Fast Monocular Measurement via Deep Learning-Based Object Detection for Real-Time Gas-Insulated Transmission Line Deformation Monitoring
Abstract
:1. Introduction
2. Design of a Monocular Measurement System for GIL Deformation
3. Related Methods and Modeling Procedures
3.1. Region of Interest Extraction
3.2. Feature Point Extraction Within ROI
3.2.1. Region-Adaptive Threshold Calculation
3.2.2. Elimination of Redundant Corner Points
3.2.3. Subpixel Refinement of Corner Point Coordinates
3.3. Image Tilt Correction and Scaling Factor Calculation
3.4. Analysis of Static Detection Experiments
4. Experimental Analysis of GIL Deformation Measurements
4.1. Axial Deformation Measurement at a Single Feature Point
4.2. Torsional Deformation Measurements
5. Conclusions
- (1)
- To address the limitations of traditional FAST corner detection methods, an adaptive threshold calculation method was developed. Combined with the Shi–Tomasi algorithm, redundant corner points were effectively removed, enabling the automated extraction and tracking of the target corner point at the center of the marker. Experiments verified the effectiveness of the proposed image tilt correction theory in monocular measurement and analyzed the impact of subpixel refinement on measurement error. The results show that, after image correction, measurement accuracy became insensitive to the camera’s orientation. The pixel-level measurement method achieved a mean absolute error (MAE) of 1.474 mm with a standard deviation of 1.0178 mm, while the subpixel-level measurement method improved the MAE to 0.791 mm with a standard deviation of 0.2953 mm. This demonstrates that the subpixel-level method offers higher measurement precision and better data stability, making it advantageous for practical measurement scenarios.
- (2)
- Simulated deformation experiments verified the robustness, precision, real-time capability, and automation of the proposed monitoring system. The results indicate that the system is insensitive to changes in pipeline loading conditions and camera orientation. The average absolute error of the measurements did not exceed 1.337 mm, with the minimum average absolute error being 0.265 mm, meeting the required measurement accuracy. Furthermore, the computation time per frame was approximately 0.024 s, enabling real-time, automated deformation monitoring.
- (3)
- The proposed GIL pipeline deformation measurement method was validated through torsional deformation experiments. When the camera was positioned approximately 1.7 m from the measurement plane, the maximum average absolute error did not exceed 0.31°. It is important to note that, regardless of whether axial or torsional deformation is being measured, the projective transformation matrix M should always be calculated from the first image acquired during each measurement session. This same matrix should then be applied to all subsequent images, ensuring consistent and accurate correction.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Xiao, S.; Zhang, X.; Tang, J.; Liu, S. A review on SF6 substitute gases and research status of CF3I gases. Energy Rep. 2018, 4, 486–496. [Google Scholar] [CrossRef]
