Fueling Industrial Flexibility: Discrete-Time Dispatch Optimization of Electric Arc Furnaces
Abstract
1. Introduction
1.1. Iron and Steel Industry and the EAF Process
1.2. Integer Linear and Mixed-Integer Linear Multi-Objective Optimization Problems in Industry
1.3. State of Research
1.4. Research Needs
2. Materials and Methods
2.1. Data and Preparation
2.2. Optimization Model
2.2.1. General Modeling and Assumptions
2.2.2. Constraints
- Heat continuity: Once started, a heat must run uninterrupted. Each heat can therefore only be scheduled once:
- Start time variable: To simplify further constraints, the explicit start time ti of a heat is defined as:
- Fixed sequence: The order of heats is fixed, as their exact duration and energy consumption are only known after completion. Allowing reordering would create unrealistic conditions and distort results.
- Breaks between heats: Operational logistics require short pauses between heats:
2.2.3. Objective Function
2.2.4. Differences Between the ILP and MILP Models
2.3. Scenario Definition, Parameter Variation, and Key Performance Indicators
- Cost change (ΔC): percentage difference between optimized and original costs (negative = reduction).
- Emission change (ΔE): defined analogously.
- Energy Carrier Flexibility (ECF): ratio of electricity to total energy input.
3. Results and Discussion
3.1. ILP vs. MILP
3.2. Sensitivity Analysis
3.3. Environmental and Ecological Dispatch
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
BF-BOF | Blast furnace and basic oxygen furnace |
CEGH | Central European Gas Hub |
DR | Demand response |
DRI | Direct reduced iron |
DSF | Demand-side flexibility |
DSM | Demand-side management |
EAF | Electric arc furnace |
ECF | Energy carrier flexibility |
EE | Energy efficiency |
EEX | European Energy Exchange |
EXAA | Energy Exchange Austria |
EED | Economic and environmental dispatch |
EV | Electric vehicles |
GA-PSO | Genetic algorithm-particle swarm optimization |
ILP | Integer linear programming |
KPI | Key performance indicator |
MILP | Mixed-integer linear programming |
MOO | Multi-objective optimization |
MPC | Model predictive control |
NSGA | Non-dominated sorting genetic algorithm |
PV | Photovoltaic |
UC | Unit commitment |
Appendix A
References
- Xu, M.; Lin, B. Leveraging carbon label to achieve low-carbon economy: Evidence from a survey in Chinese first-tier cities. J. Environ. Manag. 2021, 286, 112201. [Google Scholar] [CrossRef]
- Manana, M.; Zobaa, A.F.; Vaccaro, A.; Arroyo, A.; Martinez, R.; Castro, P.; Laso, A.; Bustamante, S. Increase of capacity in electric arc-furnace steel mill factories by means of a demand-side management strategy and ampacity techniques. Int. J. Electr. Power Energy Syst. 2021, 124, 106337. [Google Scholar] [CrossRef]
- Ranaboldo, M.; Aragüés-Peñalba, M.; Arica, E.; Bade, A.; Bullich-Massagué, E.; Burgio, A.; Caccamo, C.; Caprara, A.; Cimmino, D.; Domenech, B.; et al. A comprehensive overview of industrial demand response status in Europe. Renew. Sustain. Energy Rev. 2024, 203, 114797. [Google Scholar] [CrossRef]
- Zhang, X.; Hug, G.; Kolter, J.Z.; Harjunkoski, I. Model predictive control of industrial loads and energy storage for demand response. In Proceedings of the 2016 IEEE Power & Energy Society General Meeting, Boston, MA, USA, 17–21 July 2016. [Google Scholar]
- Fridgen, G.; Häfner, L.; König, C.; Sachs, T. Providing Utility to Utilities: The Value of Information Systems Enabled Flexibility in Electricity Consumption. J. Assoc. Inf. Syst. 2016, 17, 537–563. [Google Scholar] [CrossRef]
- Fridgen, G.; Keller, R.; Thimmel, M.; Wederhake, L. Shifting load through space–The economics of spatial demand side management using distributed data centers. Energy Policy 2017, 109, 400–413. [Google Scholar] [CrossRef]
- Haupt, L.; Körner, M.-F.; Schöpf, M.; Schott, P.; Fridgen, G. Strukturierte Analyse von Nachfrageflexibilität im Stromsystem und Ableitung eines generischen Geschäftsmodells für (stromintensive) Unternehmen. Z. Energiewirtsch. 2020, 44, 141–160. [Google Scholar] [CrossRef]
