Comprehensive Assessment of Transformer Oil After Thermal Aging: Modeling for Simultaneous Evaluation of Electrical and Chemical Characteristics
Abstract
:1. Introduction
- After every aging period of 500 h, a sample of oil was taken from the oven.
- The following electrical and chemical properties were measured:
- -
- Breakdown voltage;
- -
- Dielectric dissipation factor;
- -
- Relative permittivity;
- -
- Resistivity;
- -
- Acidity factor;
- -
- Water content.
- Developing a systematic approach to evaluate the influence of temperature on the aging of transformer oil by simulating normal and extreme operational scenarios;
- Providing a useful set of experimental data that can be used by other researchers/ engineers for comparison and validation purposes; and
- Proposing a mathematical model based on exponential regression that can be used for a condition assessment of transformer-oil insulation, and for correlating both electrical and chemical properties with temperature, an important factor influencing oil degradation.
2. Experimental Tests
3. Regression Methods and Correlation
- d(i) is the vector that comprises the parameters a, b, c, and d, which are defined by the specific model applied.x(i) is the period of aging.
- y(i) is the value of each experimental property.
- f(d(i),x(i)) is the function presented in Equation (1).
- y is the experimental characteristic;
- is the correlated characteristic obtained by the regression analysis;
- is the mean value of the test.
4. Results and Discussion
4.1. Breakdown Voltage
4.2. Dielectric Dissipation Factor
4.3. Resistivity
4.4. Acidity Factor
4.5. Water Content
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ma, H.; Saha, T.K.; Ekanayake, C. Statistical learning techniques and their applications for condition assessment of power transformer. IEEE Trans. Dielectr. Electr. Insul. 2012, 19, 481–489. [Google Scholar] [CrossRef]
- Wasserberg, V.; Borsi, H.; Gockenbach, E. A novel system for the prolongation of the lifetime of power transformers by reduced oxidation and aging. In Proceedings of the Conference Record of the 2004 IEEE International Symposium on Electrical Insulation, Indianapolis, IN, USA, 19–22 September 2004; pp. 233–236. [Google Scholar] [CrossRef]
- Meshkatoddini, M.R. A practical method for lifetime estimation of the used mineral oils. In Proceedings of the 2002 IEEE 14th International Conference on Dielectric Liquids. ICDL 2002 (Cat. No.02CH37319), Graz, Austria, 12 July 2002; pp. 305–308. [Google Scholar] [CrossRef]
- Kavitha, S.; Varuna, S.; Ramya, R. A comparative analysis on linear regression and support vector regression. In Proceedings of the 2016 Online International Conference on Green Engineering and Technologies (IC-GET), Coimbatore, India, 19 November 2016; pp. 1–5. [Google Scholar] [CrossRef]
- Wildi, T.; Sybille, G. Electrotechnique; De Boeck Université: Bruxelles, Belgique, 2005; Available online: https://www.deboecksuperieur.com/livre/9782804148928-electrotechnique (accessed on 6 April 2025).
