef]
- Garoudja, E.; Chouder, A.; Kara, K.; Silvestre, S. An enhanced machine learning based approach for failures detection and diagnosis of PV systems. Energy Convers. Manag. 2017, 151, 496–513. [Google Scholar] [CrossRef]
- Akram, M.N.; Lotfifard, S. Modeling and Health Monitoring of DC Side of Photovoltaic Array. IEEE Trans. Sustain. Energy 2015, 6, 1245–1253. [Google Scholar] [CrossRef]
- Akhtar, S.; Adeel, M.; Iqbal, M.; Namoun, A.; Tufail, A.; Kim, K.-H. Deep learning methods utilization in electric power systems. Energy Rep. 2023, 10, 2138–2151. [Google Scholar] [CrossRef]
- Li, W.; Zhou, J.; Xiong, X. Fuzzy Models of Overhead Power Line Weather-Related Outages. IEEE Trans. Power Syst. 2008, 23, 1529–1531. [Google Scholar] [CrossRef]
- Bouchiba, N.; Kaddouri, A. Performance Comparison of Fuzzy Logic and Deep Learning algorithms for fault detection in electrical power transmission system. In Proceedings of the 2021 IEEE Electrical Power and Energy Conference (EPEC), Toronto, ON, Canada, 22–31 October 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 101–106, ISBN 978-1-6654-2928-3. [Google Scholar]
- Sarker, I.H. AI-Based Modeling: Techniques, Applications and Research Issues Towards Automation, Intelligent and Smart Systems. SN Comput. Sci. 2022, 3, 158. [Google Scholar] [CrossRef]
- Ray, P.; Mishra, D.P. Support vector machine based fault classification and location of a long transmission line. Eng. Sci. Technol. Int. J. 2016, 19, 1368–1380. [Google Scholar] [CrossRef]
- Rudsari, F.N.; Razi-Kazemi, A.A.; Shoorehdeli, M.A. Fault Analysis of High-Voltage Circuit Breakers Based on Coil Current and Contact Travel Waveforms Through Modified SVM Classifier. IEEE Trans. Power Deliv. 2019, 34, 1608–1618. [Google Scholar] [CrossRef]
- Livani, H.; Evrenosoglu, C.Y. A Fault Classification and Localization Method for Three-Terminal Circuits Using Machine Learning. IEEE Trans. Power Deliv. 2013, 28, 2282–2290. [Google Scholar] [CrossRef]
- Lee, H.-J.; Park, D.-Y.; Ahn, B.-S.; Park, Y.-M.; Park, J.-K.; Venkata, S.S. A fuzzy expert system for the integrated fault diagnosis. IEEE Trans. Power Deliv. 2000, 15, 833–838. [Google Scholar] [CrossRef]
- Abdelsalam, A.A.; Eldesouky, A.A.; Sallam, A.A. Classification of power system disturbances using linear Kalman filter and fuzzy-expert system. Int. J. Electr. Power Energy Syst. 2012, 43, 688–695. [Google Scholar] [CrossRef]
- Asai, N.; Onishi, K.; Mori, S.; Otsuka, Y.; Makino, S. Development of an AI supporting system for knowledge acquisition and refinement (nuclear power plant applications). In Proceedings of the International Workshop on Artificial Intelligence for Industrial Applications, Hitachi, Japan, 25–27 May 1988; IEEE: Piscataway, NJ, USA, 1988; pp. 47–51. [Google Scholar]
- Chandra, A.; Pradhan, A.K.; Sinha, A.K. A comparative study of voltage stability indices used for power system operation. In Proceedings of the 2016 21st Century Energy Needs—Materials, Systems and Applications (ICTFCEN), Kharagpur, India, 17–19 November 2016; IEEE: Piscataway, NJ, USA, 2016; pp. 1–4, ISBN 978-1-5090-3564-9. [Google Scholar]
- Rahi, O.P.; Yadav, A.K.; Malik, H.; Azeem, A.; Kr, B. Power System Voltage Stability Assessment through Artificial Neural Network. Procedia Eng. 2012, 30, 53–60. [Google Scholar] [CrossRef]
- Malbasa, V.; Zheng, C.; Chen, P.-C.; Popovic, T.; Kezunovic, M. Voltage Stability Prediction Using Active Machine Learning. IEEE Trans. Smart Grid 2017, 8, 3117–3124. [Google Scholar] [CrossRef]
- Flatabo, N.; Ognedal, R.; Carlsen, T. Voltage stability condition in a power transmission system calculated by sensitivity methods. IEEE Trans. Power Syst. 1990, 5, 1286–1293. [Google Scholar] [CrossRef]
- Suliman, S.I.; Rahman, T.K.A. Artificial immune system based machine learning for voltage stability prediction in power system. In Proceedings of the 2010 4th International Power Engineering and Optimization Conference (PEOCO), Shah Alam, Selangor, Malaysia, 23–24 June 2010; IEEE: Piscataway, NJ, USA, 2010; pp. 53–58, ISBN 978-1-4244-7127-0. [Google Scholar]
