Research on a New Method of Water Recovery from Biogas Plant Digestate
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects of the Study
2.2. Test Stand
2.3. Methodology and Analysis of the Digestate Parameters
3. Results and Discussion
3.1. Dewatering of Digestate—Phase I
- -
- Reactor 1—2248 g of condensate,
- -
- Reactor 2—1505 g of condensate.
3.2. Dewatering of Digestate—Phase II
- Reactor 1
- 32 kg—initial amount of digestate,
- 20.3 kg—weight of the digest after 3 weeks of dehydration,
- 11.5 kg—total weight of condensate.
- Reactor 2
- 32 kg—initial amount of digestate,
- 21.85 kg—weight of the digest after 3 weeks of dehydration,
- 9.99 kg—total weight of condensate.
4. Energy and Economic Analysis
- -
- Used energy supplied to heat the interior of the lagoon simultaneously allows the evaporation of the water contained in the digestate and is not directly used in the dewatering process under study but in the process of biological desulfurization of biogas and its digestion, using the reactor as an additional phase of fermentation. Due to the use of biological desulfurization and digestion of the digestate, the energy consumption needed to heat the lagoon for dewatering was ignored,
- -
- The digestate in the reactors is stirred to digest it and increase the biogas yield. The use of an agitator is also necessary due to the dross that is formed. The increase in electricity demand by the agitator has been approximated. For the most unfavorable case, the energy consumption used to drive the agitator motor can increase by 50% relative to the initial dry matter value of the mixed digestate,
- -
- The adopted cost of digestate pulp management was considered for a 1 MWel biogas plant, for which the average transport distance resulting from spreading the digestate on agricultural fields is 6.71 km, which translates into costs equal to PLN 390,000 per year. The values are based on the research conducted by [46] for 2011. Converting the annual value to 1 Mg of pulp spread, the cost is PLN 5.76 (2011). Thus, making an economic–energy analysis, the cost of pulp export was increased by 30% to equate to the current prices of equipment, fuel, or the cost of personnel,
- -
- The dry matter value was assumed to be 12% and is based on the fact that typical solutions found in most biogas plants are used, i.e., classic submersible pumps and standard Joskin Quadra-type barrels used for the application of substances to agricultural fields,
- -
- -
- -
- Variant II, where the solid fraction and the liquid fraction do not undergo a separation process, and in addition, the feedstock mixture used for biogas production is characterized by low hydration. For this type of biogas plant, the average dry matter content of the digestate pulp is 8.5% DM.
5. Conclusions
6. Patents
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Sarc, R.; Curtis, A.; Kandlbauer, L.; Khodier, K.; Lorber, K.E.; Pomberger, R. Digitalisation and intelligent robotics in value chain of circular economy oriented waste management—A review. Waste Manag. 2019, 95, 476–492. [Google Scholar] [CrossRef]
- Longo, S.; Cellura, M.; Luu, L.Q.; Nguyen, T.Q.; Rincione, R.; Guarino, F. Circular economy and life cycle thinking applied to the biomass supply chain: A review. Renew. Energy 2024, 220, 119598. [Google Scholar] [CrossRef]
- Siddiqui, S.; Zerhusen, B.; Zehetmeier, M.; Effenberger, M. Distribution of specific greenhouse gas emissions from combined heat-and-power production in agricultural biogas plants. Biomass Bioenergy 2020, 133, 105443. [Google Scholar] [CrossRef]