- Densley, R.J.; Gupta, B.K. Effect of temperature on sensitivity of diagnostic tests on oil-impregnated paper insulation. In Proceedings of the Electrical Insulation Conference and Electrical Manufacturing and Coil Winding Conference (Cat. No.01CH37264), Cincinnati, OH, USA, 18 October 2001; pp. 601–604. [Google Scholar] [CrossRef]
- Pahlavanpour; Martins, M.; Eklund. Study of moisture equilibrium in oil-paper system with temperature variation. In Proceedings of the 7th International Conference on Properties and Applications of Dielectric Materials (Cat. No.03CH37417), Nagoya, Japan, 1–5 June 2003; Volume 3, pp. 1124–1129. [Google Scholar] [CrossRef]
- Rouse, T.O. Mineral insulating oil in transformers. IEEE Electr. Insul. Mag. 1998, 14, 6–16. [Google Scholar] [CrossRef]
- Saha, T.K.; Purkait, P. Investigations of Temperature Effects on the Dielectric Response Measurements of Transformer Oil-Paper Insulation System. IEEE Trans. Power Deliv. 2008, 23, 252–260. [Google Scholar] [CrossRef]
- Du, Y.; Zahn, M.; Lesieutre, B.C.; Mamishev, A.V.; Lindgren, S.R. Moisture equilibrium in transformer paper-oil systems. IEEE Electr. Insul. Mag. 1999, 15, 11–20. [Google Scholar] [CrossRef]
- Arakelian, V.G.; Fofana, I. Water in Oil-Filled, High-Voltage Equipment, Part I: States, Solubility, and Equilibrium in Insulating Materials. IEEE Electr. Insul. Mag. 2007, 23, 15–27. [Google Scholar] [CrossRef]
- Arakelian, V.G.; Fofana, I. Water in oil-filled high-voltage equipment part II: Water content as physicochemical tools for insulation condition diagnostic. IEEE Electr. Insul. Mag. 2007, 23, 15–24. [Google Scholar] [CrossRef]
- Wang, D.; Zhou, L.; Wang, A.; Li, H.; Liao, W.; Guo, L.; Cui, Y. Effects of thermal aging on moisture diffusion in insulation paper immersed with mineral oil. IEEE Trans. Dielectr. Electr. Insul. 2018, 25, 1888–1896. [Google Scholar] [CrossRef]
- Cui, Y.; Ma, H.; Saha, T.; Ekanayake, C.; Martin, D. Moisture-Dependent Thermal Modelling of Power Transformer. IEEE Trans. Power Deliv. 2016, 31, 2140–2150. [Google Scholar] [CrossRef]
- Martin, D.; Perkasa, C.; Lelekakis, N. Measuring Paper Water Content of Transformers: A New Approach Using Cellulose Isotherms in Nonequilibrium Conditions. IEEE Trans. Power Deliv. 2013, 28, 1433–1439. [Google Scholar] [CrossRef]
- Emsley, A.M.; Xiao, X.; Heywood, R.J.; Ali, M. Degradation of cellulosic insulation in power transformers. Part 3: Effects of oxygen and water on ageing in oil. Electr. Insul. Mag. 2021, 37, 19–26. [Google Scholar] [CrossRef]
- Li, Y.; Wu, G.; Li, W.; Cui, Y.; Gao, B. Influence of moisture and oxygen on aging of oil-paper insulation. IEEE Trans. Dielectr. Electr. Insul. 2020, 27, 1770–1777. [Google Scholar] [CrossRef]
- Vasovic, V.; Lukic, J.; Mihajlovic, D.; Bran. Aging of transformer insulation of experimental transformers and laboratory models with different moisture contents: Part II — moisture distribution and aging kinetics. IEEE Trans. Dielectr. Electr. Insul. 2021, 28, 1563–1571. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, L.; Liu, Q. Thermal Aging of Oil-Paper Insulation: Influence on Dielectric Properties. J. Electr. Eng. Technol. 2023, 18, 895–904. [Google Scholar]
- Zhang, W.; Liu, J.; Wang, X. Dielectric Response of Oil-Paper Insulation Under Varying Temperature and Humidity. IEEE Trans. Dielectr. Electr. Insul. 2023, 30, 153–162. [Google Scholar]
