Fracture Propagation Laws and Influencing Factors in Coal Reservoirs of the Baode Block, Ordos Basin
Abstract
:1. Introduction
2. Geological Settings
3. Hydraulic Fracturing and Monitoring Methods
3.1. Hydraulic Fracturing
3.2. Microseismic Monitoring
4. Results of Hydraulic Fracturing
4.1. Characteristics of Artificial Fracturing Fractures
4.2. Fracturing Curves
5. Discussion
5.1. Geological Control of Hydraulic Fracture Extension
- (1)
- Coal structure and natural fractures
- (2)
- Coal macrolithotype
- (3)
- In situ stress
5.2. Engineering Control of Hydraulic Fracture Extension
6. Conclusions
- (1)
- The fracturing curves in the Baode Block are categorized into four types. Among them, the stable fracturing curve corresponds to the longest fracture length and the most effective reservoir modification, followed by the descending type. In contrast, the ascending and fluctuating types correspond to shorter, higher hydraulic fractures, yielding the poorest reservoir modification outcomes.
- (2)
- The natural fracture densities in undeformed–cataclastic coals typically range from 3 to 6, indicating that long hydraulic fractures are more easily formed. Bright coal and semi-bright coal, characterized by low mechanical strength and high brittleness, are more susceptible to fracturing under external forces. These properties result in longer fracture propagation distances and improved hydraulic fracturing results. Moreover, significant differences between the maximum and minimum horizontal principal stresses promote the development of long fractures.
- (3)
- Hydraulic fracturing operations with a preflush ratio of 20–30%, an average sand ratio of 13–15%, and a construction pressure between 15 MPa and 25 MPa are more favorable for achieving high and stable coalbed methane production.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Tao, S.; Chen, S.; Pan, Z. Current Status, Challenges, and Policy Suggestions for Coalbed Methane Industry Development in China: A Review. Energy Sci. Eng. 2019, 7, 1059–1074. [Google Scholar] [CrossRef]
- Li, H.; Lau, H.C.; Huang, S. China’s Coalbed Methane Development: A Review of the Challenges and Opportunities in Subsurface and Surface Engineering. J. Pet. Sci. Eng. 2018, 166, 621–635. [Google Scholar] [CrossRef]
- Li, Z.; Peng, J.; Li, L.; Qi, L.; Li, W. Novel Dynamic Multiscale Model of Apparent Diffusion Permeability of Methane through Low-Permeability Coal Seams. Energy Fuels 2021, 35, 7844–7857. [Google Scholar] [CrossRef]
- Wanniarachchi, W.A.M.; Ranjith, P.G.; Perera, M.S.A.; Rathnaweera, T.D.; Zhang, D.C.; Zhang, C. Investigation of Effects of Fracturing Fluid on Hydraulic Fracturing and Fracture Permeability of Reservoir Rocks: An Experimental Study Using Water and Foam Fracturing. Eng. Fract. Mech. 2018, 194, 117–135. [Google Scholar] [CrossRef]
- Sun, X.; Yao, Y.; Liu, D.; Ma, R.; Qiu, Y. Effects of Fracturing Fluids Imbibition on CBM Recovery: In Terms of Methane Desorption and Diffusion. SPE J. 2024, 29, 505–517. [Google Scholar] [CrossRef]
- Detournay, E. Mechanics of Hydraulic Fractures. Annu. Rev. Fluid Mech. 2016, 48, 311–339. [Google Scholar] [CrossRef]
- Adachi, J.; Siebrits, E.; Peirce, A.; Desroches, J. Computer Simulation of Hydraulic Fractures. Int. J. Rock Mech. Min. Sci. 2007, 44, 739–757. [Google Scholar] [CrossRef]
- Li, Q.; Li, Q.; Han, Y. A Numerical Investigation on Kick Control with the Displacement Kill Method during a Well Test in a Deep-Water Gas Reservoir: A Case Study. Processes 2024, 12, 2090. [Google Scholar] [CrossRef]