- Saleh, S.A.; Pijnenburg, P.; Castillo-Guerra, E. Load Aggregation From Generation-Follows-Load to Load-Follows-Generation: Residential Loads. IEEE Trans. Ind. Appl. 2017, 53, 833–842. [Google Scholar] [CrossRef]
- Badji, A.; Abdeslam, D.O.; Chabane, D.; Benamrouche, N. Real-time implementation of improved power frequency approach based energy management of fuel cell electric vehicle considering storage limitations. Energy 2022, 249, 123743. [Google Scholar] [CrossRef]
- Scharnhorst, L.; Sloot, D.; Lehmann, N.; Ardone, A.; Fichtner, W. Barriers to demand response in the commercial and industrial sectors—An empirical investigation. Renew. Sustain. Energy Rev. 2024, 190, 114067. [Google Scholar] [CrossRef]
- Greening, L.A.; Boyd, G.; Roop, J.M. Modeling of industrial energy consumption: An introduction and context. Energy Econ. 2007, 29, 599–608. [Google Scholar] [CrossRef]
- Cai, G.; Zhou, J.; Wang, Y.; Zhang, H.; Sun, A.; Liu, C. Multi-objective coordinative scheduling of system with wind power considering the regulating characteristics of energy-intensive load. Int. J. Electr. Power Energy Syst. 2023, 151, 109143. [Google Scholar] [CrossRef]
- Gholian, A.; Mohsenian-Rad, H.; Hua, Y. Optimal Industrial Load Control in Smart Grid. IEEE Trans. Smart Grid 2016, 7, 2305–2316. [Google Scholar] [CrossRef]
- Arellano, J.; Carrión, M.; García-Cerezo, Á. Optimal Medium-Term Electricity Procurement for Cement Producers. IEEE Access 2024, 12, 54934–54952. [Google Scholar] [CrossRef]
- Ashok, S. Peak-load management in steel plants. Appl. Energy 2006, 83, 413–424. [Google Scholar] [CrossRef]
- Avilés, F.N.; Etchepare, R.M.; Aguayo, M.M.; Valenzuela, M. A mixed-integer programming model for an integrated production planning problem with preventive maintenance in the pulp and paper industry. Eng. Optim. 2023, 55, 1352–1369. [Google Scholar] [CrossRef]
- Castro, P.M.; Westerlund, J.; Forssell, S. Scheduling of a continuous plant with recycling of byproducts: A case study from a tissue paper mill. Comput. Chem. Eng. 2009, 33, 347–358. [Google Scholar] [CrossRef]
- Da Silva, F.A.M.; Moretti, A.C.; Azevedo, A. A Scheduling Problem in the Baking Industry. J. Appl. Math. 2014, 2014, 964120. [Google Scholar] [CrossRef]
- Danket, T.; Tanachutiwat, S.; Rungreunganun, V. Designing advance production planning and scheduling optimization model for reduce total cost of the cement production process under time-of-use electricity prices. In Proceedings of the IEEE 8th International Conference on Industrial Engineering and Applications, Kyoto, Japan, 23–26 April 2021. [Google Scholar]
- Helin, K.; Käki, A.; Zakeri, B.; Lahdelma, R.; Syri, S. Economic potential of industrial demand side management in pulp and paper industry. Energy 2017, 141, 1681–1694. [Google Scholar] [CrossRef]
- Pan, R.; Wang, Q.; Li, Z.; Cao, J.; Zhang, Y. Steelmaking-continuous casting scheduling problem with multi-position refining furnaces under time-of-use tariffs. Ann. Oper. Res. 2022, 310, 119–151. [Google Scholar] [CrossRef]
- International Energy Agency. Iron and Steel Technology Roadmap: Towards More Sustainable Steelmaking; International Energy Agency: Paris, France, 2021. [Google Scholar]
- Toktarova, A.; Karlsson, I.; Rootzén, J.; Göransson, L.; Odenberger, M.; Johnsson, F. Pathways for Low-Carbon Transition of the Steel Industry—A Swedish Case Study. Energy 2020, 13, 3840. [Google Scholar] [CrossRef]
- Arens, M.; Worrell, E.; Eichhammer, W.; Hasanbeigi, A.; Zhang, Q. Pathways to a low-carbon iron and steel industry in the medium-term—The case of Germany. J. Clean. Prod. 2017, 163, 84–98. [Google Scholar] [CrossRef]
- Fan, Z.; Friedmann, S.J. Low-carbon production of iron and steel: Technology options, economic assessment, and policy. Joule 2021, 5, 829–862. [Google Scholar] [CrossRef]