- Li, Y.; Wu, G.; Li, W.; Cui, Y.; Gao, B. Effect of Temperature on Dielectric Properties of Oil-Paper Insulation. In Proceedings of the 2023 IEEE Electrical Insulation Conference (EIC), Knoxville, TN, USA, 28–31 May 2023; pp. 1–6. [Google Scholar] [CrossRef]
- Zhang, M.; Yu, M.; Zhou, W.; Liang, Y.; Lei, S.; Shi, Y.; Qu, L. Research on the Variation of Dielectric Properties of Oil-Paper Insulation for Power Equipment over a Wide Temperature Range. High Voltage 2024, 9, 648–658. [Google Scholar] [CrossRef]
- Singh, M.; Jindal, V.; Singh, J. Effects of Thermal Aging on Blended Oil Characteristics in Comparison to Mineral Oil and Synthetic Esters. IEEE Trans. Dielectr. Electr. Insul. 2023, 30, 1540–1547. [Google Scholar] [CrossRef]
- Fofana, I.; Borsi, H.; Gockenbach, E.; Farzaneh, M. Aging of transformer insulating materials under selective conditions. Eur. Trans. Electr. Power 2007, 17, 450–470. [Google Scholar] [CrossRef]
- Qin, C.; Lin, W.; Huang, Y.; Liang, H.; Hua, H. Study on Thermal Aging Insulation Characteristics of Transformer Oil-Paper Insulation. In Proceedings of the 2024 IEEE 4th International Conference on Power, Electronics and Computer Applications (ICPECA), Shenyang, China, 26–28 January 2024; Volume A59, pp. 744–748. [Google Scholar] [CrossRef]
- Abdi, S.; Boubakeur, A.; Haddad, A. Influence of thermal ageing on transformer oil properties. In Proceedings of the 2008 IEEE International Conference on Dielectric Liquids, Chasseneuil, France, 30 June–3 July 2008; pp. 1–4. [Google Scholar] [CrossRef]
- Guerbas, F.; Adjaout, L.; Abada, A. Accelerated Thermal Aging Effect on The New and Reclamation Transformer Oil Behavior. In Proceedings of the 2023 IEEE Electrical Insulation Conference (EIC), Quebec City, QC, Canada, 18–21 June 2023; pp. 1–4. [Google Scholar] [CrossRef]
- Abdi, S.; Boubakeur, A.; Haddad, A. Influence of Thermal Ageing on Dissolved Gases in Transformer Oil. In Proceedings of the Société Française d’Électrostatique, Paris, France, 7–9 July 2008. [Google Scholar]
- Negara, I.M.Y.; Aryani, N.K.; Asfani, D.A.; Fahmi, D.; Jauhari, R.; Wahyudi, M. Analysis of physical and electrical characteristics of transformer oil insulation during accelerated thermal aging experiment and its lifetime estimation using arrhenius law and breakdown voltage test. In Proceedings of the 2017 International Seminar on Intelligent Technology and Its Applications (ISITIA), Surabaya, Indonesia, 28–29 August 2017; pp. 139–143. [Google Scholar] [CrossRef]
- Abdi, S.; Boubakeur, A.; Haddad, A.; Harid, N. Influence of Artificial Thermal Aging on Transformer Oil Properties. Electr. Power Components Syst. 2011, 39, 1701–1711. [Google Scholar] [CrossRef]
- Martin, D.; Saha, T.; Dee, R.; Buckley, G.; Chinnarajan, S.; Caldwell, G.; Zhou, J.B.; Russell, G. Determining water in transformer paper insulation: Analyzing aging transformers. IEEE Electr. Insul. Mag. 2015, 31, 23–32. [Google Scholar] [CrossRef]
- Zhang, X.; Ren, L.; Yu, H.; Xu, Y.; Lei, Q.; Li, X.; Han, B. Dual-Temperature Evaluation of a High-Temperature Insulation System for Liquid-Immersed Transformer. Energies 2018, 11, 1957. [Google Scholar] [CrossRef]
- Wang, X.; Tang, C.; Huang, B.; Hao, J.; Chen, G. Review of Research Progress on the Electrical Properties and Modification of Mineral Insulating Oils Used in Power Transformers. Energies 2018, 11, 487. [Google Scholar] [CrossRef]