- Magier, T.; Tenzer, M.; Koch, H. Direct Current Gas-Insulated Transmission Lines. IEEE Trans. Power Deliv. 2018, 33, 440–446. [Google Scholar] [CrossRef]
- Tu, Y.; Chen, G.; Li, C.; Wang, C.; Ma, G.; Zhou, H.; Ai, X.; Cheng, Y. ±100-kV HVDC SF6/N2 Gas-Insulated Transmission Line. IEEE Trans. Power Deliv. 2020, 35, 735–744. [Google Scholar] [CrossRef]
- Shu, Q.; Huang, Z.; Yuan, G.; Ma, W.; Ye, S.; Zhou, J. Impact of wind loads on the resistance capacity of the transmission tower subjected to ground surface deformations. Thin-Walled Struct. 2018, 131, 619–630. [Google Scholar] [CrossRef]
- Fu, X.; Du, W.-L.; Li, H.-N.; Li, G.; Dong, Z.-Q.; Yang, L.-D. Stress state and failure path of a tension tower in a transmission line under multiple loading conditions. Thin-Walled Struct. 2020, 157, 107012. [Google Scholar] [CrossRef]
- Tan, X.; Poorghasem, S.; Huang, Y.; Feng, X.; Bao, Y. Monitoring of pipelines subjected to interactive bending and dent using distributed fiber optic sensors. Autom. Constr. 2024, 160, 105306. [Google Scholar] [CrossRef]
- Yang, L.; Fan, J.; Liu, Y.; Li, E.; Peng, J.; Liang, Z. A Review on State-of-the-Art Power Line Inspection Techniques. IEEE Trans. Instrum. Meas. 2020, 69, 9350–9365. [Google Scholar] [CrossRef]
- Yang, Y.; Wang, M.; Wang, X.; Li, C.; Shang, Z.; Zhao, L. A Novel Monocular Vision Technique for the Detection of Electric Transmission Tower Tilting Trend. Appl. Sci. 2023, 13, 407. [Google Scholar]
- Wang, D.; Yue, J.; Li, J.; Xu, Z.; Zhao, W.; Zhu, R. Research on sag monitoring of ice-accreted transmission line arcs based on stereovision technique. Electr. Power Syst. Res. 2023, 225, 109794. [Google Scholar] [CrossRef]
- Zhang, K.; Liu, J.; Li, Y.; Sun, C.; Zhang, L. Research on Improving Denoising Performance of ROI Computer Vision Method for Transmission Tower Displacement Identification. Energies 2023, 16, 539. [Google Scholar] [CrossRef]
- Li, J.; Zheng, H.; Liu, P.; Liang, Y.; Shuang, F.; Huang, J. Safety monitoring method for powerline corridors based on single-stage detector and visual matching. High. Volt. 2024, 9, 805–815. [Google Scholar] [CrossRef]
- Fauzan, K.N.; Suwardhi, D.; Murtiyoso, A.; Gumilar, I.; Sidiq, T.P. Close-range photogrammetry method for SF6 Gas Insulated Line (GIL) deformation monitoring. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. 2021, XLIII-B2-2021, 503–510. [Google Scholar] [CrossRef]
- Xu, Y.; Brownjohn, J.; Kong, D. A non-contact vision-based system for multipoint displacement monitoring in a cable-stayed footbridge. Struct. Control Health Monit. 2018, 25, e2155. [Google Scholar] [CrossRef]
- Brownjohn, J.M.W.; Xu, Y.; Hestr, D. Vision-based bridge deformation monitoring. Front. Built Environ. 2017, 3, 23. [Google Scholar] [CrossRef]
- Yang, Y.; Ma, T.; Du, S. Robust template matching with angle location using dynamic feature pairs updating. Appl. Soft Comput. 2019, 85, 105804. [Google Scholar] [CrossRef]
- Wu, T.; Dong, Y. YOLO-SE: Improved YOLOv8 for remote sensing object detection and recognition. Appl. Sci. 2023, 13, 12977. [Google Scholar] [CrossRef]
- Li, Y.; Liu, W.; Li, L.; Zhang, W.; Xu, J.; Jiao, H. Vision-based target detection and positioning approach for underwater robots. IEEE Photonics J. 2022, 15, 8000112. [Google Scholar] [CrossRef]