- Sharifian, A.; Sharifian, S. A new power system transient stability assessment method based on Type-2 fuzzy neural network estimation. Int. J. Electr. Power Energy Syst. 2015, 64, 71–87. [Google Scholar] [CrossRef]
- Zhang, Y.; Xu, Y.; Dong, Z.Y.; Zhang, R. A Hierarchical Self-Adaptive Data-Analytics Method for Real-Time Power System Short-Term Voltage Stability Assessment. IEEE Trans. Ind. Inf. 2019, 15, 74–84. [Google Scholar] [CrossRef]
- Zhu, L.; Lu, C.; Dong, Z.Y.; Hong, C. Imbalance Learning Machine-Based Power System Short-Term Voltage Stability Assessment. IEEE Trans. Ind. Inf. 2017, 13, 2533–2543. [Google Scholar] [CrossRef]
- Villa-Acevedo, W.M.; López-Lezama, J.M.; Colomé, D.G.; Cepeda, J. Long-term voltage stability monitoring of power system areas using a kernel extreme learning machine approach. Alex. Eng. J. 2022, 61, 1353–1367. [Google Scholar] [CrossRef]
- Samy, A.K.; Venkadesan, A. Evaluation of Voltage Stability Margin in a Power System using an Artificial Neural Network. In Proceedings of the 2022 IEEE 10th Power India International Conference (PIICON), New Delhi, India, 25–27 November 2022; IEEE: Piscataway, NJ, USA, 2022; pp. 1–6, ISBN 978-1-6654-5930-3. [Google Scholar]
- Bahmanyar, A.R.; Karami, A. Power system voltage stability monitoring using artificial neural networks with a reduced set of inputs. Int. J. Electr. Power Energy Syst. 2014, 58, 246–256. [Google Scholar] [CrossRef]
- Ashraf, S.M.; Gupta, A.; Choudhary, D.K.; Chakrabarti, S. Voltage stability monitoring of power systems using reduced network and artificial neural network. Int. J. Electr. Power Energy Syst. 2017, 87, 43–51. [Google Scholar] [CrossRef]
- Subramani, C.; Jimoh, A.A.; Kiran, S.H.; Dash, S.S. Artificial neural network based voltage stability analysis in power system. In Proceedings of the 2016 International Conference on Circuit, Power and Computing Technologies (ICCPCT), Nagercoil, India, 18–19 March 2016; IEEE: Piscataway, NJ, USA, 2016; pp. 1–4, ISBN 978-1-5090-1277-0. [Google Scholar]
- Sallam, A.A.; Khafaga, A.M. Artificial neural network application to alleviate voltage instability problem. In Proceedings of the LESCOPE’02. 2002 Large Engineering Systems Conference on Power Engineering, Halifax, NS, Canada, 26–28 June 2002; IEEE: Piscataway, NJ, USA, 2002; pp. 133–141, ISBN 0-7803-7520-3. [Google Scholar]
- Zhang, X.; Wang, Y.; Xie, P.; Lin, S.; Luo, H.; Ling, H.; Li, W. Power System Transient Stability Control Method Based on Deep Learning Hybrid Model. In Proceedings of the 2021 IEEE/IAS Industrial and Commercial Power System Asia (I&CPS Asia), Chengdu, China, 18–21 July 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 1447–1451, ISBN 978-1-6654-3498-0. [Google Scholar]
- Gomez, F.R.; Rajapakse, A.D.; Annakkage, U.D.; Fernando, I.T. Support Vector Machine-Based Algorithm for Post-Fault Transient Stability Status Prediction Using Synchronized Measurements. IEEE Trans. Power Syst. 2011, 26, 1474–1483. [Google Scholar] [CrossRef]
- Zhang, M.; Xu, Q.; Magnusson, S.; Pilawa-Podgurski, R.C.N.; Guo, G. Multi-Agent Deep Reinforcement Learning for Decentralized Voltage-Var Control in Distribution Power System. In Proceedings of the 2022 IEEE Energy Conversion Congress and Exposition (ECCE), Detroit, MI, USA, 9–13 October 2022; IEEE: Piscataway, NJ, USA, 2022; pp. 1–5, ISBN 978-1-7281-9387-8. [Google Scholar]
- Rajabdorri, M.; Kazemtabrizi, B.; Troffaes, M.; Sigrist, L.; Lobato, E. Inclusion of frequency nadir constraint in the unit commitment problem of small power systems using machine learning. Sustain. Energy Grids Netw. 2023, 36, 101161. [Google Scholar] [CrossRef]
