Analysis of the Impact of Clean Coal Technologies on the Share of Coal in Poland’s Energy Mix
Abstract
:1. Introduction
2. Clean Coal Technologies
- Coal enrichment.
- Coal transformation, supercritical combustion and combustion in oxygen atmosphere.
- Exhaust gas treatment.
- Operation and mechanical processing.
- In the combustion process.
- During the management of waste generated in earlier stages.
3. Materials and Methods
3.1. Machine Learning
3.2. Methods of Variable Selection and Model Verification
4. Results
5. Discussion
6. Conclusions
- Completely eliminating coal from the energy mixes of member states may increase energy prices in the EU and hamper economic competitiveness.
- The implementation of clean coal technologies can stabilise the share of coal in the energy mixes of member states.
- The European Union should continue to promote the diversification of energy sources. CCTs provide an opportunity to keep fossil fuels in the energy mixes of EU countries. This applies in particular to coal, which, as a fuel available in large quantities in the European Union, guarantees the EU’s energy security.
- It is necessary to develop an energy transformation strategy adapted to the needs and capabilities of individual Member States.
- It will be necessary for the EU to cooperate with other countries such as the USA and China in order to exchange best practices regarding CCT and joint action for climate protection and the development of clean coal technologies.
- Public awareness of CCT should also be increased in order to build social acceptance for these types of solutions and rebuild a positive perception of coal.
- The use of clean coal technologies can contribute to achieving EU goals related to the reduction in greenhouse gas emissions. At the same time, it will enable a sustainable and safe energy transition.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- PGI. Available online: https://www.pgi.gov.pl/psg-1/psg-2/informacja-i-szkolenia/wiadomosci-surowcowe/10420-czy-wiecie-ze-wegiel-kamienny.html (accessed on 1 January 2024).
- Fetting, C. The European Green Deal; ESDN Report; ESDN Office: Vienna, Austria, 2020; p. 53. [Google Scholar]
- Schlacke, S.; Wentzien, H.; Thierjung, E.-M.; Köster, M. Implementing the EU Climate Law via the ‘Fit for 55’ package. Oxf. Open Energy 2022, 1, oiab002. [Google Scholar] [CrossRef]
- Melikoglu, M. Clean coal technologies: A global to local review for Turkey. Energy Strategy Rev. 2018, 22, 313–319. [Google Scholar] [CrossRef]
- EIA: Changes in Coal Sector Led to Less SO2 and NOx Emissions from Electric Power Industry—US Energy Information Administration (EIA). Available online: https://www.eia.gov/todayinenergy/detail.php?id=37752 (accessed on 10 January 2024).
- Energy Institute. Available online: https://www.energyinst.org/statistical-review (accessed on 2 January 2024).
- Eurostat. Available online: https://ec.europa.eu/eurostat/data/database (accessed on 4 January 2024).
- Biznes Alert. Available online: https://biznesalert.pl/europa-wegiel-energetyka-usa-chiny-indie/ (accessed on 1 January 2024).
- IRENA. Available online: https://www.irena.org/ (accessed on 1 January 2024).