- Tan, X.; Li, H.; Guo, J.; Gu, B.; Zeng, Y. Energy-saving and emission-reduction technology selection and CO2 emission reduction potential of China’s iron and steel industry under energy substitution policy. J. Clean. Prod. 2019, 222, 823–834. [Google Scholar] [CrossRef]
- Sakamoto, Y.; Tonooka, Y.; Yanagisawa, Y. Estimation of energy consumption for each process in the Japanese steel industry: A process analysis. Energy Convers. Manag. 1999, 40, 1129–1140. [Google Scholar] [CrossRef]
- Kirschen, M.; Risonarta, V.; Pfeifer, H. Energy efficiency and the influence of gas burners to the energy related carbon dioxide emissions of electric arc furnaces in steel industry. Energy 2009, 34, 1065–1072. [Google Scholar] [CrossRef]
- Bai, E. Minimizing Energy Cost in Electric Arc Furnace Steel Making by Optimal Control Designs. J. Energy 2014, 2014, 620695. [Google Scholar] [CrossRef][Green Version]
- Shyamal, S.; Swartz, C.L. Real-time energy management for electric arc furnace operation. J. Process Control 2019, 74, 50–62. [Google Scholar] [CrossRef]
- Çamdalı, Ü.; Tunç, M. Modelling of electric energy consumption in the AC electric arc furnace. Int. J. Energy Res. 2002, 26, 935–947. [Google Scholar] [CrossRef]
- Logar, V.; Dovžan, D.; Škrjanc, I. Mathematical Modeling and Experimental Validation of an Electric Arc Furnace. ISIJ Int. 2011, 51, 382–391. [Google Scholar] [CrossRef]
- MacRosty, R.D.M.; Swartz, C.L.E. Dynamic Modeling of an Industrial Electric Arc Furnace. Ind. Eng. Chem. Res. 2005, 44, 8067–8083. [Google Scholar] [CrossRef]
- Andonovski, G.; Tomažič, S. Comparison of data-based models for prediction and optimization of energy consumption in electric arc furnace (EAF). IFAC-PapersOnLine 2022, 55, 373–378. [Google Scholar] [CrossRef]
- Carlsson, L.; Samuelsson, P.; Jönsson, P. Using Interpretable Machine Learning to Predict the Electrical Energy Consumption of an Electric Arc Furnace. In Proceedings of the 4th European Steel Technology and Application Days 2019 (ESTAD 2019), Düsseldorf, Germany, 24–28 July 2019. [Google Scholar]
- Carlsson, L.S.; Samuelsson, P.B.; Jönsson, P.G. Using Statistical Modeling to Predict the Electrical Energy Consumption of an Electric Arc Furnace Producing Stainless Steel. Metals 2020, 10, 36. [Google Scholar] [CrossRef]
- Carlsson, L.S.; Samuelsson, P.B.; Jönsson, P.G. Modeling the Effect of Scrap on the Electrical Energy Consumption of an Electric Arc Furnace. Processes 2020, 8, 1044. [Google Scholar] [CrossRef]
- Chen, C.; Liu, Y.; Kumar, M.; Qin, J. Energy consumption modelling using deep learning technique—A case study of EAF. Procedia CIRP 2018, 72, 1063–1068. [Google Scholar] [CrossRef]
- Dock, J.; Janz, D.; Weiss, J.; Marschnig, A.; Kienberger, T. Time- and component-resolved energy system model of an electric steel mill. Clean. Eng. Technol. 2021, 4, 100223. [Google Scholar] [CrossRef]
- Gajic, D.; Savić-Gajic, I.; Savic, I.; Georgieva, O.S.G. Modelling of electrical energy consumption in an electric arc furnace using artificial neural networks. Energy 2016, 108, 132–139. [Google Scholar] [CrossRef]
- Manojlović, V.; Kamberović, Ž.; Korać, M.; Dotlić, M. Machine learning analysis of electric arc furnace process for the evaluation of energy efficiency parameters. Appl. Energy 2022, 307, 118209. [Google Scholar] [CrossRef]
- Bhonsle, D.C.; Kelkar, R.B. Analyzing power quality issues in electric arc furnace by modeling. Energy 2016, 115, 830–839. [Google Scholar] [CrossRef]
- Chen, F.; Sastry, V.V.; Venkata, S.S.; Athreya, K.B. A Robust Markov-Like Mode for Three Phase Arc Furnaces. In Proceedings of the Caribbean Colloquium on Power Quality, Dorado, Puerto Rico, 24–27 June 2003; Volume 2003. [Google Scholar]
- Moghadasian, M.; Alenasser, E. Modelling and Artificial Intelligence-Based Control of Electrode System for an Electric Arc Furnace. J. Electromagn. Anal. Appl. 2011, 03, 47–55. [Google Scholar] [CrossRef]
- Colla, V.; Matino, I.; Cirilli, F.; Jochler, G.; Kleimt, B.; Rosemann, H.; Unamuno, I.; Tosato, S.; Gussago, F.; Baragiola, S.; et al. Improving energy and resource efficiency of electric steelmaking through simulation tools and process data analyses. Matér. Tech. 2016, 104, 602. [Google Scholar] [CrossRef]