- Liu, X.; Xie, J.; Fang, X.; Yuan, H.; Wang, B.; Wu, H.; Tan, J. A Comparison of Machine Learning Methods for Frequency Nadir Estimation in Power Systems. In Proceedings of the 2022 IEEE Kansas Power and Energy Conference (KPEC), Manhattan, KS, USA, 25–26 April 2022; IEEE: Piscataway, NJ, USA, 2022; pp. 1–5, ISBN 978-1-6654-6591-5. [Google Scholar]
- Zhang, G.; Teng, M.; Chen, C.; Bie, Z. A Deep Reinforcement Learning Based Framework for Power System Load Frequency Control. In Proceedings of the 2022 IEEE/IAS Industrial and Commercial Power System Asia (I&CPS Asia), Shanghai, China, 8–11 July 2022; IEEE: Piscataway, NJ, USA, 2022; pp. 1801–1805, ISBN 978-1-6654-5066-9. [Google Scholar]
- Yan, Z.; Xu, Y. A Multi-Agent Deep Reinforcement Learning Method for Cooperative Load Frequency Control of a Multi-Area Power System. IEEE Trans. Power Syst. 2020, 35, 4599–4608. [Google Scholar] [CrossRef]
- Chen, X.; Chen, Z.; Han, X.; Liu, Y. A Method of Frequency Features Prediction of Post-disturbance Power System Based on XGBoost Algorithm. In Proceedings of the 2020 IEEE/IAS Industrial and Commercial Power System Asia (I&CPS Asia), Weihai, China, 13–15 July 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 1535–1540, ISBN 978-1-7281-4303-3. [Google Scholar]
- Yang, Z.; Ce, L.; Lian, L. Electricity price forecasting by a hybrid model, combining wavelet transform, ARMA and kernel-based extreme learning machine methods. Appl. Energy 2017, 190, 291–305. [Google Scholar] [CrossRef]
- Bhatia, K.; Mittal, R.; Varanasi, J.; Tripathi, M.M. An ensemble approach for electricity price forecasting in markets with renewable energy resources. Util. Policy 2021, 70, 101185. [Google Scholar] [CrossRef]
- Cruz May, E.; Bassam, A.; Ricalde, L.J.; Escalante Soberanis, M.A.; Oubram, O.; May Tzuc, O.; Alanis, A.Y.; Livas-García, A. Global sensitivity analysis for a real-time electricity market forecast by a machine learning approach: A case study of Mexico. Int. J. Electr. Power Energy Syst. 2022, 135, 107505. [Google Scholar] [CrossRef]
- Wang, X.; Pei, P. A novel algorithm for energy market risk forecasting. Comput. Electr. Eng. 2022, 99, 107813. [Google Scholar] [CrossRef]
- Fraunholz, C.; Kraft, E.; Keles, D.; Fichtner, W. Advanced price forecasting in agent-based electricity market simulation. Appl. Energy 2021, 290, 116688. [Google Scholar] [CrossRef]
- Luo, J.; Zhu, G.; Xiang, H. Artificial Intelligent based day-ahead stock market profit forecasting. Comput. Electr. Eng. 2022, 99, 107837. [Google Scholar] [CrossRef]
- Tschora, L.; Pierre, E.; Plantevit, M.; Robardet, C. Electricity price forecasting on the day-ahead market using machine learning. Appl. Energy 2022, 313, 118752. [Google Scholar] [CrossRef]
- Kapoor, G.; Wichitaksorn, N. Electricity price forecasting in New Zealand: A comparative analysis of statistical and machine learning models with feature selection. Appl. Energy 2023, 347, 121446. [Google Scholar] [CrossRef]
- Sarwar, S.; Aziz, G.; Kumar Tiwari, A. Implication of machine learning techniques to forecast the electricity price and carbon emission: Evidence from a hot region. Geosci. Front. 2023, 101647. [Google Scholar] [CrossRef]
- Aasim; Singh, S.N.; Mohapatra, A. Data driven day-ahead electrical load forecasting through repeated wavelet transform assisted SVM model. Appl. Soft Comput. 2021, 111, 107730. [Google Scholar] [CrossRef]
- Damuluri, S.; Islam, K.; Ahmadi, P.; Qureshi, N.S. Analyzing Navigational Data and Predicting Student Grades Using Support Vector Machine. Emerg Sci. J. 2020, 4, 243–252. [Google Scholar] [CrossRef]
- Dabbaghjamanesh, M.; Kavousi-Fard, A.; Mehraeen, S.; Zhang, J.; Dong, Z.Y. Sensitivity Analysis of Renewable Energy Integration on Stochastic Energy Management of Automated Reconfigurable Hybrid AC–DC Microgrid Considering DLR Security Constraint. IEEE Trans. Ind. Inf. 2020, 16, 120–131. [Google Scholar] [CrossRef]
- Zhang, C.; Li, R.; Shi, H.; Li, F. Deep learning for day-ahead electricity price forecasting. IET Smart Grid 2020, 3, 462–469. [Google Scholar] [CrossRef]