- Vardar, S.; Demirel, B.; Onay, T.T. Impacts of coal-fired power plants for energy generation on environment and future implications of energy policy for Turkey. Environ. Sci. Pollut. Res. 2022, 29, 40302–40318. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Xu, R. Clean coal technology development in China. Energy Policy 2010, 38, 2123–2130. [Google Scholar] [CrossRef]
- Blaschke, W.; Nycz, R. Clean coal-preparation barriers in Poland. Appl. Energy 2003, 74, 343–348. [Google Scholar] [CrossRef]
- Baic, I.; Blaschke, W.; Gaj, B. Hard coal processing in Poland—Current status and future trends. Sci. J. Inst. Miner. Resour. Energy Manag. Pol. Acad. Sci. 2019, 108, 83–97. [Google Scholar] [CrossRef]
- Blashke, W. Clean Coal Technologies—The first step is coal preparation. Energy Policy 2008, 11, 7–13. [Google Scholar]
- Kadagala, M.R.; Nikkam, S.; Tripathy, S.K. A review on flotation of coal using mixed reagent systems. Miner. Eng. 2021, 173, 107217. [Google Scholar] [CrossRef]
- Nurhawaisyah, S.R.; Sanwani, E.; Chaerun, S.K.; Rasyid, M.A. Screening of bacteria for coal benefit. In IOP Conference Series: Materials Science and Engineering; IOP Publishing: Bristol, UK, 2019; p. 012021. [Google Scholar] [CrossRef]
- Shi, Y.; Liu, Q.; Shao, Y.; Zhong, W. Energy and exergy analysis of oxy-fuel combustion based on circulating fluidized bed power plant firing coal, lignite and biomass. Fuel 2020, 269, 117424. [Google Scholar] [CrossRef]
- Li, S.; Xu, Y.; Gao, Q. Measurements and modeling of oxy-fuel coal combustion. Proc. Combust. Inst. 2019, 37, 2643–2661. [Google Scholar] [CrossRef]
- Weitzel, P.S. Steam generator for advanced ultra supercritical power plants 700C to 760C. In Proceedings of the ASME Power Conference, Denver, CO, USA, 12–14 July 2011; pp. 281–291. [Google Scholar] [CrossRef]
- Mandal, R.; Maity, T.; Chaulya, S.K.; Prasad, G.M. Laboratory investigation on underground coal gasification technique with real-time analysis. Fuel 2020, 275, 117865. [Google Scholar] [CrossRef]
- Mishra, A.; Gautam, S.; Sharma, T. Effect of operating parameters on coal gasification. Int. J. Coal Sci. Technol. 2018, 5, 113–125. [Google Scholar] [CrossRef]
- Hasan, M.F.; First, E.L.; Boukouvala, F.; Floudas, C.A. A multi-scale framework for CO2 capture, utilization, and sequestration: CCUS and CCU. Comput. Chem. Eng. 2015, 81, 2–21. [Google Scholar] [CrossRef]
- Zhang, L.; Song, Y.; Shi, J.; Shen, Q.; Hu, D.; Gao, Q.; Chen, W.; Kow, K.-W.; Pang, C.; Sun, N.; et al. Frontiers of co2 capture and utilization (ccu) towards carbon neutrality. Adv. Atmos. Sci. 2022, 39, 1252–1270. [Google Scholar] [CrossRef]
- Hardisty, P.E.; Sivapalan, M.; Brooks, P. The Environmental and Economic Sustainability of Carbon Capture and Storage, International Journal of Environmental Research. Public Health 2011, 8, 1460–1477. [Google Scholar] [CrossRef]
- Motowidlak, T. Poland’s dilemmas in the implementation of the European Union’s energy policy. Energy Policy—Energy Policy J. 2018, 21, 5–20. [Google Scholar]
- Asghar, U.; Rafiq, S.; Anwar, A.; Iqbal, T.; Ahmed, A.; Jamil, F.; Khurram, M.S.; Akbar, M.M.; Farooq, A.; Shah, N.S.; et al. Review on the progress in emission control technologies for the abatement of CO2, SOx and NOx from fuel combustion. J. Environ. Chem. Eng. 2021, 9, 106064. [Google Scholar] [CrossRef]