- Li, L.; Li, H. Forecasting and optimal probabilistic scheduling of surplus gas systems in iron and steel industry. J. Cent. South Univ. 2015, 22, 1437–1447. [Google Scholar] [CrossRef]
- Zhao, J.Y.; Wang, Y.J.; Xi, X. Simulation of Steel Production Logistics System Based on Multi-Agents. Int. J. Simul. Model. 2017, 16, 167–175. [Google Scholar] [CrossRef]
- Cao, J.; Pan, R.; Xia, X.; Shao, X.; Wang, X. An efficient scheduling approach for an iron-steel plant equipped with self-generation equipment under time-of-use electricity tariffs. Swarm Evol. Comput. 2021, 60, 100764. [Google Scholar] [CrossRef]
- Cheng, Z.; Zhang, P.; Wang, L. Oxygen Demand Forecasting and Optimal Scheduling of the Oxygen Gas Systems in Iron- and Steel-Making Enterprises. Appl. Sci. 2023, 13, 11618. [Google Scholar] [CrossRef]
- Ferretti, I.; Zanoni, S.; Zavanella, L. Energy Efficiency in a Steel Plant using Optimization-Simulation. In Proceedings of the 20th European Modeling and Simulation Symposium, Amantea, Italy, 17–19 September 2008. [Google Scholar]
- Haït, A.; Artigues, C. On electrical load tracking scheduling for a steel plant. Comput. Chem. Eng. 2011, 35, 3044–3047. [Google Scholar] [CrossRef][Green Version]
- Harjunkoski, I.; Grossmann, I.E. A Decomposition Approach for the Scheduling of a Steel Plant Production. Comput. Chem. Eng. 2001, 2001, 1647–1660. [Google Scholar] [CrossRef]
- Nolde, K.; Morari, M. Electrical load tracking scheduling of a steel plant. Comput. Chem. Eng. 2010, 34, 1899–1903. [Google Scholar] [CrossRef]
- Wang, J.; Wang, Q.; Sun, W. Optimal power system flexibility-based scheduling in iron and steel production: A case of steelmaking–refining–continuous casting process. J. Clean. Prod. 2023, 414, 137619. [Google Scholar] [CrossRef]
- Zhang, X.; Hug, G.; Harjunkoski, I. Cost-Effective Scheduling of Steel Plants with Flexible EAFs. IEEE Trans. Smart Grid 2017, 8, 239–249. [Google Scholar] [CrossRef]
- Marulanda-Durango, J.J.; Zuluaga-Ríos, C.D. A meta-heuristic optimization-based method for parameter estimation of an electric arc furnace model. Results Eng. 2023, 17, 100850. [Google Scholar] [CrossRef]
- Ave, G.D.; Hernandez, J.; Harjunkoski, I.; Onofri, L.; Engell, S. Demand Side Management Scheduling Formulation for a Steel Plant Considering Electrode Degradation. IFAC-PapersOnLine 2019, 52, 691–696. [Google Scholar] [CrossRef]
- Esfahani, M.T.; Vahidi, B. A New Stochastic Model of Electric Arc Furnace Based on Hidden Markov Model: A Study of Its Effects on the Power System. IEEE Trans. Power Deliv. 2012, 27, 1893–1901. [Google Scholar] [CrossRef]
- Vervenne, I.; van Reusel, K.; Belmans, R. Electric Arc Furnace Modelling from a “Power Quality” Point of View. In Proceedings of the 9th International Conference: Electrical Power Quality and Utilisation, Barcelona, Spain, 9–11 October 2007. [Google Scholar]
- Xie, Z.; Yang, Z. Research of Load Leveling Strategy for Electric Arc Furnace in Iron and Steel Enterprises. In Proceedings of the International Conference on Mechanics, Materials and Strucutral Engineering, Jeju Island, Republic of Korea, 18–20 March 2016. [Google Scholar]
- Dong, L.; Hao, Z.; Huang, M.; Gao, F.; Zhang, S. A novel electromagnetic transient modeling method of impact load of arc furnace. In Proceedings of the IEEE 15th International Conference on Environment and Electrical Engineering, Rome, Italy, 10–13 June 2015. [Google Scholar]
- Zawodnik, V.; Schwaiger, F.C.; Sorger, C.; Kienberger, T. Tackling Uncertainty: Forecasting the Energy Consumption and Demand of an Electric Arc Furnace with Limited Knowledge on Process Parameters. Energies 2024, 17, 1326. [Google Scholar] [CrossRef]
- Singh, R.K.; Murty, H.R.; Gupta, S.K.; Dikshit, A.K. Development and implementation of environmental strategies for steel industry. Int. J. Environ. Technol. Manag. 2008, 8, 69–86. [Google Scholar] [CrossRef]