- Czekała, W.; Janczak, D.; Pochwatka, P.; Nowak, M.; Dach, J. Gases Emissions during Composting Process of Agri-Food Industry Waste. Appl. Sci. 2022, 12, 9245. [Google Scholar] [CrossRef]
- Kucher, O.; Hutsol, T.; Glowacki, S.; Andreitseva, I.; Dibrova, A.; Muzychenko, A.; Szeląg-Sikora, A.; Szparaga, A.; Kocira, S. Energy Potential of Biogas Production in Ukraine. Energies 2022, 15, 1710. [Google Scholar] [CrossRef]
- Stürmer, B.; Leiers, D.; Anspach, V.; Brügging, E.; Scharfy, D.; Wissel, T. Agricultural biogas production: A regional comparison of technical parameters. Renew. Energy 2021, 164, 171–182. [Google Scholar] [CrossRef]
- Almena, A.; Thornley, P.; Chong, K.; Röder, M. Carbon dioxide removal potential from decentralised bioenergy with carbon capture and storage (BECCS) and the relevance of operational choices. Biomass Bioenergy 2022, 159, 106406. [Google Scholar] [CrossRef]
- Meyer, A.K.P.; Ehimen, E.A.; Holm-Nielsen, J.B. Future European biogas: Animal manure, straw and grass potentials for a sustainable European biogas production. Biomass Bioenergy 2018, 111, 154–164. [Google Scholar] [CrossRef]
- Kovačić, Đ.; Lončarić, Z.; Jović, J.; Samac, D.; Popović, B.; Tišma, M. Digestate Management and Processing Practices: A Review. Appl. Sci. 2022, 12, 9216. [Google Scholar] [CrossRef]
- Nowak, M.; Bojarski, W.; Czekała, W. Economic and Energy Efficiency Analysis of the Biogas Plant Digestate Management Methods. Energies 2024, 17, 3021. [Google Scholar] [CrossRef]
- Czekała, W.; Nowak, M.; Piechota, G. Sustainable management and recycling of anaerobic digestate solid fraction by composting: A review. Bioresour. Technol. 2023, 375, 128813. [Google Scholar] [CrossRef] [PubMed]
- Di Maria, F.; Sisani, F. A sustainability assessment for use on land or wastewater treatment of the digestate from bio-waste. Waste Manag. 2019, 87, 741–750. [Google Scholar] [CrossRef] [PubMed]
- Dziedzic, K.; Łapczyńska-Kordon, B.; Jurczyk, M.; Arczewska, M.; Wróbel, M.; Jewiarz, M.; Mudryk, K.; Pająk, T. Solid Digestate—Physicochemical and Thermal Study. Energies 2021, 14, 7224. [Google Scholar] [CrossRef]
- Yamakawa, C.K.; Qin, F.; Mussatto, S.I. Advances and opportunities in biomass conversion technologies and biorefineries for the development of a bio-based economy. Biomass Bioenergy 2018, 119, 54–60. [Google Scholar] [CrossRef]
- Wu, D.; Lü, F.; Shao, L.; He, P. Effect of cycle digestion time and solid-liquid separation on digestate recirculated one-stage dry anaerobic digestion: Use of intact polar lipid analysis for microbes monitoring to enhance process evaluation. Renew. Energy 2017, 103, 38–48. [Google Scholar] [CrossRef]
- Lee, M.-S.; Urgun-Demirtas, M.; Shen, Y.; Zumpf, C.; Anderson, E.K.; Rayburn, A.L.; Lee, D.K. Effect of digestate and digestate supplemented with biochar on switchgrass growth and chemical composition. Biomass Bioenergy 2021, 144, 105928. [Google Scholar] [CrossRef]
- Monfet, E.; Aubry, G.; Ramirez, A.A. Nutrient removal and recovery from digestate: A review of the technology. Biofuels 2018, 9, 247–262. [Google Scholar] [CrossRef]
- Lymperatou, A.; Rasmussen, N.B.; Gavala, H.N.; Skiadas, I.V. Improving the Anaerobic Digestion of Swine Manure through an Optimized Ammonia Treatment: Process Performance, Digestate and Techno-Economic Aspects. Energies 2021, 14, 787. [Google Scholar] [CrossRef]