- Rybak, A. The Role and Future of Coal in Ensuring Poland’s Energy Security; Wydawnictwo Politechniki Śląskiej: Gliwice, Poland, 2020. [Google Scholar]
- Koutsiantzi, C.; Mitrakas, M.; Zouboulis, A.; Kellartzis, I.; Stavropoulos, G.; Kikkinides, E.S. Evaluation of polymeric membranes’ performance during laboratory-scale experiments, regarding the CO2 separation from CH4. Chemosphere 2022, 299, 134224. [Google Scholar] [CrossRef]
- Rybak, A.; Rybak, A. Methods of Ensuring Energy Security with the Use of Hard Coal—The Case of Poland. Energies 2021, 14, 5609. [Google Scholar] [CrossRef]
- Li, F.; Li, Y.; Chung, T.S.; Kawi, S. Facilitated transport by hybrid POSS®– Matrimid ®–Zn2+ nanocomposite membranes for the separation of natural gas. J. Membr. Sci. 2010, 356, 14–21. [Google Scholar] [CrossRef]
- Li, M.; Zhang, J.; Song, W.; Germain, D.M. Recycling of crushed waste rock as backfilling material in coal mine: Effects of particle size on compaction behaviors. Environ. Sci. Pollut. Res. 2019, 26, 8789–8797. [Google Scholar] [CrossRef]
- Chugh, Y.P.; Behum, P.T. Coal waste management practices in the USA: An overview. Int. J. Coal Sci. Technol. 2014, 1, 163–176. [Google Scholar] [CrossRef]
- Dreger, M.; Kędzior, S. Methane emissions against the background of natural and mining conditions in the Budryk and Pniówek mines in the Upper Silesian Coal Basin (Poland). Environ. Earth Sci. 2021, 80, 1–16. [Google Scholar] [CrossRef]
- Hosseini, S.M.; Aslani, A.; Kasaeian, A. Life cycle cost and environmental assessment of CO2 utilization in the beverage industry: A natural gas-fired power plant equipped with post-combustion CO2 capture. Energy Rep. 2023, 9, 414–436. [Google Scholar] [CrossRef]
- Javed, S.A.; Zhu, B.; Liu, S. Forecast of biofuel production and consumption in top CO2 emitting countries using a novel gray model. J. Clean. Prod. 2020, 276, 123997. [Google Scholar] [CrossRef]
- Papadopoulos, C.; Kourtelesis, M.; Moschovi, A.M.; Sakkas, K.M.; Yakoumis, I. Selected Techniques for Cutting SOx Emissions in Maritime Industry. Technologies 2022, 10, 99. [Google Scholar] [CrossRef]
- Hao, D.; Liu, Y.; Gao, S.; Arandiyan, H.; Bai, X.; Kong, Q.; Wei, W.; Shen, P.K.; Ni, B.-J. Emerging artificial nitrogen cycle processes through novel electrochemical and photochemical synthesis. Mater. Today 2021, 46, 212–233. [Google Scholar] [CrossRef]
- Zhao, X.-Y.; Yang, J.-Y.; Ning, N.; Yang, Z.-S. Chemical stabilization of heavy metals in municipal solid waste incineration fly ash: A review. Environ. Sci. Pollut. Res. 2022, 29, 40384–40402. [Google Scholar] [CrossRef] [PubMed]
- Liang, S.; Chen, J.; Guo, M.; Feng, D.; Liu, L.; Qi, T. Utilization of pretreated municipal solid waste incineration fly ash for cement-stabilized soil. Waste Manag. 2020, 105, 425–432. [Google Scholar] [CrossRef] [PubMed]
- Huang, Z.; Yilmaz, E.; Cao, S. Analysis of strength and microstructural characteristics of mine backfills containing fly ash and desulfurized gypsum. Minerals 2021, 11, 409. [Google Scholar] [CrossRef]
- Fu, J.; Chen, D.; Li, X.; Li, H.; Liu, S.; Li, C.; Zhang, J. Research on the technology of gob-side entry retaining by pouring support beside the roadway in “three soft” coal seam: A case study. Phys. Fluids 2024, 36, 017123. [Google Scholar] [CrossRef]
