Improved Estimation Procedure of Cage-Induction-Motor-Equivalent Circuit Parameters Based on Two-Stage PSO Algorithm
Abstract
:1. Introduction
2. Theoretical Basis
Modification of the Algorithm for Cage-Induction-Motor-Equivalent Circuit Parameter Estimation
3. Reference Curves and Standards
4. Results
5. Discussion
6. Case Study for Low Power VSD
- Application of the same algorithm;
- Use of the same rotor parameter approximation as a function of speed;
- Potential utilization of the same frequency converter;
- Both motors (2.2 kW and 5.5 kW) belong to the low-power motor category;
- The motors have the same pole number and similar construction characteristics.
- Use the different rotor parameter approximation as a function of speed compared to low power motor;
- Utilization of the frequency converter with different power rating compared to the low power frequency converters rating;
- Both motors (50 kW and 90 kW) belong to the medium-power motor category opposite to the low power motor;
- The motors have different pole numbers and construction characteristics in relation to the low power motor.
7. Conclusions
- Regardless of the pole numbers, the torque-speed characteristics obtained using the first approach are identical to those obtained using the second approach for motors with a rated power of 2.2 kW and 5.5 kW. In addition, the characteristics produced using the square root approximations align more precisely with the reference characteristics. This alignment is more accurate compared to the characteristics obtained through the linear approximation. The fact that this is the case suggests that the method of applying the square root approximation to the first approach is appropriate for these motors.
- For 55 kW and 90 kW motors, regardless of the pole numbers, the torque-speed characteristics obtained using the first approach differ from those obtained using the second approach. For these motors, the linear approximation yields characteristics that align more closely with the reference characteristics compared to the square root approximation. Graphical and numerical results indicate that applying the first approach with the square root approximation results in worse torque-speed characteristics for 55 kW and 90 kW motors. Conversely, the second approach with the linear approximation yields torque-speed characteristics that better match the reference characteristics.
- The implementation of the two-stage PSO algorithm results in estimated starting, maximum, and full-load torque values that closely align with those specified by the manufacturer. The second approach in the parameter estimation procedure improves the precision of the starting torque, while the maximum and full-load torques remain unchanged since this approach does not affect them.
- The algorithm’s average execution time for the first approach was 0.285 s. However, due to the introduction of an additional unknown variable (Xr_st), which expands the objective function, the execution time for the second approach increased to approximately 1.39 s.
- Experimental verification of the proposed parameter estimation PSO algorithm showed its effectiveness when applied to a 2.2 kW 4-pole motor. The results obtained through the PSO algorithm and the AMA test suggest that, under certain conditions, these findings can be conditionally extended to a 5.5 kW 4-pole motor. This extrapolation is valid provided that (1) the same algorithm is applied, (2) the same rotor approximation is used, (3) the same frequency converter is used, and (4) both motors have the same pole number and similar construction characteristics.
- However, the experimental validation results cannot be applied to medium-power motors (55 kW and 90 kW) due to significantly different motor power and rotor construction, and the use of different approximations for rotor parameter variation.
- In addition, the number of poles significantly influences the accuracy of parameter estimation. Motors with the same rated power but different pole numbers have distinct design characteristics, which also results in different values of equivalent circuit parameters. These differences become even more noticeable in motors with varying power ratings and pole numbers. Therefore, separate experimental verification of the results is necessary for each motor with a different number of poles.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Nomenclature