- Mendelsohn, D.A. A Review of Hydraulic Fracture Modeling—Part I: General Concepts, 2D Models, Motivation for 3D Modeling. J. Energy Resour. Technol. 1984, 106, 369–376. [Google Scholar] [CrossRef]
- Osiptsov, A.A. Fluid Mechanics of Hydraulic Fracturing: A Review. J. Pet. Sci. Eng. 2017, 156, 513–535. [Google Scholar] [CrossRef]
- Bunger, A.P.; Petroleum, C.; Detournay, E. Numerical Simulation of Hydraulic Fracturing in the Viscosity-Dominated Regime. In SPE Hydraulic Fracturing Technology Conference and Exhibition; SPE: Kuala Lumpur, Malaysia, 2007. [Google Scholar]
- Chen, L.; Wang, S.; Zhang, D.; Li, R.; Lu, S. Impact of cement slurry invasion on the propagation of hydraulic fractures in coal reservoirs. Nat. Gas Ind. 2019, 39, 74–81. [Google Scholar]
- Li, Q.; Li, Q.; Wang, F.; Wu, J.; Wang, Y. The Carrying Behavior of Water-Based Fracturing Fluid in Shale Reservoir Fractures and Molecular Dynamics of Sand-Carrying Mechanism. Processes 2024, 12, 2051. [Google Scholar] [CrossRef]
- Li, Q.; Li, T.; Cai, Y.; Liu, D.; Li, L.; Ru, Z.; Yin, T. Research progress on hydraulic fracture characteristics and controlling factors of coalbed methane reservoirs. J. China Coal Soc. 2023, 48, 4443–4460. [Google Scholar]
- Li, R.; Wang, S.; Li, G.; Wang, J. Influences of Coal Seam Heterogeneity on Hydraulic Fracture Geometry: An In Situ Observation Perspective. Rock Mech. Rock Eng. 2022, 55, 4517–4527. [Google Scholar] [CrossRef]
- Liu, Y.; Tang, D.; Xu, H.; Zhao, T.; Hou, W. Effect of Interlayer Mechanical Properties on Initiation and Propagation of Hydraulic Fracturing in Laminated Coal Reservoirs. J. Pet. Sci. Eng. 2022, 208, 109381. [Google Scholar] [CrossRef]
- Zhong, J.; Ge, Z.; Lu, Y.; Zhou, Z.; Zheng, J. New Mechanical Model of Slotting–Directional Hydraulic Fracturing and Experimental Study for Coalbed Methane Development. Nat. Resour. Res. 2021, 30, 639–656. [Google Scholar] [CrossRef]
- Olson, J.E.; Bahorich, B.; Holder, J. Examining Hydraulic Fracture—Natural Fracture Interaction in Hydrostone Block Experiments. In All Days; SPE: The Woodlands, TX, USA, 2012; p. SPE-152618-MS. [Google Scholar]
- Han, W.; Wang, Y.; Li, Y.; Ni, X.; Wu, X.; Wu, P.; Zhao, S. Recognizing Fracture Distribution within the Coalbed Methane Reservoir and Its Implication for Hydraulic Fracturing: A Method Combining Field Observation, Well Logging, and Micro-Seismic Detection. J. Nat. Gas Sci. Eng. 2021, 92, 103986. [Google Scholar] [CrossRef]
- Zhao, H.; Wang, X.; Liu, Z. Experimental Investigation of Hydraulic Sand Fracturing on Fracture Propagation under the Influence of Coal Macrolithotypes in Hancheng Block, China. J. Pet. Sci. Eng. 2019, 175, 60–71. [Google Scholar] [CrossRef]
- Yushi, Z.; Xinfang, M.; Shicheng, Z.; Tong, Z.; Han, L. Numerical Investigation into the Influence of Bedding Plane on Hydraulic Fracture Network Propagation in Shale Formations. Rock Mech. Rock Eng. 2016, 49, 3597–3614. [Google Scholar] [CrossRef]
- Wanniarachchi, W.A.M.; Ranjith, P.G.; Li, J.C.; Perera, M.S.A. Numerical Simulation of Foam-Based Hydraulic Fracturing to Optimise Perforation Spacing and to Investigate Effect of Dip Angle on Hydraulic Fracturing. J. Pet. Sci. Eng. 2019, 172, 83–96. [Google Scholar] [CrossRef]
- Ranjith, P.G.; Wanniarachchi, W.A.M.; Perera, M.S.A.; Rathnaweera, T.D. Investigation of the Effect of Foam Flow Rate on Foam-Based Hydraulic Fracturing of Shale Reservoir Rocks with Natural Fractures: An Experimental Study. J. Pet. Sci. Eng. 2018, 169, 518–531. [Google Scholar] [CrossRef]
- Liang, Y.; Wang, M.; Luo, Y.; Rui, T.; Wang, X.; Meng, Y. Research on the Factors Influencing the Width of Hydraulic Fractures through Layers. J. Pet. Explor. Prod. Technol. 2024, 14, 2113–2127. [Google Scholar] [CrossRef]