- Sencan, U.; Soykan, G.; Arica, N. Forecasting of Day-Ahead Electricity Price Using Long Short-Term Memory-Based Deep Learning Method. Arab. J. Sci. Eng. 2022, 47, 14025–14036. [Google Scholar] [CrossRef]
- Ghimire, S.; Deo, R.C.; Casillas-Pérez, D.; Salcedo-Sanz, S. Two-step deep learning framework with error compensation technique for short-term, half-hourly electricity price forecasting. Appl. Energy 2024, 353, 122059. [Google Scholar] [CrossRef]
- Yang, W.; Sun, S.; Hao, Y.; Wang, S. A novel machine learning-based electricity price forecasting model based on optimal model selection strategy. Energy 2022, 238, 121989. [Google Scholar] [CrossRef]
- Gunduz, S.; Ugurlu, U.; Oksuz, I. Transfer learning for electricity price forecasting. Sustain. Energy Grids Netw. 2023, 34, 100996. [Google Scholar] [CrossRef]
- Khwaja, A.S.; Zhang, X.; Anpalagan, A.; Venkatesh, B. Boosted neural networks for improved short-term electric load forecasting. Electr. Power Syst. Res. 2017, 143, 431–437. [Google Scholar] [CrossRef]
- Zhou, Y.; Chang, F.-J.; Chen, H.; Li, H. Exploring Copula-based Bayesian Model Averaging with multiple ANNs for PM2.5 ensemble forecasts. J. Clean. Prod. 2020, 263, 121528. [Google Scholar] [CrossRef]
- Martins, J.R.R.A.; Ning, A. Engineering Design Optimization; Cambridge University Press: Cambridge, UK, 2022; ISBN 9781108980647. [Google Scholar]
- Alonso, G.; Del Valle, E.; Ramirez, J.R. Optimization methods. In Desalination in Nuclear Power Plants; Gustavo, A., Edmundo, d.V., Jose Ramon, R., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 67–76. ISBN 9780128200216. [Google Scholar]
- Janga Reddy, M.; Nagesh Kumar, D. Evolutionary algorithms, swarm intelligence methods, and their applications in water resources engineering: A state-of-the-art review. H2Open J. 2020, 3, 135–188. [Google Scholar] [CrossRef]
- Zgurovsky, M.; Sineglazov, V.; Chumachenko, E. Classification and Analysis of Multicriteria Optimization Methods. In Artificial Intelligence Systems Based on Hybrid Neural Networks; Zgurovsky, M., Sineglazov, V., Chumachenko, E., Eds.; Springer International Publishing: Cham, Switzerland, 2021; pp. 59–174. ISBN 978-3-030-48452-1. [Google Scholar]
- Vasuki, A. Nature-Inspired Optimization Algorithms; Chapman and Hall/CRC: Boca Raton, FL, USA, 2020; ISBN 9780429289071. [Google Scholar]
- Rao, S.S. Engineering Optimization Theory and Practice; Rao, S.S., Ed.; Wiley: Hoboken, NJ, USA, 2019; ISBN 9781119454717. [Google Scholar]
- Data-Driven Evolutionary Optimization; Jin, Y.; Wang, H.; Sun, C. (Eds.) Springer International Publishing: Cham, Switzerland, 2021; ISBN 978-3-030-74639-1. [Google Scholar]
- Jin, Y.; Wang, H.; Sun, C. (Eds.) Classical Optimization Algorithms. In Data-Driven Evolutionary Optimization; Springer International Publishing: Cham, Switzerland, 2021; pp. 41–51. ISBN 978-3-030-74639-1. [Google Scholar]
- Shahakar, Y.D.; Shahakar, D.A. Introduction and Classification of Classical and Advanced Optimization Methods for Electric Power System. In Proceedings of the 2019 International Conference on Innovative Trends and Advances in Engineering and Technology (ICITAET), Shegaon, India, 27–28 December 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 53–59, ISBN 978-1-7281-1901-4. [Google Scholar]
- Catalão, J.P.S. (Ed.) .Electric Power Systems: Advanced Forecasting Techniques and Optimal Generation Scheduling; CRC Press: Boca Raton, FL, USA, 2017; ISBN 9781138073982. [Google Scholar]
- Keller, A.A. Multi-Objective Optimization in Theory and Practice I: Classical Methods; Bentham Science Publishers: Sharjah, United Arab Emirates, 2017; ISBN 9781681085685. [Google Scholar]
- Verdejo, H.; Torres, R.; Pino, V.; Kliemann, W.; Becker, C.; Delpiano, J. Tuning of Controllers in Power Systems Using a Heuristic-Stochastic Approach. Energies 2019, 12, 2325. [Google Scholar] [CrossRef]