PSO | Particle Swarm Optimization | max | Maximum load |
Rs | Stator resistance | Stator phase voltage | |
Rr | Rotor resistance | Stator current as a function of speed | |
Xs | Stator leakage reactance | Equivalent impedance representing the parallel connection of the magnetizing branch and the rotor branch at motor start-up | |
Xr | Rotor leakage reactance | Equivalent impedance representing the parallel connection of the magnetizing branch and the rotor branch in the function of speed | |
RFe | Core loss resistance | Rr(n) | Approximations of the changes in rotor resistance as functions of speed |
Xm | Magnetization reactance | Xr(n) | Approximations of the changes in rotor leakage reactance as functions of speed |
Rr_st | Starting rotor resistance | nn | Rated speed |
Xr_st | Starting rotor leakage reactance | c1 | Cognitive acceleration coefficient |
OF | Objective function | c2 | Social acceleration coefficient |
Fi ) | i-th component of the objective function | wmax | Maximum inertia weight |
p | Pole number | wmin | Minimum inertia weight |
ωs | Synchronous angular speed | SRA | Square root approximation |
s | Slip | LA | Linear approximation |
T | Torque | e1 | Relative error in the starting torque |
Rotor current as a function of speed | e2 | Relative error in the maximum torque | |
nfl | Full load speed | e3 | Relative error in the full-load torque |
nmax | Speed at the maximum torque | N | Number of working points |
pf | Power factor | xi | Exact torque value at the i-th point |
P | Active power | yi | Obtained torque value at the i-th point |
Q | Reactive power | e5 | Mean absolute percentage error of the estimated characteristic obtained by applying the first approach and the square root approximation |
η | motor efficiency | e6 | Mean absolute percentage error of the estimated characteristic obtained by applying the first approach and the linear approximation |
Pn | Nominal (rated) mechanical power | e7 | Mean absolute percentage error of the estimated characteristic obtained by applying the second approach and the square root approximation |
mf | Manufacturer data | e8 | Mean absolute percentage error of the estimated characteristic obtained by applying the second approach and the linear approximation |
st | Start load | AMA | Automatic Motor Adaptation |
fl | Full load | VSD | Variable speed drive |
References
- Monjo, L.; Kojooyan-Jafari, H.; Corcoles, F.; Pedra, J. Squirrel-Cage Induction Motor Parameter Estimation Using a Variable Frequency Test. IEEE Trans. Energy Convers. 2015, 30, 550–557. [Google Scholar] [CrossRef]
- Monjo, L.; Córcoles, F.; Pedra, J. Parameter estimation of squirrel-cage motors with parasitic torques in the torque–slip curve. IET Electr. Power Appl. 2015, 9, 377–387. [Google Scholar] [CrossRef]
- Danin, Z.; Sharma, A.; Averbukh, M.; Meher, A. Improved Moth Flame Optimization Approach for Parameter Estimation of Induction Motor. Energies 2022, 15, 8834. [Google Scholar] [CrossRef]
- Sakthivel, V.P.; Bhuvaneswari, R.; Subramanian, S. An Improved Particle Swarm Optimization for Induction Motor Parameter Determination. Int. J. Comput. Appl. 2010, 1, 71–76. [Google Scholar] [CrossRef]
- Al-Jufout, S.A.; Al-rousan, W.H.; Wang, C. Optimization of Induction Motor Equivalent Circuit Parameter Estimation Based on Manufacturer’s Data. Energies 2018, 11, 1792. [Google Scholar] [CrossRef]
- Abro, A.G.; Saleh, J.M. Multiple-global-best guided artificial bee colony algorithm for induction motor parameter estimation. Turk. J. Electr. Eng. Comput. Sci. 2014, 22, 620–636. [Google Scholar] [CrossRef]
- Lee, K.; Frank, S.; Sen, P.K.; Polese, L.G.; Alahmad, M.; Waters, C. Estimation of induction motor equivalent circuit parameters from nameplate data. In Proceedings of the 2012 North American Power Symposium (NAPS), Champaign, IL, USA, 9–11 September 2012; pp. 1–6. [Google Scholar] [CrossRef]
- Sakthivel, V.P.; Bhuvaneswari, R.; Subramanian, S. Artificial immune system for parameter estimation of induction motor. Expert Syst. Appl. 2010, 37, 6109–6115. [Google Scholar] [CrossRef]