- Wood, A.J.; Wollenberg, B.; Sheblé, G. Power Generation, Operation, and Control; Wiley: Hoboken, NJ, USA, 2013; ISBN 978-0-471-79055-6. [Google Scholar]
- Conejo, A.; Baringo, L. Power System Operations; Springer Nature: Cham, Switzerland, 2018. [Google Scholar]
- Padhy, N.P. Unit Commitment—A Bibliographical Survey. IEEE Trans. Power Syst. 2004, 19, 1196–1205. [Google Scholar] [CrossRef]
- Zhang, H.; Ding, T.; Liu, Y.; Zhang, X.; Li, L.; Zhang, Q.; Xue, C. Two-stage stochastic unit commitment for renewable energy integrated power systems considering dynamic capacity-increase technologies of transmission lines. Energy Rep. 2023, 9, 129–133. [Google Scholar] [CrossRef]
- Hu, Y.-L.; Wee, W.G. A hierarchical system for economic dispatch with environmental constraints. IEEE Trans. Power Syst. 1994, 9, 1076–1082. [Google Scholar] [CrossRef]
- AlRashidi, M.; El-hawary, M. Economic Dispatch with Environmental Considerations using Particle Swarm Optimization. In Proceedings of the Large Engineering Systems Conference on Power Engineering 2006, Halifax, NS, Canada, 26–28 July 2006; pp. 41–46. [Google Scholar] [CrossRef]
- Basu, M. Economic environmental dispatch using multi-objective differential evolution. Appl. Soft Comput. 2011, 11, 2845–2853. [Google Scholar] [CrossRef]
- Dassa, K.; Recioui, A. Demand Side Management and Dynamic Economic Dispatch Using Genetic Algorithms. Eng. Proc. 2022, 14, 12. [Google Scholar] [CrossRef]
- Bertsimas, D.; Tsitsiklis, J.N. Introduction to Linear Optimization; Athena Scientific: Belmont, MA, USA, 1997; ISBN 1886529191. [Google Scholar]
- Gomes, M.C.; Barbosa-Póvoa, A.P.; Novais, A.Q. Optimal scheduling for flexible job shop operation. Int. J. Prod. Res. 2005, 43, 2323–2353. [Google Scholar] [CrossRef]
- Bayon, L.; Grau, J.M.; Ruiz, M.M.; Suarez, P.M. The Exact Solution of the Environmental/Economic Dispatch Problem. IEEE Trans. Power Syst. 2012, 27, 723–731. [Google Scholar] [CrossRef]
- Basu, M. Economic environmental dispatch of hydrothermal power system. Int. J. Electr. Power Energy Syst. 2010, 32, 711–720. [Google Scholar] [CrossRef]
- Qu, B.Y.; Zhu, Y.S.; Jiao, Y.C.; Wu, M.Y.; Suganthan, P.N.; Liang, J.J. A survey on multi-objective evolutionary algorithms for the solution of the environmental/economic dispatch problems. Swarm Evol. Comput. 2018, 38, 1–11. [Google Scholar] [CrossRef]
- He, L.; Lu, Z.; Geng, L.; Zhang, J.; Li, X.; Guo, X. Environmental economic dispatch of integrated regional energy system considering integrated demand response. Int. J. Electr. Power Energy Syst. 2020, 116, 105525. [Google Scholar] [CrossRef]
- Li, W.; Li, T.; Wang, H.; Dong, J.; Li, Y.; Cui, D.; Ge, W.; Yang, J.; Onyeka Okoye, M. Optimal Dispatch Model Considering Environmental Cost Based on Combined Heat and Power with Thermal Energy Storage and Demand Response. Energies 2019, 12, 817. [Google Scholar] [CrossRef]
- Nazari-Heris, M.; Mohammadi-Ivatloo, B.; Gharehpetian, G.B. A comprehensive review of heuristic optimization algorithms for optimal combined heat and power dispatch from economic and environmental perspectives. Renew. Sustain. Energy Rev. 2018, 81, 2128–2143. [Google Scholar] [CrossRef]
- Liu, Z.-F.; Li, L.-L.; Liu, Y.-W.; Liu, J.-Q.; Li, H.-Y.; Shen, Q. Dynamic economic emission dispatch considering renewable energy generation: A novel multi-objective optimization approach. Energy 2021, 235, 121407. [Google Scholar] [CrossRef]
- Jin, J.; Wen, Q.; Zhao, L.; Zhou, C.; Guo, X. Measuring environmental performance of power dispatch influenced by low-carbon approaches. Renew. Energy 2023, 209, 325–339. [Google Scholar] [CrossRef]
- Jin, J.; Zhou, D.; Zhou, P.; Miao, Z. Environmental/economic power dispatch with wind power. Renew. Energy 2014, 71, 234–242. [Google Scholar] [CrossRef]
- Razeghi, G.; Brouwer, J.; Samuelsen, S. A spatially and temporally resolved model of the electricity grid—Economic vs environmental dispatch. Appl. Energy 2016, 178, 540–556. [Google Scholar] [CrossRef]