- Soued, S.; Ebrahim, M.A.; Ramadan, H.S.; Becherif, M. Optimal blade pitch control for enhancing the dynamic performance of wind power plants via metaheuristic optimisers. IET Electr. Power Appl. 2017, 11, 1432–1440. [Google Scholar] [CrossRef]
- Alasali, F.; Nusair, K.; Obeidat, A.M.; Foudeh, H.; Holderbaum, W. An analysis of optimal power flow strategies for a power network incorporating stochastic renewable energy resources. Int. Trans. Electr. Energ. Syst. 2021, 31, e13060. [Google Scholar] [CrossRef]
- Abedinia, O.; Amjady, N.; Ghadimi, N. Solar energy forecasting based on hybrid neural network and improved metaheuristic algorithm. Comput. Intell. 2018, 34, 241–260. [Google Scholar] [CrossRef]
- Selim, A.; Kamel, S.; Jurado, F. Voltage stability analysis based on optimal placement of multiple DG types using hybrid optimization technique. Int. Trans. Electr. Energ. Syst. 2020, 30, e12551. [Google Scholar] [CrossRef]
- Sulaiman, M.H.; Mustaffa, Z. Optimal placement and sizing of FACTS devices for optimal power flow using metaheuristic optimizers. Results Control Optim. 2022, 8, 100145. [Google Scholar] [CrossRef]
- Sahraei, M.A.; Çodur, M.K. Prediction of transportation energy demand by novel hybrid meta-heuristic ANN. Energy 2022, 249, 123735. [Google Scholar] [CrossRef]
- Jiaqing, Z.; Lu, W.; Xiaoxiao, Z.; Bo, H. Research on optimisation of integrated energy system scheduling based on weak robust optimisation theory. IET Gener. Transm. Distrib. 2019, 13, 64–72. [Google Scholar] [CrossRef]
- Guo, H.; Shi, T.; Wang, F.; Zhang, L.; Lin, Z. Adaptive clustering-based hierarchical layout optimisation for large-scale integrated energy systems. IET Renew. Power Gen. 2020, 14, 3336–3345. [Google Scholar] [CrossRef]
- Silveira, C.L.B.; Tabares, A.; Faria, L.T.; Franco, J.F. Mathematical optimization versus Metaheuristic techniques: A performance comparison for reconfiguration of distribution systems. Electr. Power Syst. Res. 2021, 196, 107272. [Google Scholar] [CrossRef]
- Mroczek, B.; Pijarski, P. DSO Strategies Proposal for the LV Grid of the Future. Energies 2021, 14, 6327. [Google Scholar] [CrossRef]
- Kacejko, P.; Pijarski, P. Generation Level Matching to the Transmission Capability of Overhead Lines. Acta Energetica 2013, 1, 43–49. [Google Scholar] [CrossRef]
- Stadnicki, J. Teoria i Praktyka Rozwiązywania Zadań Optymalizacji: Z Przykładami Zastosowań Technicznych, 1st ed.; Wydawnictwo Naukowe PWN: Warszawa, Poland, 2017; ISBN 978-83-011-9589-2. [Google Scholar]
- Amborski, K. Podstawy Metod Optymalizacji; Oficyna Wydawnicza Politechniki Warszawskiej: Warszawa, Poland, 2009; ISBN 978-83-7207-794-3. [Google Scholar]
- Kacejko, P.; Pijarski, P. Connecting of wind farms—Limitations instead of oversized investment. Rynek Energii 2009, 1, 10–15. [Google Scholar]
- Optymalizacja Rozdziału Ograniczeń Mocy źródeł Przyłączonych do Sieci Zamkniętej w Warunkach Przekroczenia Obciążalności Jej Elementów; Kacejko, P.; Pijarski, P. (Eds.) Sieci: Szklarska Poręba, Poland, 2008. [Google Scholar]
- Kumar, R.; Chauhan, H.S.; Singh, B.; Sharma, A. Wide area monitoring and measurements using mixed integer linear programming in deregulated power system for smart grid. Results Eng. 2021, 12, 100204. [Google Scholar] [CrossRef]
- Zhang, X.; Woo, H.; Choi, S. An interval power flow method for radial distribution systems based on hybrid second-order cone and linear programming. Sustain. Energy Grids Netw. 2023, 36, 101158. [Google Scholar] [CrossRef]
- Bordin, C.; Anuta, H.O.; Crossland, A.; Gutierrez, I.L.; Dent, C.J.; Vigo, D. A linear programming approach for battery degradation analysis and optimization in offgrid power systems with solar energy integration. Renew. Energy 2017, 101, 417–430. [Google Scholar] [CrossRef]
- Munteanu, I.; Ceanga, E.; Cutululis, N.A.; Bratcu, A. Linear Quadratic Optimization of Variable Speed Wind Power Systems. IFAC Proc. Vol. 2003, 36, 157–162. [Google Scholar] [CrossRef]