- Nabel, M.; Schrey, S.D.; Poorter, H.; Koller, R.; Jablonowski, N.D. Effects of digestate fertilization on Sida hermaphrodita: Boosting biomass yields on marginal soils by increasing soil fertility. Biomass Bioenergy 2017, 107, 207–213. [Google Scholar] [CrossRef]
- Lamolinara, B.; Pérez-Martínez, A.; Guardado-Yordi, E.; Guillén Fiallos, C.; Diéguez-Santana, K.; Ruiz-Mercado, G.J. Anaerobic digestate management, environmental impacts, and techno-economic challenges. Waste Manag. 2022, 140, 14–30. [Google Scholar] [CrossRef]
- Logan, M.; Visvanathan, C. Management strategies for anaerobic digestate of organic fraction of municipal solid waste: Current status and future prospects. Waste Manag. Res. 2019, 37, 27–39. [Google Scholar] [CrossRef] [PubMed]
- Borek, K.; Romaniuk, W. Biogas Installations for Harvesting Energy and Utilization of Natural Fertilisers. Agric. Eng. 2020, 24, 1–14. [Google Scholar] [CrossRef]
- Cao, B.; Zhang, T.; Zhang, W.; Wang, D. Enhanced technology based for sewage sludge deep dewatering: A critical review. Water Res. 2021, 189, 116650. [Google Scholar] [CrossRef] [PubMed]
- Ajay, C.M.; Mohan, S.; Dinesha, P. Decentralized energy from portable biogas digesters using domestic kitchen waste: A review. Waste Manag. 2021, 125, 10–26. [Google Scholar] [CrossRef]
- Naddeo, V.; Taherzadeh, M.J. Biomass valorization and bioenergy in the blue circular economy. Biomass Bioenergy 2021, 149, 106069. [Google Scholar] [CrossRef]
- Vanham, D.; Alfieri, L.; Flörke, M.; Grimaldi, S.; Lorini, V.; de Roo, A.; Feyen, L. The number of people exposed to water stress in relation to how much water is reserved for the environment: A global modelling study. Lancet Planet. Health 2021, 5, e766–e774. [Google Scholar] [CrossRef]
- Völker, T.; Kovacic, Z.; Strand, R. Indicator development as a site of collective imagination? The case of European Commission policies on the circular economy. Cult. Organ. 2020, 26, 103–120. [Google Scholar] [CrossRef]
- Kawamoto, R.; Mochizuki, H.; Moriguchi, Y.; Nakano, T.; Motohashi, M.; Sakai, Y.; Inaba, A. Estimation of CO2 Emissions of Internal Combustion Engine Vehicle and Battery Electric Vehicle Using LCA. Sustainability 2019, 11, 2690. [Google Scholar] [CrossRef]
- Shoushtarian, F.; Negahban-Azar, M. Worldwide Regulations and Guidelines for Agricultural Water Reuse: A Critical Review. Water 2020, 12, 971. [Google Scholar] [CrossRef]
- Jurgutis, L.; Šlepetienė, A.; Šlepetys, J.; Cesevičienė, J. Towards a Full Circular Economy in Biogas Plants: Sustainable Management of Digestate for Growing Biomass Feedstocks and Use as Biofertilizer. Energies 2021, 14, 4272. [Google Scholar] [CrossRef]
- Dach, J.; Pulka, J.; Janczak, D.; Lewicki, A.; Pochwatka, P.; Oniszczuk, T. Energetic Assessment of Biogas Plant Projects Based on Biowaste and Maize Silage Usage. IOP Conf. Ser. Earth Environ. Sci. 2020, 505, 012029. [Google Scholar] [CrossRef]
- Drosg, B.; Braun, R.; Bochmann, G.; Al Saedi, T. Analysis and characterisation of biogas feedstocks. In The Biogas Handbook; Elsevier: Amsterdam, The Netherlands, 2013; pp. 52–84. ISBN 978-0-85709-498-8. [Google Scholar] [CrossRef]
- Kumar, H. Advanced Techniques of Analytical Chemistry: Volume 1; Bentham Science Publishers: Oak Par, IL, USA, 2022; ISBN 978-981-5050-24-0. [Google Scholar]
- Prakosa, J.A.; Purwowibowo; Larassati, D. Development of Simple Method for Quality Testing of PT100 Sensors Due to Temperature Coefficient of Resistance Measurement. In Proceedings of the 2021 International Symposium on Electronics and Smart Devices (ISESD), Bandung, Indonesia, 29–30 June 2021; pp. 1–5. [Google Scholar] [CrossRef]