- Yang, H.; Chen, L.; Chen, M.; Ma, Z.; Deng, F.; Li, M.; Li, X. Tender tea shoots recognition and positioning for picking robot using improved YOLO-V3 model. IEEE Access 2019, 7, 180998–181011. [Google Scholar] [CrossRef]
- Bansal, M.; Kumar, M.; Kumar, M. 2D object recognition: A comparative analysis of SIFT, SURF and ORB feature descriptors. Multimed. Tools Appl. 2021, 80, 18839–18857. [Google Scholar] [CrossRef]
- Li, Y.; Zheng, W.; Liu, X.; Mou, Y.; Yin, L.; Yang, B. Research and improvement of feature detection algorithm based on FAST. Rend. Lincei 2021, 32, 775–789. [Google Scholar] [CrossRef]
- Zhuang, Y.; Chen, W.; Jin, T.; Chen, B.; Zhang, H.; Zhang, W. A Review of Computer Vision-Based Structural Deformation Monitoring in Field Environments. Sensors 2022, 22, 3789. [Google Scholar] [CrossRef] [PubMed]
- Choi, I.; Kim, J.; Kim, D. A target-less vision-based displacement sensor based on image convex hull optimization for measuring the dynamic response of building structures. Sensors 2016, 16, 2085. [Google Scholar] [CrossRef] [PubMed]
- Shan, W.; Bai, F.; Xu, Y.; Gao, X.; Li, P. Perspective deformation correction for circular pointer meter based on prior indication structure feature. Measurement 2024, 229, 114423. [Google Scholar] [CrossRef]
- Barath, D. On Making SIFT Features Affine Covariant. Int. J. Comput. Vis. 2023, 131, 2316–2332. [Google Scholar] [CrossRef]
- Yang, Z.; Shen, D.; Yap, P.-T. Image mosaicking using SURF features of line segments. PLoS ONE 2017, 12, e0173627. [Google Scholar] [CrossRef]
- Damaneh, M.M.; Mohanna, F.; Jafari, P. Static hand gesture recognition in sign language based on convolutional neural network with feature extraction method using ORB descriptor and Gabor filter. Expert. Syst. Appl. 2023, 211, 118559. [Google Scholar] [CrossRef]
- Wang, A.; Chen, H.; Liu, L.; Chen, K.; Lin, Z.; Han, J.; Ding, G. YOLOv10: Real-Time End-to-End Object Detection. arXiv 2024, arXiv:2405.14458. [Google Scholar]
- Lee, Y.H.; Chen, T.C.; Liang, H.C.; Liao, J.X. Algorithm and Architecture Design of FAST-C Image Corner Detection Engine. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 2021, 29, 788–799. [Google Scholar] [CrossRef]
- Hong, Q.; Jiang, H.; Xiao, P.; Du, S.; Li, T. A Parallel Computing Scheme Utilizing Memristor Crossbars for Fast Corner Detection and Rotation Invariance in the ORB Algorithm. IEEE Trans. Comput. 2024, 74, 996–1010. [Google Scholar] [CrossRef]
- Bansal, M.; Kumar, M.; Kumar, M.; Kumar, K. An efficient technique for object recognition using Shi-Tomasi corner detection algorithm. Soft Comput. 2021, 25, 4423–4432. [Google Scholar] [CrossRef]
- Zhu, Q.; Wu, B.; Wan, N. A sub-pixel location method for interest points by means of the Harris interest strength. Photogramm. Rec. 2007, 22, 321–335. [Google Scholar] [CrossRef]
- Xie, X.; Ge, S.; Xie, M.; Hu, F.; Jiang, N. An improved industrial sub-pixel edge detection algorithm based on coarse and precise location. J. Ambient. Intell. Humaniz. Comput. 2020, 11, 2061–2070. [Google Scholar] [CrossRef]
- Liu, Y.; Su, X.; Guo, X.; Suo, T.; Yu, Q. A novel concentric circular coded target, and its positioning and identifying method for vision measurement under challenging conditions. Sensors 2021, 21, 855. [Google Scholar] [CrossRef]