- Munteanu, I.; Bratcu, A.I.; Frangu, L. Nonlinear Control for Stationary Optimization of Wind Power Systems. IFAC Proc. Vol. 2004, 37, 195–200. [Google Scholar] [CrossRef]
- Niu, W.; Feng, Z.; Cheng, C. Optimization of variable-head hydropower system operation considering power shortage aspect with quadratic programming and successive approximation. Energy 2018, 143, 1020–1028. [Google Scholar] [CrossRef]
- Teferra, D.M.; Ngoo, L.M.H.; Nyakoe, G.N. Fuzzy-based prediction of solar PV and wind power generation for microgrid modeling using particle swarm optimization. Heliyon 2023, 9, e12802. [Google Scholar] [CrossRef]
- Tang, L.; Kong, T.; Innab, N. Eagle arithmetic optimization algorithm for renewable energy-based load frequency stabilization of power systems. Sustain. Comput. Inform. Syst. 2023, 40, 100925. [Google Scholar] [CrossRef]
- Civelek, Z.; Çam, E.; Lüy, M.; Mamur, H. Proportional–integral–derivative parameter optimisation of blade pitch controller in wind turbines by a new intelligent genetic algorithm. IET Renew. Power Gen 2016, 10, 1220–1228. [Google Scholar] [CrossRef]
- Ravi, V.; Duraiswamy, K. Artificial bee colony optimisation for effective power system stabilisation. Aust. J. Electr. Electron. Eng. 2013, 10, 1367–1374. [Google Scholar] [CrossRef]
- Subramanian, S.; Anandhakumar, R.; Ganesan, S. Artificial Bee Colony Based Solution Technique for Generator Maintenance Scheduling. Aust. J. Electr. Electron. Eng. 2012, 9, 109–126. [Google Scholar] [CrossRef]
- Eke, Ī.; Taplamacıoğlu, M.C.; Lee, K.Y. Robust Tuning of Power System Stabilizer by Using Orthogonal Learning Artificial Bee Colony. IFAC-Pap. 2015, 48, 149–154. [Google Scholar] [CrossRef]
- Li, Q.; Zhou, F.; Guo, F.; Fan, F.; Huang, Z. Optimized Energy Storage System Configuration for Voltage Regulation of Distribution Network With PV Access. Front. Energy Res. 2021, 9, 641518. [Google Scholar] [CrossRef]
- Eberhart; Shi, Y. Particle swarm optimization: Developments, applications and resources. In Proceedings of the 2001 Congress on Evolutionary Computation (IEEE Cat. No.01TH8546), Seoul, Republic of Korea, 27–30 May 2001; IEEE: Piscataway, NJ, USA, 2001; pp. 81–86, ISBN 0-7803-6657-3. [Google Scholar]
- Zhu, X.; Zhao, S.; Yang, Z.; Zhang, N.; Xu, X. A parallel meta-heuristic method for solving large scale unit commitment considering the integration of new energy sectors. Energy 2022, 238, 121829. [Google Scholar] [CrossRef]
- Honghai, K.; Fuqing, S.; Yurui, C.; Kai, W.; Zhiyi, H. Reactive power optimization for distribution network system with wind power based on improved multi-objective particle swarm optimization algorithm. Electr. Power Syst. Res. 2022, 213, 108731. [Google Scholar] [CrossRef]
- Pal, K.; Sachan, S.; Gholian-Jouybari, F.; Hajiaghaei-Keshteli, M. An analysis of the security of multi-area power transmission lines using fuzzy-ACO. Exp. Syst. Appl. 2023, 224, 120070. [Google Scholar] [CrossRef]
- Fetanat, A.; Shafipour, G. Generation maintenance scheduling in power systems using ant colony optimization for continuous domains based 0–1 integer programming. Exp. Syst. Appl. 2011, 38, 9729–9735. [Google Scholar] [CrossRef]
- Zhou, J.; Wang, C.; Li, Y.; Wang, P.; Li, C.; Lu, P.; Mo, L. A multi-objective multi-population ant colony optimization for economic emission dispatch considering power system security. Appl. Math. Model. 2017, 45, 684–704. [Google Scholar] [CrossRef]
- Ebid, A.M.; Abdel-Kader, M.Y.; Mahdi, I.M.; Abdel-Rasheed, I. Ant Colony Optimization based algorithm to determine the optimum route for overhead power transmission lines. Ain Shams Eng. J. 2024, 15, 102344. [Google Scholar] [CrossRef]
- Al-Shammaa, A.A.; Abdurraqeeb, A.M.; Noman, A.M.; Alkuhayli, A.; Farh, H.M.H. Hardware-In-the-Loop Validation of Direct MPPT Based Cuckoo Search Optimization for Partially Shaded Photovoltaic System. Electronics 2022, 11, 1655. [Google Scholar] [CrossRef]