- Baldé, H.; VanderZaag, A.C.; Burtt, S.D.; Wagner-Riddle, C.; Crolla, A.; Desjardins, R.L.; MacDonald, D.J. Methane emissions from digestate at an agricultural biogas plant. Bioresour. Technol. 2016, 216, 914–922. [Google Scholar] [CrossRef] [PubMed]
- Vondra, M.; Touš, M.; Teng, S.Y. Digestate evaporation treatment in biogas plants: A techno-economic assessment by Monte Carlo, neural networks and decision trees. J. Clean. Prod. 2019, 238, 117870. [Google Scholar] [CrossRef]
- Feiz, R.; Carraro, G.; Brienza, C.; Meers, E.; Verbeke, M.; Tonderski, K. Systems analysis of digestate primary processing techniques. Waste Manag. 2022, 150, 352–363. [Google Scholar] [CrossRef] [PubMed]
- Guilayn, F.; Jimenez, J.; Martel, J.-L.; Rouez, M.; Crest, M.; Patureau, D. First fertilizing-value typology of digestates: A decision-making tool for regulation. Waste Manag. 2019, 86, 67–79. [Google Scholar] [CrossRef]
- Białowiec, A.; Wiśniewski, D.; Pulka, J.; Siudak, M.; Jakubowski, B.; Myślak, B. Biosuszenie pofermentu z biogazowni rolniczych. Rocz. Ochr. Sr. 2015, 17, 1554–1568. [Google Scholar]
- Awiszus, S.; Meissner, K.; Reyer, S.; Müller, J. Ammonia and methane emissions during drying of dewatered biogas digestate in a two-belt conveyor dryer. Bioresour. Technol. 2018, 247, 419–425. [Google Scholar] [CrossRef]
- Mudryk, K.; Frączek, J.; Jewiarz, M.; Wróbel, M.; Dziedzic, K. Analysis of Mechanical Dewatering of Digestate. Agric. Eng. 2016, 20, 157–166. [Google Scholar] [CrossRef]
- Cathcart, A.; Smyth, B.M.; Lyons, G.; Murray, S.T.; Rooney, D.; Johnston, C.R. Optimising mechanical separation of anaerobic digestate for total solids and nutrient removal. J. Environ. Manag. 2023, 345, 118449. [Google Scholar] [CrossRef]
- Ries, J.; Chen, Z.; Park, Y. Potential Applications of Food-Waste-Based Anaerobic Digestate for Sustainable Crop Production Practice. Sustainability 2023, 15, 8520. [Google Scholar] [CrossRef]
- Morey, L.; Fernández, B.; Tey, L.; Biel, C.; Robles-Aguilar, A.; Meers, E.; Soler, J.; Porta, R.; Cots, M.; Riau, V. Acidification and solar drying of manure-based digestate to produce improved fertilizing products. J. Environ. Manag. 2023, 336, 117664. [Google Scholar] [CrossRef] [PubMed]
- Fina, B.; Auer, H. Economic Viability of Renewable Energy Communities under the Framework of the Renewable Energy Directive Transposed to Austrian Law. Energies 2020, 13, 5743. [Google Scholar] [CrossRef]
- Dach, J.; Pilarski, K.; Janczak, D.; Banasik, P. Koszty zagospodarowania pulpy pofermentacyjnej z biogazowni w kontekście projektu nowej ustawy o nawozach i nawożeniu. In Technika Rolnicza Ogrodnicza Leśna; Przemysłowy Instytut Maszyn Rolniczych: Poznań, Poland, 2011. [Google Scholar]
- Kratzeisen, M.; Starcevic, N.; Martinov, M.; Maurer, C.; Müller, J. Applicability of biogas digestate as solid fuel. Fuel 2010, 89, 2544–2548. [Google Scholar] [CrossRef]
- Wehner, M.; Lichtmannegger, T.; Robra, S.; do Carmo Precci Lopes, A.; Ebner, C.; Bockreis, A. Determination of the dewatered digestate amounts and methane yields from the co-digestion of biowaste as a basis for a cost-benefit analysis. Waste Manag. 2021, 126, 632–642. [Google Scholar] [CrossRef]
- Pilarski, K.; Dach, J.; Janczak, D.; Zbytek, Z. Wpływ odległości transportowej na wydajność pracy agregatów i koszty zagospodarowania pofermentu z biogazowni rolniczej 1 MWel. J. Res. Appl. Agric. Eng. 2011, 56, 109–113. [Google Scholar]