- Becerra, L.L.; Ferrua, J.A.; Drake, M.J.; Kumar, D.; Anders, A.S.; Wang, E.N.; Preston, D.J. Active fume hood sash height monitoring with audible feedback. Energy Rep. 2018, 4, 645–652. [Google Scholar] [CrossRef]
- Wang, L.; Feng, Y. An Adaptive Window Shape-Based DIC Method for Large Torsional Deformation Measurement. IEEE Trans. Instrum. Meas. 2023, 72, 5004510. [Google Scholar] [CrossRef]
Method | AE | MAE | STD |
---|---|---|---|
Pixel-Level Error | [0.50, 0.30, 1.37, 1.38, 2.41, 0.12, 3.47, 1.63, 2.53, 1.03] | 1.474 | 1.0178 |
Subpixel-Level Error | [1.14, 0.99, 0.49, 0.54, 1.31, 0.62, 0.72, 0.31, 0.88, 0.91] | 0.791 | 0.2953 |
Experimental Group | MaxAE (mm) | MAE1 (mm) | RMSE (mm) | Time Consumption (s/Frame) |
---|---|---|---|---|
1 | 2.156 | 0.736 | 1.009 | 0.024 |
2 | 2.301 | 1.099 | 1.317 | |
3 | 2.052 | 1.337 | 1.437 | |
4 | 1.107 | 0.265 | 0.450 |
State | The Pixel Coordinates of Point F Before Calibration | The Pixel Coordinates of Point F After Calibration | The Pixel Coordinates of Point E Before Calibration | The Pixel Coordinates of Point E After Calibration |
---|---|---|---|---|
0 | (1018.95, 432.81) | (1026.08, 434.75) | (1027.00, 356.45) | (1027.00, 356.45) |
1 | (1031.53, 434.34) | (1039.05, 435.22) | (1042.90, 357.44) | (1042.80, 355.72) |
2 | (1042.99, 436.02) | (1050.98, 435.95) | (1055.70, 359.64) | (1055.80, 356.51) |
3 | (1056.41, 437.43) | (1064.99, 436.23) | (1073.10, 362.40) | (1073.40, 357.39) |
4 | (1072.35, 439.97) | (1081.89, 437.48) | (1092.90, 365.29) | (1093.90, 358.13) |
5 | (1103.15, 447.73) | (1115.45, 443.02) | (1130.10, 374.94) | (1133.50, 363.85) |
6 | (1130.24, 457.63) | (1146.08, 451.37) | (1162.40, 386.82) | (1169.40, 372.57) |
State | Measured Values (°) | Pre-α (°) | Pre-AE (°) | Post-α (°) | Post-AE (°) |
---|---|---|---|---|---|
1 | 2.0 | 2.39 | 0.39 | 2.03 | 0.03 |
2 | 1.5 | 1.03 | 0.47 | 0.77 | 0.73 |
3 | 2.7 | 3.10 | 0.40 | 2.62 | 0.08 |
4 | 2.8 | 2.84 | 0.04 | 2.52 | 0.28 |
5 | 4.5 | 4.93 | 0.43 | 4.24 | 0.26 |
6 | 4.1 | 4.11 | 0.01 | 3.64 | 0.46 |
MAE | - | - | 0.29 | - | 0.31 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, G.; Yang, W.; Li, E.; Wang, Q.; Han, H.; Sun, J.; Wang, M. Fast Monocular Measurement via Deep Learning-Based Object Detection for Real-Time Gas-Insulated Transmission Line Deformation Monitoring. Energies 2025, 18, 1898. https://doi.org/10.3390/en18081898
Yang G, Yang W, Li E, Wang Q, Han H, Sun J, Wang M. Fast Monocular Measurement via Deep Learning-Based Object Detection for Real-Time Gas-Insulated Transmission Line Deformation Monitoring. Energies. 2025; 18(8):1898. https://doi.org/10.3390/en18081898
Chicago/Turabian StyleYang, Guiyun, Wengang Yang, Entuo Li, Qinglong Wang, Huilong Han, Jie Sun, and Meng Wang. 2025. "Fast Monocular Measurement via Deep Learning-Based Object Detection for Real-Time Gas-Insulated Transmission Line Deformation Monitoring" Energies 18, no. 8: 1898. https://doi.org/10.3390/en18081898
APA StyleYang, G., Yang, W., Li, E., Wang, Q., Han, H., Sun, J., & Wang, M. (2025). Fast Monocular Measurement via Deep Learning-Based Object Detection for Real-Time Gas-Insulated Transmission Line Deformation Monitoring. Energies, 18(8), 1898. https://doi.org/10.3390/en18081898