- Peddakapu, K.; Mohamed, M.R.; Sulaiman, M.H.; Srinivasarao, P.; Kishore, D.J.K.; Leung, P.K. Cuckoo optimised 2DOF controllers for stabilising the frequency changes in restructured power system with wind-hydro units. Int. J. Ambient Energy 2022, 43, 3995–4009. [Google Scholar] [CrossRef]
- Afanasyeva, S.; Saari, J.; Pyrhönen, O.; Partanen, J. Cuckoo search for wind farm optimization with auxiliary infrastructure. Wind Energy 2018, 21, 855–875. [Google Scholar] [CrossRef]
- Antoniadis, N.; Cordy, M.; Sifaleras, A.; Le Traon, Y. A variable neighborhood search simheuristic algorithm for reliability optimization of smart grids under uncertainty. Int Trans Oper. Res 2022, 29, 2172–2200. [Google Scholar] [CrossRef]
- Pijarski, P.; Kacejko, P. A new metaheuristic optimization method: The algorithm of the innovative gunner (AIG). Eng. Optim. 2019, 51, 2049–2068. [Google Scholar] [CrossRef]
- Kareem, S.W.; Hama Ali, K.W.; Askar, S.; Xoshaba, F.S.; Hawezi, R. Metaheuristic algorithms in optimization and its application: A review. JAREE 2022, 6, 7–12. [Google Scholar] [CrossRef]
- Yesilbudak, M. A Comparative Study on Accurate Parameter Estimation of Solar Photovoltaic Models Using Metaheuristic Optimization Algorithms. Electr. Power Compon. Syst. 2023, 1–21. [Google Scholar] [CrossRef]
- Kacejko, P.; Pijarski, P. Optimal Voltage Control in MV Network with Distributed Generation. Energies 2021, 14, 469. [Google Scholar] [CrossRef]
- Pijarski, P.; Kacejko, P. Voltage Optimization in MV Network with Distributed Generation Using Power Consumption Control in Electrolysis Installations. Energies 2021, 14, 993. [Google Scholar] [CrossRef]
- Nandini, K.K.; Jayalakshmi, N.S.; Jadoun, V.K. Metaheuristic Algorithms for Evaluating the Effect of Electric Vehicle Charging Infrastructures in Distribution Networks. Electr. Power Compon. Syst. 2023, 1–18. [Google Scholar] [CrossRef]
- Muller, S.D.; Marchetto, J.; Airaghi, S.; Kournoutsakos, P. Optimization based on bacterial chemotaxis. IEEE Trans. Evol. Computat. 2002, 6, 16–29. [Google Scholar] [CrossRef]
- Krishnanand, K.N.; Ghose, D. Detection of multiple source locations using a glowworm metaphor with applications to collective robotics. In Proceedings of the 2005 IEEE Swarm Intelligence Symposium (SIS 2005), Pasadena, CA, USA, 8–10 June 2005; IEEE: Piscataway, NJ, USA, 2005; pp. 84–91, ISBN 0-7803-8916-6. [Google Scholar]
- Yang, X.-S. A New Metaheuristic Bat-Inspired Algorithm. In Nature Inspired Cooperative Strategies for Optimization (NICSO 2010); Kacprzyk, J., González, J.R., Pelta, D.A., Cruz, C., Terrazas, G., Krasnogor, N., Eds.; Springer: Berlin/Heidelberg, Germany, 2010; pp. 65–74. ISBN 978-3-642-12537-9. [Google Scholar]
- Wang, J.; Qian, Y.; Zhang, L.; Wang, K.; Zhang, H. A novel wind power forecasting system integrating time series refining, nonlinear multi-objective optimized deep learning and linear error correction. Energy Convers. Manag. 2024, 299, 117818. [Google Scholar] [CrossRef]
- Pijarski, P.; Kacejko, P. Methods of Simulated Annealing and Particle Swarm Applied to the Optimization of Reactive Power Flow in Electric Power Systems. AECE 2018, 18, 43–48. [Google Scholar] [CrossRef]
- Pijarski, P.; Kacejko, P. Elimination of Line Overloads in a Power System Saturated with Renewable Energy Sources. Energies 2023, 16, 3751. [Google Scholar] [CrossRef]
- Kolcun, M.; Beňa, L.; Rusnák, J. The solution of optimisation problems in the operation control of the electric power system using SOMA algorithm. Prz. Elektrotechniczny 2008, 84, 70–73. [Google Scholar]
- Pál, D.; Beňa, Ľ.; Kolcun, M.; Čonka, Z. Optimization of Active Power Losses in Smart Grids Using Photovoltaic Power Plants. Energies 2022, 15, 739. [Google Scholar] [CrossRef]
- Zhu, J. (Ed.) Optimization of Power System Operation; John Wiley & Sons, Inc: Hoboken, NJ, USA, 2015; ISBN 9781118887004. [Google Scholar]
- Radosavljević, J. Metaheuristic Optimization in Power Engineering; The Institution of Engineering and Technology: London, UK, 2018; ISBN 9781785615467. [Google Scholar]