- Liu, H.; Li, X.; Yu, Z.; Tan, Y.; Ding, Y.; Chen, D.; Wang, T. Influence of hole diameter on mechanical properties and stability of granite rock surrounding tunnels. Phys. Fluids 2023, 35, 064121. [Google Scholar] [CrossRef]
- Varshney, A.; Dahiya, P.; Sharma, A.; Pandey, R.; Mohan, S. Fly ash application in soil for sustainable agriculture: An Indian overview. Energy Ecol. Environ. 2022, 7, 340–357. [Google Scholar] [CrossRef]
- Liu, P.; Zhao, S.; Xie, N.; Yang, L.; Wang, Q.; Wen, Y.; Chen, H.; Tang, Y. Green Approach for Rare Earth Element (REE) Recovery from Coal Fly Ash. Environ. Sci. Technol. 2023, 57, 5414–5423. [Google Scholar] [CrossRef]
- Wdowin, M.; Franus, W. Analysis of fly ashes in terms of obtaining rare earth elements from them. Polityka Energetyczna—Energy Policy J. 2014, 17, 369–380. [Google Scholar]
- Alves Dias, P.; Bobba, S.; Carrara, S.; Plazzotta, B. The Role of Rare Earth Elements in Wind Energy and Electric Mobility; European Commission: Luxembourg, 2020. [Google Scholar]
- Shimizu, H.; Ikeda, K.; Kamiyama, Y. Refining of a Rare Earth Including a Process for Separation by a Reverse Osmosis Membrane. US Patent 5,104,544, 14 April 1992. [Google Scholar]
- Raji, M.; Abolghasemi, H.; Safdari, J.; Kargari, A. Response Surface Optimization of Dysprosium Extraction Using an Emulsion Liquid Membrane Integrated with Multi-Walled Carbon Nanotubes. Chem. Eng. Technol. 2018, 41, 1857–1870. [Google Scholar] [CrossRef]
- Murthy, Z.; Gaikwad, M.S. Separation of praseodymium (III) from aqueous solutions by nanofiltration. Can. Metall. Q 2013, 52, 18–22. [Google Scholar] [CrossRef]
- Wen, B.; Shan, X.; Xu, S. Preconcentration of ultratrace earth rare elements in seawater with 8-hydroxyquinoline immobilized polyacrylonitrile hollow fiber membrane for determination by inductively coupled plasma mass spectrometry. Analyst 1999, 124, 621–626. [Google Scholar] [CrossRef]
- Milanov, P.; Koroleova, G.; Mavrevski, R.; Pencheva, N. Curve fitting problem: Torque–velocity relationship with polynomials and Boltzmann sigmoid functions. Acta Bioeng. Biomech. 2018, 20, 169–184. [Google Scholar] [CrossRef]
- Wenzel, H.; Smit, D.; Sardesai, S. A literature review on machine learning in supply chain management. Artif. Intell. Digit. Transform. Supply Chain Manag. Innov. Approaches Supply Chain. 2019, 27, 413–441. [Google Scholar] [CrossRef]
- Li, X.; Chen, D.; Fu, J.; Liu, S.; Geng, X. Construction and Application of Fuzzy Comprehensive Evaluation Model for Rockburst Based on Microseismic Monitoring. Appl. Sci. 2023, 13, 12013. [Google Scholar] [CrossRef]
- Wyrembek, M. Application of machine learning methods to predict the risk of damage to goods. Mater. Manag. Logist. 2023, 1, 58–66. [Google Scholar]
- Rácz, A.; Bajusz, D.; Héberger, K. Multi-Level Comparison of Machine Learning Classifiers and Their Performance Metrics. Molecules 2019, 24, 2811. [Google Scholar] [CrossRef] [PubMed]
- Piekutowska, M.; Niedbała, G.; Piskier, T.; Lenartowicz, T.; Pilarski, K.; Wojciechowski, T.; Pilarska, A.A.; Czechowska-Kosacka, A. The Application of Multiple Linear Regression and Artificial Neural Network Models for Yield Prediction of Very Early Potato Cultivars before Harvest. Agronomy 2021, 11, 885. [Google Scholar] [CrossRef]
- Livingston, E.H. Who was student and why do we care so much about his t-test? 1. J. Surg. Res. 2004, 118, 58–65. [Google Scholar] [CrossRef] [PubMed]