- Liu, L.; Wu, H.; Liu, T.; Feng, H.; Tian, H.; Peng, Z. Influence of moisture and temperature on the frequency domain spectroscopy characteristics of transformer oil. In Proceedings of the 2016 IEEE International Conference on Dielectrics (ICD), Montpellier, France, 3–7 July 2016; Volume 1, pp. 565–568. [Google Scholar] [CrossRef]
- Cheng, L.; Jiang, Y.; Dan, M.; Wen, H.; Li, Y.; Qin, W.; Hao, J. Effects of Fiber and Copper Particles on Conductivity and Breakdown Characteristics of Natural Ester and Mineral Oil under DC Voltage. Energies 2020, 13, 1818. [Google Scholar] [CrossRef]
- Pedro da Costa Souza, J.; Picher, P.; Zinflou, A.; Fofana, I.; Beheshti Asl, M. A Comprehensive Review on Artificial Intelligence-Based Applications for Transformer Thermal Modeling: Background and Perspectives. IEEE Access 2024, 12, 152310–152329. [Google Scholar] [CrossRef]
- Mokhnache, L.; Boubakeur, A.; Said, N. Comparison of different neural networks algorithms used in the diagnosis and thermal ageing prediction of transformer oil. In Proceedings of the IEEE International Conference on Systems, Man and Cybernetics, Yasmine Hammamet, Tunisia, 6–9 October 2002; Volume 6, p. 6. [Google Scholar] [CrossRef]
- Abdi, S.; Harid, N.; Safiddine, L.; Boubakeur, A.; Haddad, A.M. The Correlation of Transformer Oil Electrical Properties with Water Content Using a Regression Approach. Energies 2021, 14, 2089. [Google Scholar] [CrossRef]
- Yang, D.; Chen, W.; Zhou, Y.; Wang, Z.; Zhang, R.; Song, R. Prediction of Aging Degree of Oil-paper Insulation Based on Raman Spectroscopy and Fuzzy Neural Network. In Proceedings of the 2020 IEEE International Conference on High Voltage Engineering and Application (ICHVE), Beijing, China, 6–10 September 2020; pp. 1–4. [Google Scholar] [CrossRef]
- Gouda, O.E.; El Dein, A.Z. Prediction of Aged Transformer Oil and Paper Insulation. Electr. Power Components Syst. 2019, 47, 406–419. [Google Scholar] [CrossRef]
- Peng, D.; Yang, D.; Wang, C.; Li, M. Research of the Dielectric Loss factor tan delta of Transformer Oil by Multi-Parameter Regression Analysis. In Proceedings of the 2009 Asia-Pacific Power and Energy Engineering Conference, Wuhan, China, 27–31 March 2009; pp. 1–3. [Google Scholar] [CrossRef]
- Mokhnache, L.; Verma, P.; Boubakeur, A. Neural networks in prediction of accelerated thermal ageing effect on oil/paper insulation tensile strength. In Proceedings of the 2004 IEEE International Conference on Solid Dielectrics (ICSD 2004), Toulouse, France, 5–9 July 2004; Volume 2, pp. 575–577. [Google Scholar] [CrossRef]
- Rondla, P.; Falahi, M.; Zhan, W.; Goulart, A. A regression algorithm for transformer fault detection. In Proceedings of the 2012 IEEE Power and Energy Society General Meeting, San Diego, CA, USA, 22–26 July 2012; pp. 1–8. [Google Scholar] [CrossRef]
- Yang, Z.; Chen, W.; Yang, D.; Song, R. A Novel Recognition Method of Aging Stage of Transformer Oil-Paper Insulation Using Raman Spectroscopic Recurrence Plots. IEEE Trans. Dielectr. Electr. Insul. 2022, 29, 1152–1159. [Google Scholar] [CrossRef]
- Abdi, S.; Besseri, B.A.; Haddad, A.; Harid, N.; Boubakeur, A. Advanced Regression Modeling for Correlating Transformer Oil Electrical Properties with Thermal Aging Trends. In Proceedings of the 2024 59th International Universities Power Engineering Conference (UPEC), Cardiff, UK, 2–6 September 2024; pp. 1–6. [Google Scholar]
- IEC Standard 60475; Method of Sampling Insulating Liquids. International Electrotechnical Commission: Geneva, Switzerland, 2011.