- Naqi, A.; Kuhn, J.N.; Joseph, B. Techno-economic analysis of producing liquid fuels from biomass via anaerobic digestion and thermochemical conversion. Biomass Bioenergy 2019, 130, 105395. [Google Scholar] [CrossRef]
- Ardolino, F.; Parrillo, F.; Arena, U. Biowaste-to-biomethane or biowaste-to-energy? An LCA study on anaerobic digestion of organic waste. J. Clean. Prod. 2018, 174, 462–476. [Google Scholar] [CrossRef]
- Aragon-Briceño, C.; Pożarlik, A.; Bramer, E.; Brem, G.; Wang, S.; Wen, Y.; Yang, W.; Pawlak-Kruczek, H.; Niedźwiecki, Ł.; Urbanowska, A.; et al. Integration of hydrothermal carbonization treatment for water and energy recovery from organic fraction of municipal solid waste digestate. Renew. Energy 2022, 184, 577–591. [Google Scholar] [CrossRef]
- Taufer, N.L.; Benedetti, V.; Pecchi, M.; Matsumura, Y.; Baratieri, M. Coupling hydrothermal carbonization of digestate and supercritical water gasification of liquid products. Renew. Energy 2021, 173, 934–941. [Google Scholar] [CrossRef]
- Roy, U.K.; Radu, T.; Wagner, J.L. Carbon-negative biomethane fuel production: Integrating anaerobic digestion with algae-assisted biogas purification and hydrothermal carbonisation of digestate. Biomass Bioenergy 2021, 148, 106029. [Google Scholar] [CrossRef]
- Rosas-Mendoza, E.S.; Alvarado-Vallejo, A.; Vallejo-Cantú, N.A.; Velasco-Santos, C.; Alvarado-Lassman, A. Valorization of the complex organic waste in municipal solid wastes through the combination of hydrothermal carbonization and anaerobic digestion. Renew. Energy 2024, 231, 120916. [Google Scholar] [CrossRef]
- Kodba, A.; Pukšec, T.; Duić, N. Analysis of Specific Greenhouse Gas Emissions Savings from Biogas Production Based on Agricultural Residues and Industrial By-Products. Energies 2023, 16, 3721. [Google Scholar] [CrossRef]
Factor | Value | Unit |
---|---|---|
Dry matter | 6.11 | % |
Dry organic matter | 57.94 | % D.M. |
pH | 7.77 | - |
Total nitrogen | 3.52 | g∙kg−1 fresh mass |
Test | Conductivity [mS] | pH [-] | Nitrogen Content gNNH3∙kg−1 |
---|---|---|---|
Reactor 1 | 49.10 | 8.31 | 1.75 |
Reactor 2 | 49.50 | 8.37 | 1.81 |
Factor | Reactor 1 | Reactor 2 | Unit |
---|---|---|---|
Dry matter | 7.95 | 7.18 | % |
Dry organic matter | 58.51 | 58.90 | % D.M. |
pH | 8.13 | 7.94 | - |
Ammonium nitrogen content | 1.62 | 1.64 | g∙kg−1 |
Stand | Time | pH | Conductivity [mS] | Nitrogen Content gNNH3∙kg−1 |
---|---|---|---|---|
Reactor 1 | Week 1 | 9.24 | 60.08 | 2.23 |
Week 2 | 9.18 | 55.18 | 2.25 | |
Week 3 | 9.02 | 44.21 | 2.06 | |
Reactor 2 | Week 1 | 8.91 | 59.84 | 2.24 |
Week 2 | 8.86 | 59.21 | 2.28 | |
Week 3 | 8.8 | 50.75 | 2.14 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nowak, M.; Czekała, W.; Bojarski, W.; Dach, J. Research on a New Method of Water Recovery from Biogas Plant Digestate. Energies 2024, 17, 5505. https://doi.org/10.3390/en17215505
Nowak M, Czekała W, Bojarski W, Dach J. Research on a New Method of Water Recovery from Biogas Plant Digestate. Energies. 2024; 17(21):5505. https://doi.org/10.3390/en17215505
Chicago/Turabian StyleNowak, Mateusz, Wojciech Czekała, Wiktor Bojarski, and Jacek Dach. 2024. "Research on a New Method of Water Recovery from Biogas Plant Digestate" Energies 17, no. 21: 5505. https://doi.org/10.3390/en17215505
APA StyleNowak, M., Czekała, W., Bojarski, W., & Dach, J. (2024). Research on a New Method of Water Recovery from Biogas Plant Digestate. Energies, 17(21), 5505. https://doi.org/10.3390/en17215505