- Yang, D.; Ning, Z.; Li, Y.; Lv, Z.; Qiao, Y. In Situ Stress Measurement and Analysis of the Stress Accumulation Levels in Coal Mines in the Northern Ordos Basin, China. Int. J. Coal Sci. Technol. 2021, 8, 1316–1335. [Google Scholar] [CrossRef]
- Liu, D.; Li, J.; Liu, J.; Zhang, L. Modeling Hydrocarbon Accumulation Based on Gas Origin and Source Rock Distribution in Paleozoic Strata of the Ordos Basin, China. Int. J. Coal Geol. 2020, 225, 103486. [Google Scholar] [CrossRef]
- Guo, C.; Qin, Y.; Yi, T.; Ma, D.; Wang, S.; Shi, Q.; Bao, Y.; Chen, Y.; Qiao, J.; Lu, L. Review of the progress of geological research on coalbed methane co-production. Coal Geol. Explor. 2022, 50, 42–57. [Google Scholar]
- Xu, F.; Zhang, W.; Li, Z.; Zhang, L.; Zhang, J.; Hou, W.; Cheng, Q.; Li, Y.; Zhang, Q.; Hao, S.; et al. Coalbed Methane Reservoir Description and Enhanced Recovery Technologies in Baode Block, Ordos Basin. Nat. Gas Ind. 2023, 43, 96–112. [Google Scholar]
- Pu, Y.; Li, S.; Tang, D. Fracturing Construction Curves and Fracture Geometries of Coals in the Southern Qinshui Basin, China: Implication for Coalbed Methane Productivity. ACS Omega 2024, 9, 30436–30451. [Google Scholar] [CrossRef]
- Li, H.; Chang, X. A Review of the Microseismic Focal Mechanism Research. Sci. China Earth Sci. 2021, 64, 351–363. [Google Scholar] [CrossRef]
- Chong, Z.; Yao, Q.; Li, X.; Liu, J. Investigations of Seismicity Induced by Hydraulic Fracturing in Naturally Fractured Reservoirs Based on Moment Tensors. J. Nat. Gas Sci. Eng. 2020, 81, 103448. [Google Scholar] [CrossRef]
- Gabry, M.A.; Gharieb, A.Y.; Soliman, M.; Eltaleb, I.; Farouq-Ali, S.M.; Cipolla, C. Advanced Deep Learning for Microseismic Events Prediction for Hydraulic Fracture Treatment via Continuous Wavelet Transform. Geoenergy Sci. Eng. 2024, 239, 212983. [Google Scholar] [CrossRef]
- Yang, G.; Hu, W.; Tang, S.; Zhou, Z.; Song, Z. Impacts of Vertical Variation of Coal Seam Structure on Hydraulic Fracturing and Resultant Gas and Water Production: A Case Study on the Shizhuangnan Block, Southern Qinshui Basin, China. Energy Explor. Exploit. 2024, 42, 52–64. [Google Scholar] [CrossRef]
- Li, L.; Liu, D.; Cai, Y.; Wang, Y.; Jia, Q. Coal Structure and Its Implications for Coalbed Methane Exploitation: A Review. Energy Fuels 2021, 35, 86–110. [Google Scholar] [CrossRef]
- Teng, J.; Yao, Y.; Liu, D.; Cai, Y. Evaluation of Coal Texture Distributions in the Southern Qinshui Basin, North China: Investigation by a Multiple Geophysical Logging Method. Int. J. Coal Geol. 2015, 140, 9–22. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, D.; Cai, Y.; Yao, Y.; Pan, Z. Constraining Coalbed Methane Reservoir Petrophysical and Mechanical Properties through a New Coal Structure Index in the Southern Qinshui Basin, Northern China: Implications for Hydraulic Fracturing. AAPG Bull. 2020, 104, 1817–1842. [Google Scholar] [CrossRef]
- Cao, L.; Yao, Y.; Liu, D.; Yang, Y.; Wang, Y.; Cai, Y. Application of Seismic Curvature Attributes in the Delineation of Coal Texture and Deformation in Zhengzhuang Field, Southern Qinshui Basin. AAPG Bull. 2020, 104, 1143–1166. [Google Scholar] [CrossRef]
- Hoek, E.; Kaiser, P.K.; Bawden, W.F. Support of Underground Excavations in Hard Rock; CRC Press: Boca Raton, FL, USA, 2000. [Google Scholar]
- Hoek, E.; Marinos, P. Predicting Tunnel Squeezing Problems in Weak Heterogeneous Rock Masses. Tunn. Tunn. Int. 2000, 32, 45–51. [Google Scholar]