- Ren, Z.; Zhou, B.; Ning, L.; Zheng, W.; Liu, H.; Hu, D.; Sun, J. Optimal Dispatch of Industrial Loads considering Process Constraints for Renewable Energy Consumption. Int. J. Electr. Power Energy Syst. 2025, 166, 110550. [Google Scholar] [CrossRef]
- Wang, J.; Shi, Y.; Zhou, Y. Intelligent Demand Response for Industrial Energy Management Considering Thermostatically Controlled Loads and EVs. IEEE Trans. Ind. Inf. 2019, 15, 3432–3442. [Google Scholar] [CrossRef]
- Wang, F.; Zhou, L.; Ren, H.; Liu, X.; Shafie-kha, M.; Catalao, J. Multi-objective Optimization Model of Source-Load-Storage Synergetic Dispatch for Building Energy System Based on TOU Price Demand Response. In Proceedings of the IEEE Industry Applications Society Annual Meeting, Cincinnati, OH, USA, 1–5 October 2017. [Google Scholar]
- Zheng, B.; Pan, M.; Liu, Q.; Xu, X.; Liu, C.; Wang, X.; Chu, W.; Tian, S.; Yuan, J.; Xu, Y.; et al. Data-driven assisted real-time optimal control strategy of submerged arc furnace via intelligent energy terminals considering large-scale renewable energy utilization. Sci. Rep. 2024, 14, 5582. [Google Scholar] [CrossRef] [PubMed]
- Schweizer, P. Determining optimal fuel mix for environmental dispatch. IEEE Trans. Autom. Control 1974, 19, 534–537. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, C.; Tao, Y.; Wen, Z.; Chen, B.; Zhang, H. A many-objective optimization of industrial environmental management using NSGA-III: A case of China’s iron and steel industry. Appl. Energy 2019, 242, 46–56. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhao, T.; Ni, T.; Gao, J. Optimization models for operation of a steam power system in integrated iron and steel works. Energy Sources Part A Recovery Util. Environ. Eff. 2021, 43, 1100–1114. [Google Scholar] [CrossRef]
- Wang, J.; Wang, Q.; Sun, W. Quantifying flexibility provisions of the ladle furnace refining process as cuttable loads in the iron and steel industry. Appl. Energy 2023, 342, 121178. [Google Scholar] [CrossRef]
- Niu, T.; Li, F.; Fang, S. Enhanced flexibility utilization and coordinated dispatch method of energy—Intensive enterprises in power systems under time of use prices. IET Renew. Power Gener. 2023, 17, 3609–3623. [Google Scholar] [CrossRef]
- Zhao, X.; Wang, Y.; Liu, C.; Cai, G.; Ge, W.; Wang, B.; Wang, D.; Shang, J.; Zhao, Y. Two-stage day-ahead and intra-day scheduling considering electric arc furnace control and wind power modal decomposition. Energy 2024, 302, 131694. [Google Scholar] [CrossRef]
- Paulus, M.; Borggrefe, F. The potential of demand-side management in energy-intensive industries for electricity markets in Germany. Appl. Energy 2011, 88, 432–441. [Google Scholar] [CrossRef]
- Austrian Power Grid AG. Day-Ahead Preise. Available online: https://markt.apg.at/transparenz/uebertragung/day-ahead-preise/ (accessed on 1 September 2025).
- Central European Gas Hub. Day-Ahead Gaspreise. Available online: https://www.cegh.at/en/exchange-market/market-data/ (accessed on 28 March 2025).
- European Commission. Auctioning of Allowances. Available online: https://climate.ec.europa.eu/eu-action/eu-emissions-trading-system-eu-ets/auctioning-allowances_en (accessed on 16 March 2025).
- Nowtricity. Energy Mix & Carbon Intensity—Austria. Available online: https://www.nowtricity.com/country/austria/ (accessed on 24 July 2025).
- Paschotta, R. Methan. Available online: https://www.energie-lexikon.info/methan.html (accessed on 28 March 2025).
- Gurobi Optimization, LLC. Gurobi Optimizer Reference Manual; Gurobi Optimization, LLC: Beaverton, OR, USA, 2024. [Google Scholar]
- IPCC. Summary for Policymakers: Special Report on Renewable Energy Sources and Climate Change Mitigation; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2011. [Google Scholar]
- Burger, B. Durchschnittliche Börsenpreise. Available online: https://energy-charts.info/charts/price_average/chart.htm?l=de&c=AT&year=2024&interval=day&legendItems=4y2&print-type=extremevalues (accessed on 2 June 2025).