- IEC Standard 60156; Determination of the Breakdown Voltage of Insulating Liquids at Power Frequency. International Electrotechnical Commission: Geneva, Switzerland, 1995.
- IEC Standard 60247; Measurement of Relative Permittivity, Dielectric Dissipation Factor and DC Resistivity of Insulating Liquids. International Electrotechnical Commission: Geneva, Switzerland, 2004.
- IEC Standard 62021; Determination of the Acidity of Insulating Liquids. International Electrotechnical Commission: Geneva, Switzerland, 2003.
- IEC Standard 60814; Determination of Water Content in Insulating Liquids by Coulometric Karl Fischer Titration. International Electrotechnical Commission: Geneva, Switzerland, 1997.
- Zou, K.H.; Tuncali, K.; Silverman, S.G. Correlation and simple linear regression. Radiology 2003, 227, 617–628. [Google Scholar] [CrossRef]
- Ádám Tamus, Z. Regression analysis to evaluate the reliability of insulation diagnostic methods. J. Electrost. 2013, 71, 564–567. [Google Scholar] [CrossRef]
- Zhang, L.; Shi, Z.; Cheng, M.M.; Liu, Y.; Bian, J.W.; Zhou, J.T.; Zheng, G.; Zeng, Z. Nonlinear Regression via Deep Negative Correlation Learning. IEEE Trans. Pattern Anal. Mach. Intell. 2021, 43, 982–998. [Google Scholar] [CrossRef]
- Esfahani, J.A.; Safaei, M.R.; Goharimanesh, M.; De Oliveira, L.R.; Goodarzi, M.; Shamshirband, S.; Bandarra Filho, E.P. Comparison of experimental data, modelling and non-linear regression on transport properties of mineral oil based nanofluids. Powder Technol. 2017, 317, 458–470. [Google Scholar] [CrossRef]
- Kovacević, U.; Vujisić, M.; Iričanin, B.; Osmokrović, P.; Milosavljević, S. The correlation and regression between the pre-breakdown current and breakdown voltage of the vacuum switchgear in dependence of switching operation. In Proceedings of the 2014 IEEE International Power Modulator and High Voltage Conference (IPMHVC), Santa Fe, NM, USA, 1–5 June 2014; pp. 384–387. [Google Scholar] [CrossRef]
- Jakšić, U.G.; Arsić, N.B.; Fetahović, I.S.; Stanković, K.Đ. Analysis of correlation and regression between particle ionizing radiation parameters and the stability characteristics of irradiated monocrystalline Si film. Nucl. Technol. Radiat. Prot. 2014, 29, 123–127. [Google Scholar] [CrossRef]
- Amalanathan, R.; Harid, N. Impact of adding activated bentonite to thermally aged ester-based TiO2 nanofluids on insulation performance. IET Nanodielectr. 2021, 4, 61–71. [Google Scholar] [CrossRef]
- Sha, Y.; Zhou, Y.; Nie, D.; Wu, Z.; Deng, J. A study on electric conduction of transformer oil. IEEE Trans. Dielectr. Electr. Insul. 2014, 21, 1061–1069. [Google Scholar] [CrossRef]
- Pompili, M.; Mazzetti, C. Effect of reduced viscosity on the electrical characteristics of transformer and switchgear oils. In Proceedings of the Conference Record of the the 2002 IEEE International Symposium on Electrical Insulation (Cat. No.02CH37316), Boston, MA, USA, 7–10 April 2002; pp. 363–366. [Google Scholar] [CrossRef]
