3.1.1. Annual Scale
At an annual scale, a good linear relationship was observed between the maximum annual daily flow (Q
max) and the mean annual daily flow (Q
mean) (
Table 3), with an R
2 value of 0.82. Regarding the relationship of the maximum annual daily flow with the average annual rainfall (R) and maximum annual daily rainfall (R
max), lower linear correlations were observed, with R
2 values of 0.8 and 0.52, respectively. The low correlation in this latter analysis can be explained by the snow influence in the area, which determined that the day with the maximum daily flow was not the same as the day with the maximum daily rainfall.
The best correlations at the annual scale were found between the annual mean daily flow and the average annual rainfall (R), reaching an R
2 of 0.98, and the average rainfall minus the evaposublimation flux (R − ES) (
Table 3), since it represents the net precipitation that directly contributes to runoff generation. Regarding the correlation between the annual mean daily flow and the snow-related variables, average snowfall (S), average snow water equivalent (SWE), and average snowmelt (SWM), slightly lower linear correlation coefficients were obtained. oscillating between 0.67 and 0.75, with the highest correlation being with snowmelt (0.75). These lower values were due to the highly variable snowpack with the presence of several accumulation and melting cycles during the snow season, as well as a non-negligible evaposublimation flux [
11].
Regarding the annual number of days of failure (Nfailure), the best correlations were found with both the mean annual daily flow and the annual rainfall, obtaining R2 values of 0.63 and 0.65, respectively.
3.1.2. Monthly Scale
At a monthly scale, not only the linear correlation was considered but also the quadratic and exponential correlation, following previous studies that have flow-related variables [
27,
28] and use rainfall as the independent variable to better capture the non-linear effects of the hydrological water balance at shorter time scales. In addition, correlation with the value of some variables in the antecedent month was included in the analysis in order to analyze a possible monthly lag effect in the circulating flow.
Table 4 shows the correlation coefficients obtained between the monthly mean daily flow variable and the rest of the variables identified at a monthly scale for the best adjustments obtained for the sake of greater conciseness of the manuscript. However, the values obtained for all the adjustments per month carried out in this study can be made available upon request to the authors.
Analogously to the annual scale, a good correlation was again observed between the maximum monthly daily flow and the mean monthly flow, with R
2 values between 0.74 and 1 (
Table 4).
Regarding the monthly rainfall (Rm), good correlations were observed in the months of October, January, February, March, and July, with correlation coefficients between 0.65 and 0.84. When the same analysis was performed with the rainfall in the previous month (Rm_prev), the highest correlation coefficients were found in January, February, April, and November, with even higher R2 values between 0.72 and 0.92.
As for the monthly snowfall (S
m), there was a good correlation only in the month of February (0.76,
Table 4), reaching higher values in the months of November, January, March, and April with the snowfall of the previous month (S
m_prev). Finally, with respect to the monthly snow water equivalent (SWE
m) and the snowmelt (SWM
m), the correlation coefficient values were higher than 0.51 in the months from January to July, exceeding 0.62 in most months (
Table 4).
At the monthly scale, the correlation between the monthly number of days of failure (N
failure) and the monthly mean river flow (Q
m mean) reached R
2 values of over 0.77 in most months (
Table 4), exceeding 0.86 in most cases. Thus, the number of days of failure can be reproduced once the required forecasts of monthly river flows are available.
As already pointed out by previous studies at the study site [
11], the peculiar snow dynamics result in the seasonality of the streamflow response in this headwater catchment. These results confirm this statement as the highest correlations with respect to the mean monthly flow occurred in the winter months, with monthly rainfall improving, in some cases, the correlation with respect to the rainfall of the previous month. In contrast, in the spring and summer months, the best correlations were obtained with the snowmelt and snow water equivalent. Despite being clear that the precipitation and snow depths impacted the monthly river flow, their effect was not instantaneous. Thus, this non-instantaneous time relationship needs to be considered, as already applied in previous studies [
29], when looking for the best forcing variable at the monthly scale.
Considering that the main source of uncertainty in the flow regime in Mediterranean watersheds is due to variability in the occurrence of meteorological agents (mainly rainfall) [
30], a more detailed analysis of lag times in the influence of rainfall accumulated in the antecedent months on the river flows was carried out. This analysis helped to solve the low correlation values obtained between the monthly mean flow and the monthly rainfall (
Table 4) in certain months (e.g., December, May, and June). Thus,
Table 5 shows the best correlations found for the monthly mean flow with one or several antecedent months of accumulated rainfall, as appropriate. The correlation coefficients in the table refer to the first-, second-, and third-degree polynomial adjustments, exponential adjustments, and potential adjustments in the case of December. The parametric expressions of these adjustments can be found in
Table A1 in
Appendix A. Correlation coefficients higher than 0.7 were reached in all months, and thus, these adjustments were used to reproduce the monthly river flow dynamics once the required forecasts of monthly rainfall were available. It can also be observed how, in most months, better correlations were obtained than those resulting from considering the current month or only a lag of one month (
Table 4). The only exception is September, when no good correlation was found, neither with the rainfall in September nor extending the analysis to the rainfall of previous periods accumulated at various time scales, which is in accordance with previous studies in the basin encompassing the study area [
13].
Two trends can be observed that group the forecast into three blocks. From October to December, the highest correlation was obtained between the rainfall of the previous month and that of the current month, i.e., the October flow was obtained with the accumulated rainfall of September and October, and in the same way, with November and December. In these months, the flow was mainly produced directly by the occurrence of rainfall–runoff events, mainly in liquid form, which explains this correlation between the previous month and the current month.
In the months of January and February, the occurrence of solid rainfall events or snowfall begins to be more frequent, so water accumulates in the snow layer and the proportion of direct runoff decreases, introducing a certain lag time in terms of river flows. Therefore, it was observed that the rainfall of the current month did not improve the average daily flow forecast for that month. Thus, the flow of January correlates to a greater extent with the rainfall of December, while the flow of February correlates with the accumulated rainfall of December and January.
The third block corresponds to the months from March to August, where snowmelt is the main variable describing the average daily flow in this period. In this case, starting with the February rainfall, the rainfall of the current month was accumulated until June. That is, the river flow in March was obtained from the accumulated rainfall of February and March; that of April was obtained from the accumulated rainfall of February, March, and April; and so on, until June. July and August were included in this block because their flow is related to the accumulated rainfall from February to June. Again, the role of accumulated water as snow may explain these correlations. Snowmelt begins in spring around the month of March and extends until the months of May-June, according to the hydrometeorological dynamics of the year [
11,
16], so the rainfall that occurs in these months, together with that of the previous months in which part of it would have accumulated as snow in Sierra Nevada, determines the runoff of the current month. In the case of July and August, there is little or no rainfall in these months, so the average flow in these months is due to the rainfall accumulated in the previous months.
In the case of the target variable number of days of failure (N
failure), parametric adjustments were also obtained with the mean river flow variable (Q
mean), given that, from the results shown in
Table 4, there was a good correlation between these variables in most months. In this case, the effect of the lag time influence of the river flow on the number of days of failure was not observed, so the parametric adjustments were made with the mean river flow of the same month as the target forecast. The parametric expressions of these adjustments can be found in
Table A2 in
Appendix A.