Unit of Variation | Source | Lower Bound | Upper Bound | Variation Steps | |
---|---|---|---|---|---|
Electricity Price | % | [95] | −50 | +50 | 25 |
Gas Price | % | [96] | −50 | +50 | 25 |
CO2 Price | % | [102] | −50 | +50 | 25 |
CO2 Footprint of Electricity | g/kWh | [98,101] | 30 | 155 | - |
EAF Utilization Level | % | EAF operators in Austria | 85 | 100 | 5 |
Alpha | - | - | 0 | 1 | 0.1–0.25 |
Electricity Price | Gas Price | CO2 Price | CO2 Emissions | ||||
---|---|---|---|---|---|---|---|
Mean | Minimum | Maximum | Standard Deviation | ||||
EUR/MWh | EUR/MWh | EUR/MWh | g CO2eq/kWh | ||||
Representative | 69.25 | 29.16 | 110.15 | 26.09 | 33.89 | 64.79 | 68.75 |
Spring | 62.01 | 17.83 | 108.01 | 12.63 | 31.84 | 66.79 | 37.00 |
Summer | 77.31 | 34.79 | 118.73 | 26.73 | 36.87 | 67.49 | 34.67 |
Autumn | 114.42 | 74.15 | 167.89 | 28.11 | 43.07 | 65.36 | 117.00 |
Winter | 78.17 | 57.76 | 102.53 | 12.63 | 28.34 | 59.48 | 86.33 |
Extraordinary #1 | 14.54 | −126.42 | 101.15 | 58.24 | 30.75 | 69.16 | 32.00 |
Extraordinary #2 | 143.54 | 87.02 | 555.73 | 94.54 | 41.63 | 69.15 | 38.00 |
Metric | ILP Model | MILP Model | |
---|---|---|---|
Input Variables | Ratio r | Discretized (0.85–1.00 in 0.5% steps) | Continuous |
Energy demand | Discretized (kW-steps) | Continuous | |
Model Parameters | Number of variables | ~3.35 million | ~14.8 million |
Number of constraints | ~200 | ~29 million | |
Quantitiative Results | Cost change ΔC | −0.35% | −1.34% |
Emission change ΔE | +0.50% | +0.01% | |
Practical Implications | Computation time | 12 min | 96 h |
Price Variation | Cost Change (ΔC) | ||||||||
---|---|---|---|---|---|---|---|---|---|
Electricity | Gas | CO2 | Representative | Spring | Summer | Autumn | Winter | Extra- Ordinary #1 | Extra- Ordinary #2 |
% | % | % | % | % | % | % | % | % | % |
0 | 0 | 0 | −2.83 | −2.96 | −2.60 | −2.81 | −2.40 | −4.20 | −6.95 |
−50 | 0 | 0 | −1.80 | −1.89 | −1.61 | −1.78 | −1.69 | −2.26 | −5.05 |
−25 | 0 | 0 | −2.38 | −2.50 | −2.18 | −2.39 | −2.10 | −3.27 | −6.19 |
+25 | 0 | 0 | −3.17 | −3.33 | −2.92 | −3.12 | −2.62 | −5.07 | −7.49 |
+50 | 0 | 0 | −3.45 | −3.62 | −3.18 | −3.62 | −2.81 | −5.87 | −7.90 |
0 | −50 | 0 | −3.51 | −3.65 | −3.30 | −3.46 | −2.93 | −5.13 | −7.49 |
0 | −25 | 0 | −3.16 | −3.30 | −2.94 | −3.13 | −2.66 | −4.65 | −7.21 |
0 | +25 | 0 | −2.50 | −2.63 | −2.26 | −2.49 | −2.14 | −3.80 | −6.68 |
0 | +50 | 0 | −2.18 | −2.33 | −1.95 | −2.19 | −1.89 | −3.44 | −6.43 |
0 | 0 | −50 | −2.99 | −3.14 | −2.76 | −2.93 | −2.53 | −4.45 | −7.06 |
0 | 0 | −25 | −2.91 | −3.05 | −2.68 | −2.87 | −2.46 | −4.33 | −7.00 |
0 | 0 | +25 | −2.75 | −2.87 | −2.52 | −2.75 | −2.33 | −4.08 | −6.89 |
0 | 0 | +50 | −2.67 | −2.78 | −2.44 | −2.69 | −2.26 | −3.97 | −6.84 |
Scenario | Cost Change (ΔC) at EAF Utilization Grade in% | |||
---|---|---|---|---|
85% | 90% | 95% | 100% | |
Representative | −2.18 | −2.93 | −3.12 | −2.83 |
Spring | −2.50 | −3.11 | −3.23 | −2.96 |
Summer | −1.98 | −2.72 | −2.78 | −2.60 |