- Pijarski, P.D. Heuristic Optimization in the Assessment of Operating Conditions and Development Planning of the Power System; Lublin University of Technology Publishers: Lublin, Poland, 2019; ISBN 978-83-7947-349-6. [Google Scholar]
- Kumar, K.; Zindani, D.; Davim, J.P. Optimizing Engineering Problems through Heuristic Techniques; CRC Press: Boca Raton, FL, USA, 2019; ISBN 9781351049580. [Google Scholar]
- Yang, X.-S. Nature-Inspired Optimization Algorithms; Elsevier: Amsterdam, The Netherlands, 2014; ISBN 9780124167438. [Google Scholar]
- Chih, H.-C.; Lin, W.-C.; Huang, W.-T.; Yao, K.-C. Implementation of EDGE Computing Platform in Feeder Terminal Unit for Smart Applications in Distribution Networks with Distributed Renewable Energies. Sustainability 2022, 14, 13042. [Google Scholar] [CrossRef]
Artificial Intelligence | ||
---|---|---|
Machine learning | ||
Supervised learning | Deep learning | [4,11,16,18,20,24] |
Neural networks | [3,5,6,8,9,10,12,21,22] | |
Regression | [19] | |
Classification | [3,7,13] | |
Unsupervised learning | Clustering | [3,23,24,26] |
Reinforcement learning | Q-learning | [15] |
Artificial Intelligence | ||
---|---|---|
Machine learning | ||
Supervised learning | Deep learning | [28,29,37,38,39,40,41,44,45,50,53,56,57,66,67,74,75,80,81] |
Neural networks | [29,31,32,33,46,47,51,54,55,60,62,63,64,68,76,77,78,79,81,82] | |
Regression | [30,36,42,48,52,61] | |
Classification | [43,50,52,60,61,65,69,70,71] | |
Bayesian methods | [27,35,70] | |
Ensemble methods | Bagging | [34,50,52,73] |
Boosting | [30,49,52] | |
Expert system | [58,59] | |
Fuzzy logic | [78,82] |
Artificial Intelligence | ||
---|---|---|
Machine learning | ||
Supervised learning | Deep learning | [87,88,89,90,91,92,93,94,95,96,97,98,101,102,103,104,105,106,107,108] |
Neural networks | [99,100,109,110] | |
Classification | [87,90] | |
Expert system | [112,113,114] |
Artificial Intelligence | ||
---|---|---|
Machine learning | ||
Supervised learning | Deep learning | [121,122,132,133,134,135,138] |
Neural networks | [117,119,126,137,139,140,141] | |
Classification | [118,123,124,126,141] | |
Reinforcement learning | Q-learning | [120,129,130,131] |
Ensemble methods | Bagging | [125,136] |
Expert system | [145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166] | |
Fuzzy logic | [142,143,144] |
Artificial Intelligence | ||
---|---|---|
Machine learning | ||
Supervised learning | Deep learning | [167,180] |
Neural networks | [168,169,170,171,172,174,175,176,177,178,179] | |
Classification | [173,184,185,186] | |
Expert system | [187,188,189] | |
Fuzzy logic | [170,181,182,183] |
Artificial Intelligence | ||
---|---|---|
Machine learning | ||
Supervised learning | Deep learning | [204,206,209,210] |
Neural networks | [192,194,195,196,198,199,200,201,202,203,208,211] | |
Classification | [192,197,205] | |
Regression | [207,208] | |
Ensemble methods | Bagging | [204,208] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pijarski, P.; Belowski, A. Application of Methods Based on Artificial Intelligence and Optimisation in Power Engineering—Introduction to the Special Issue. Energies 2024, 17, 516. https://doi.org/10.3390/en17020516
Pijarski P, Belowski A. Application of Methods Based on Artificial Intelligence and Optimisation in Power Engineering—Introduction to the Special Issue. Energies. 2024; 17(2):516. https://doi.org/10.3390/en17020516
Chicago/Turabian StylePijarski, Paweł, and Adrian Belowski. 2024. "Application of Methods Based on Artificial Intelligence and Optimisation in Power Engineering—Introduction to the Special Issue" Energies 17, no. 2: 516. https://doi.org/10.3390/en17020516
APA StylePijarski, P., & Belowski, A. (2024). Application of Methods Based on Artificial Intelligence and Optimisation in Power Engineering—Introduction to the Special Issue. Energies, 17(2), 516. https://doi.org/10.3390/en17020516