- Agiakloglou, C.; Newbold, P. Empirical evidence on Dickey—Fuller—Type tests. J. Time Ser. Anal. 1992, 13, 471–483. [Google Scholar] [CrossRef]
- Mikołajczyk, K.; Wyrobek, J. Possibilities of using the vector autoregression method in monetary policy. Noteb. Sci./Acad. Econ. Krakow 2006, 683, 63–87. [Google Scholar]
- Almorox, J.; Benito, M.; Hontoria, C. Estimation of monthly Angström –Prescott equation coefficients from measured daily data in Toledo, Spain. Renew. Energy 2005, 30, 931–936. [Google Scholar] [CrossRef]
- Said, S.; Zeroual, A. Prediction of global daily solar radiation using higher order statistics. Renew. Energy 2002, 27, 647–666. [Google Scholar] [CrossRef]
- Bliemel, F. Theil’s Forecast Accuracy Coefficient: A Clarification. J. Mark. Res. 1973, 10, 444–446. [Google Scholar] [CrossRef]
- Farnum, N.R.; Stanton, W. Quantitative Forecasting Methods; PWS-Kent Publishing Company: Boston, MA, USA, 1989. [Google Scholar]
- Aslam, M. On testing autocorrelation in metrology data under indeterminacy. Mapan 2021, 36, 515–519. [Google Scholar] [CrossRef]
- Shapiro, S.S.; Wilk, R. An analysis of variance test for normality (complete samples). Biometrika 1965, 52, 591–611. [Google Scholar] [CrossRef]
- Gruszyński, M.; Podgórska, M. Econometrics; Warsaw School of Economics: Warszawa, Poland, 2007. [Google Scholar]
- Polski Rynek Węgla—Agencja Rozwoju Przemysłu S.A. Available online: https://polskirynekwegla.pl (accessed on 15 January 2024).
- Apache Spark. Available online: https://spark.apache.org/ (accessed on 1 January 2024).
- Rybak, A.; Rybak, A.; Boncel, S.; Kolanowska, A.; Kaszuwara, W.; Kolev, S.D. Hybrid organic–inorganic membranes based on sulfonated poly (ether ether ketone) matrix and iron-encapsulated carbon nanotubes and their application in CO2 separation. RSC Adv. 2022, 12, 13367–13380. [Google Scholar] [CrossRef] [PubMed]
Variables | Source | Type of Variable |
---|---|---|
Coal sales, Mg | Industrial Development Agency [67] | target |
Gross electricity production (toe) | Eurostat [7] | Features |
Energy consumption from renewable energy sources, EJ | Energy Institute [6] | |
Number of patents | IRENA [9] | |
Public investments in renewable energy, USD mil | IRENA | |
Heat from coal, TJ | IRENA | |
Heat from renewable energy sources, TJ | IRENA | |
Greenhouse gas emissions intensity of energy consumption, 2000 = 100 | Eurostat | |
Coal price, PLN/Mg | Industrial Development Agency |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rybak, A.; Rybak, A.; Joostberens, J.; Pielot, J.; Toś, P. Analysis of the Impact of Clean Coal Technologies on the Share of Coal in Poland’s Energy Mix. Energies 2024, 17, 1394. https://doi.org/10.3390/en17061394
Rybak A, Rybak A, Joostberens J, Pielot J, Toś P. Analysis of the Impact of Clean Coal Technologies on the Share of Coal in Poland’s Energy Mix. Energies. 2024; 17(6):1394. https://doi.org/10.3390/en17061394
Chicago/Turabian StyleRybak, Aurelia, Aleksandra Rybak, Jarosław Joostberens, Joachim Pielot, and Piotr Toś. 2024. "Analysis of the Impact of Clean Coal Technologies on the Share of Coal in Poland’s Energy Mix" Energies 17, no. 6: 1394. https://doi.org/10.3390/en17061394
APA StyleRybak, A., Rybak, A., Joostberens, J., Pielot, J., & Toś, P. (2024). Analysis of the Impact of Clean Coal Technologies on the Share of Coal in Poland’s Energy Mix. Energies, 17(6), 1394. https://doi.org/10.3390/en17061394