- Kang, B.P. Thermal Dependency of Viscosity, Power Factor, and Ion Content of Electrical Insulating Oils-III Predictions of Power Factor of Oil Blends Through the Concept of Ion Content. IEEE Trans. Electr. Insul. 1967, EI-2, 121–128. [Google Scholar] [CrossRef]
- Koutras, K.N.; Peppas, G.D.; Tegopoulos, S.N.; Kyritsis, A.; Yiotis, A.G.; Tsovilis, T.E.; Gonos, I.F.; Pyrgioti, E.C. Ageing Impact on Relative Permittivity, Thermal Properties and Lightning Impulse Voltage Performance of Natural Ester Oil Filled with Semi-conducting Nanoparticles. IEEE Trans. Dielectr. Electr. Insul. 2023, 30, 1598–1607. [Google Scholar] [CrossRef]
- Beroual, A.; Tobazeon, R. Prebreakdown Phenomena in Liquid Dielectrics. IEEE Trans. Electr. Insul. 1986, EI-21, 613–627. [Google Scholar] [CrossRef]
Property | Standard | Unit | Value |
---|---|---|---|
Breakdown voltage | IEC 60156 | kV | 79.8 |
tan (90 °C) | IEC 60247 | — | |
Resistivity (90 °C) | IEC 60247 | ·cm | |
Permittivity | IEC 60247 | — | 2.13 |
Acidity | IEC 62021 | mg KOH/g | |
Water content | IEC 60814 | ppm | 8.2 |
Colour factor | ISO 2049 | — | <0.5 |
Density (20 °C) | ISO 3675 | g/mL | 0.680 |
Flash point | ISO 2719 | °C | 140 |
Viscosity (40 °C) | ISO 3104 | mm/s | 6.998 |
T = 80 °C | T = 100 °C | T = 120 °C | T = 140 °C | |
---|---|---|---|---|
a | 41.62 | 38 | 38.03 | 43.66 |
b | ||||
c | 43.99 | 44.23 | 44.51 | 37.07 |
d |
T = 80 °C | T = 100 °C | T = 120 °C | T = 140 °C | |
---|---|---|---|---|
a | 0.08 | 0.08 | 0.11 | 0.01 |
b | ||||
c | 0.03 | 0.1 | 0.01 | |
d |
T = 80 °C | T = 100 °C | T = 120 °C | T = 140 °C | |
---|---|---|---|---|
a | 1.72 | 4.05 | 5.8 | 2.08 |
b | ||||
c | 6.02 | 4.02 | 1.85 | 5.51 |
d |
T = 80 °C | T = 100 °C | T = 120 °C | T = 140 °C | |
---|---|---|---|---|
a | ||||
b | ||||
c | 41.34 | 93.75 | 52.74 | |
d |
T = 80 °C | T = 100 °C | T = 120 °C | T = 140 °C | |
---|---|---|---|---|
a | 5.08 | 3.2 | 2.87 | |
b | ||||
c | 8.73 | 4.81 | 5.02 | 7.06 |
d |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abdi, S.; Harid, N.; Achraf, B.B.; Haddad, A.; Boubakeur, A. Comprehensive Assessment of Transformer Oil After Thermal Aging: Modeling for Simultaneous Evaluation of Electrical and Chemical Characteristics. Energies 2025, 18, 1915. https://doi.org/10.3390/en18081915
Abdi S, Harid N, Achraf BB, Haddad A, Boubakeur A. Comprehensive Assessment of Transformer Oil After Thermal Aging: Modeling for Simultaneous Evaluation of Electrical and Chemical Characteristics. Energies. 2025; 18(8):1915. https://doi.org/10.3390/en18081915
Chicago/Turabian StyleAbdi, Sifeddine, Noureddine Harid, Besseri Boubaker Achraf, Abderrahmane (Manu) Haddad, and Ahmed Boubakeur. 2025. "Comprehensive Assessment of Transformer Oil After Thermal Aging: Modeling for Simultaneous Evaluation of Electrical and Chemical Characteristics" Energies 18, no. 8: 1915. https://doi.org/10.3390/en18081915
APA StyleAbdi, S., Harid, N., Achraf, B. B., Haddad, A., & Boubakeur, A. (2025). Comprehensive Assessment of Transformer Oil After Thermal Aging: Modeling for Simultaneous Evaluation of Electrical and Chemical Characteristics. Energies, 18(8), 1915. https://doi.org/10.3390/en18081915