- Gentzis, T.; Deisman, N.; Chalaturnyk, R.J. Geomechanical Properties and Permeability of Coals from the Foothills and Mountain Regions of Western Canada. Int. J. Coal Geol. 2007, 69, 153–164. [Google Scholar] [CrossRef]
- Deisman, N.; Gentzis, T.; Chalaturnyk, R.J. Unconventional Geomechanical Testing on Coal for Coalbed Reservoir Well Design: The Alberta Foothills and Plains. Int. J. Coal Geol. 2008, 75, 15–26. [Google Scholar] [CrossRef]
- O’Keefe, J.M.K.; Bechtel, A.; Christanis, K.; Dai, S.; DiMichele, W.A.; Eble, C.F.; Esterle, J.S.; Mastalerz, M.; Raymond, A.L.; Valentim, B.V.; et al. On the Fundamental Difference between Coal Rank and Coal Type. Int. J. Coal Geol. 2013, 118, 58–87. [Google Scholar] [CrossRef]
- Tao, S.; Pan, Z.; Chen, S.; Tang, S. Coal Seam Porosity and Fracture Heterogeneity of Marcolithotypes in the Fanzhuang Block, Southern Qinshui Basin, China. J. Nat. Gas Sci. Eng. 2019, 66, 148–158. [Google Scholar] [CrossRef]
- Cui, C.; Chang, S.; Yao, Y.; Cao, L. Quantify Coal Macrolithotypes of a Whole Coal Seam: A Method Combing Multiple Geophysical Logging and Principal Component Analysis. Energies 2021, 14, 213. [Google Scholar] [CrossRef]
- Ju, W.; Shen, J.; Qin, Y.; Meng, S.; Wu, C.; Shen, Y.; Yang, Z.; Li, G.; Li, C. In-Situ Stress State in the Linxing Region, Eastern Ordos Basin, China: Implications for Unconventional Gas Exploration and Production. Mar. Pet. Geol. 2017, 86, 66–78. [Google Scholar] [CrossRef]
- Wang, R.; Pan, J.; Wang, Z.; Li, G.; Ge, T.; Zheng, H.; Wang, X. Influence of In Situ Stress on Well Test Permeability and Hydraulic Fracturing of the Fanzhuang Block, Qinshui Basin. Energy Fuels 2021, 35, 2121–2133. [Google Scholar] [CrossRef]
- Bagheri, M.; Settari, A. Modeling of Geomechanics in Naturally Fractured Reservoirs. SPE Reserv. Eval. Eng. 2008, 11, 108–118. [Google Scholar] [CrossRef]
- Liu, Z.; Chen, M.; Zhang, G. Analysis of the Influence of a Natural Fracture Network on Hydraulic Fracture Propagation in Carbonate Formations. Rock Mech. Rock Eng. 2014, 47, 575–587. [Google Scholar] [CrossRef]
Well | Curve Type | Fracturing Curve | Fracture Monitoring | Fracture Length/m | Fracture Height/m |
---|---|---|---|---|---|
B1 | Stable | 201.25 | 28 | ||
B2 | Ascending | 136.25 | 24.5 | ||
B3 | Fluctuating | 154.25 | 18.5 | ||
B4 | Descending | 188.35 | 11.5 |
GSI | Coal Texture | Fracture Density (pcs/m) |
---|---|---|
>70 | undeformed coal | 1~3 |
60~70 | undeformed–cataclastic coal | 3~6 |
50~60 | cataclastic–undeformed coal | 6~9 |
40~50 | cataclastic coal | 10~15 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Q.; Li, Y.; Li, Z.; Yao, Y.; Du, F.; Wang, Z.; Tang, Z.; Zhang, W.; Wang, S. Fracture Propagation Laws and Influencing Factors in Coal Reservoirs of the Baode Block, Ordos Basin. Energies 2024, 17, 6183. https://doi.org/10.3390/en17236183
Zhang Q, Li Y, Li Z, Yao Y, Du F, Wang Z, Tang Z, Zhang W, Wang S. Fracture Propagation Laws and Influencing Factors in Coal Reservoirs of the Baode Block, Ordos Basin. Energies. 2024; 17(23):6183. https://doi.org/10.3390/en17236183
Chicago/Turabian StyleZhang, Qingfeng, Yongchen Li, Ziling Li, Yanbin Yao, Fengfeng Du, Zebin Wang, Zhihao Tang, Wen Zhang, and Shutong Wang. 2024. "Fracture Propagation Laws and Influencing Factors in Coal Reservoirs of the Baode Block, Ordos Basin" Energies 17, no. 23: 6183. https://doi.org/10.3390/en17236183
APA StyleZhang, Q., Li, Y., Li, Z., Yao, Y., Du, F., Wang, Z., Tang, Z., Zhang, W., & Wang, S. (2024). Fracture Propagation Laws and Influencing Factors in Coal Reservoirs of the Baode Block, Ordos Basin. Energies, 17(23), 6183. https://doi.org/10.3390/en17236183