Autumn | −2.56 | −4.27 | −3.87 | −2.81 |
Winter | −2.27 | −3.04 | −2.90 | −2.40 |
Extraordinary #1 | −4.75 | −4.81 | −4.97 | −4.20 |
Extraordinary #2 | −4.38 | −10.24 | −7.83 | −6.95 |
Scenario | Emission Reduction Between the Current Electricity CO2 Footprint and 100% Renewable Electricity for | Difference Relative | |
---|---|---|---|
α = 0 | α = 1 | (α = 0)–(α = 1) | |
Representative | −31.77 | −36.06 | 4.28 |
Spring | −5.96 | −7.12 | 1.17 |
Summer | −3.27 | −3.94 | 0.66 |
Autumn | −51.86 | −56.60 | 4.75 |
Winter | −40.77 | −45.46 | 4.69 |
Extraordinary #1 | 0.00 | 0.00 | 0.00 |
Extraordinary #2 | −7.22 | −8.43 | 1.21 |
Scenario | α | Cost Change (ΔC) | Emission Change (ΔE) | ECF |
---|---|---|---|---|
- | % | % | % | |
Representative | 0.00 | 0.74 | −2.79 | 1.65 |
0.10 | 0.57 | −2.78 | 1.64 | |
0.20 | 0.30 | −2.72 | 1.61 | |
0.30 | 0.18 | −2.67 | 1.58 | |
0.40 | 0.10 | −2.60 | 1.54 | |
0.50 | −0.05 | −2.43 | 1.44 | |
0.60 | −0.44 | −1.73 | 1.02 | |
0.70 | −2.21 | 2.45 | −1.45 | |
0.80 | −2.70 | 4.24 | −2.51 | |
0.90 | −2.83 | 5.19 | −3.07 | |
1.00 | −2.83 | 5.19 | −3.07 | |
Spring | 0.00 | 0.71 | −4.68 | 1.65 |
0.25 | 0.25 | −4.53 | 1.60 | |
0.50 | 0.03 | −4.33 | 1.53 | |
0.75 | −2.62 | 5.44 | −1.92 | |
1.00 | −2.96 | 8.70 | −3.07 | |
Summer | 0.00 | 0.77 | −4.88 | 1.65 |
0.25 | 0.42 | −4.77 | 1.61 | |
0.50 | 0.19 | −4.52 | 1.53 | |
0.75 | −2.27 | 5.88 | −1.99 | |
1.00 | −2.60 | 9.08 | −3.07 | |
Autumn | 0.00 | 1.00 | −1.41 | 1.65 |
0.25 | 0.35 | −1.32 | 1.55 | |
0.50 | −1.49 | 0.50 | −0.59 | |
0.75 | −2.81 | 2.62 | −3.07 | |
1.00 | −2.81 | 2.62 | −3.07 | |
Winter | 0.00 | 1.01 | −2.16 | 1.65 |
0.25 | 0.78 | −2.12 | 1.62 | |
0.50 | 0.57 | −1.97 | 1.50 | |
0.75 | −2.40 | 4.02 | −3.07 | |
1.00 | −2.40 | 4.02 | −3.07 | |
Extraordinary #1 | 0.00 | 1.27 | −5.13 | 1.65 |
0.25 | −0.13 | −4.93 | 1.59 | |
0.50 | −0.83 | −4.46 | 1.43 | |
0.75 | −3.31 | 2.23 | −0.72 | |
1.00 | −4.20 | 7.20 | −2.32 | |
Extraordinary #2 | 0.00 | 0.03 | −4.59 | 1.65 |
0.25 | −4.35 | −2.00 | 0.72 | |
0.50 | −5.93 | 0.65 | −0.23 | |
0.75 | −6.90 | 6.47 | −2.33 | |
1.00 | −6.95 | 6.89 | −2.48 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zawodnik, V.; Gruber, A.; Kienberger, T. Fueling Industrial Flexibility: Discrete-Time Dispatch Optimization of Electric Arc Furnaces. Energies 2025, 18, 4838. https://doi.org/10.3390/en18184838
Zawodnik V, Gruber A, Kienberger T. Fueling Industrial Flexibility: Discrete-Time Dispatch Optimization of Electric Arc Furnaces. Energies. 2025; 18(18):4838. https://doi.org/10.3390/en18184838
Chicago/Turabian StyleZawodnik, Vanessa, Andreas Gruber, and Thomas Kienberger. 2025. "Fueling Industrial Flexibility: Discrete-Time Dispatch Optimization of Electric Arc Furnaces" Energies 18, no. 18: 4838. https://doi.org/10.3390/en18184838
APA StyleZawodnik, V., Gruber, A., & Kienberger, T. (2025). Fueling Industrial Flexibility: Discrete-Time Dispatch Optimization of Electric Arc Furnaces. Energies, 18(18), 4838. https://doi.org/10.3390/en18184838