- Sakthivel, V.P.; Bhuvaneswari, R.; Subramanian, S. Multi-objective parameter estimation of induction motor using particle swarm optimization. Eng. Appl. Artif. Intell. 2010, 23, 302–312. [Google Scholar] [CrossRef]
- Canakoglu, I.; Yetgin, A.G.; Temurtas, H.; Turan, M. Induction motor parameter estimation using metaheuristic methods. Turk. J. Electr. Eng. Comput. Sci. 2014, 22, 1177–1192. [Google Scholar] [CrossRef]
- Knypiński, Ł.; Pawełoszek, K.; Le Menach, Y. Optimization of Low-Power Line-Start PM Motor Using Gray Wolf Metaheuristic Algorithm. Energies 2020, 13, 1186. [Google Scholar] [CrossRef]
- Apaydin, H.; Oyman Serteller, N.F.; Oğuz, Y. Induction Motor Geometric Parameter Optimization Using a Metaheuristic Optimization Method for High-Efficiency Motor Design. Energies 2025, 18, 733. [Google Scholar] [CrossRef]
- Arslan, M.; Çunkaş, M.; Sağ, T. Determination of induction motor parameters with differential evolution algorithm. Neural Comput. Appl. 2012, 21, 1995–2004. [Google Scholar] [CrossRef]
- Rajput, S.; Bender, E.; Averbukh, M. Simplified algorithm for assessment equivalent circuit parameters of induction motors. IET Electr. Power Appl. 2020, 14, 426–432. [Google Scholar] [CrossRef]
- Mohammadi, H.R.; Akhavan, A. Parameter Estimation of Three-Phase Induction Motor Using Hybrid of Genetic Algorithm and Particle Swarm Optimization. J. Eng. 2014, 2014, 148204. [Google Scholar] [CrossRef]
- Perez, I.; Gomez-Gonzalez, M.; Jurado, F. Estimation of induction motor parameters using shuffled frog-leaping algorithm. Electr. Eng. 2013, 95, 267–275. [Google Scholar] [CrossRef]
- Amaral, G.F.V.; Baccarini, J.M.R.; Coelho, F.C.R.; Rabelo, L.M. A High Precision Method for Induction Machine Parameters Estimation from Manufacturer Data. IEEE Trans. Energy. Convers. 2021, 36, 1226–1233. [Google Scholar] [CrossRef]
- Elkholy, M.M.; El-Hay, E.A.; El-Fergany, A.A. Synergy of electrostatic discharge optimizer and experimental verification for parameters estimation of three phase induction motors. Eng. Sci. Technol. Int. J. 2022, 31, 101067. [Google Scholar] [CrossRef]
- Gomez-Gonzalez, M.; Jurado, F.; Pérez, I. Shuffled frog-leaping algorithm for parameter estimation of a double-cage asynchronous machine. IET Electr. Power Appl. 2012, 6, 484–490. [Google Scholar] [CrossRef]
- Jirdehi, M.A.; Rezaei, A. Parameters estimation of squirrel-cage induction motors using ANN and ANFIS. Alex. Eng. J. 2016, 55, 357–368. [Google Scholar] [CrossRef]
- Pedra, J. On the determination of induction motor parameters from manufacturer data for electromagnetic transient programs. IEEE Trans. Power Syst. 2008, 23, 1709–1718. [Google Scholar] [CrossRef]
- Masadeh, M.A.; Pillay, P. Induction Machine Parameters Determination and the Impact of Stator/Rotor Leakage Split Ratio on Its Performance. IEEE Trans. Ind. Electron. 2020, 67, 5291–5301. [Google Scholar] [CrossRef]
- Guimares, J.M.C.; Bernardes, J.V.; Hermeto, A.E.; da Costa Bortoni, E. Parameter Determination of Asynchronous Machines From Manufacturer Data Sheet. IEEE Trans. Energy Convers. 2014, 29, 689–697. [Google Scholar] [CrossRef]
- Ocak, C. A FEM-Based Comparative Study of the Effect of Rotor Bar Designs on the Performance of Squirrel Cage Induction Motors. Energies 2023, 16, 6047. [Google Scholar] [CrossRef]
- Vukašinović, J.; Štatkić, S.; Milovanović, M.; Arsić, N.; Perović, B. Combined method for the cage induction motor parameters estimation using two-stage PSO algorithm. Electr. Eng. 2023, 105, 2703–2714. [Google Scholar] [CrossRef]
- Yamamoto, S.; Hirahara, H.; Tanaka, A.; Ara, T. A Simple Method to Determine Double-Cage Rotor Equivalent Circuit Parameters of Induction Motors From No-Load and Locked-Rotor Tests. IEEE Trans. Ind. Appl. 2019, 55, 273–282. [Google Scholar] [CrossRef]
- Calin, M.; Rezmerita, F.; Ileana, C.; Iordache, M.; Galan, N. Performance Analysis of Three Phase Squirrel Cage Induction Motor with Deep Rotor Bars in Transient Behavior. Electr. Electron. Eng. 2012, 2, 11–17. [Google Scholar] [CrossRef]
- MotSize 7.1.1, ABB. Available online: https://new.abb.com/motors-generators/iec-low-voltage-motors/drivesize-motsize (accessed on 13 February 2025).
- NEMA MG-1; Motors and Generators. National Electrical Manufacturers Association: Rosslyn, VA, USA, 2009. Available online: https://law.resource.org/pub/us/cfr/ibr/005/nema.mg-1.2009.pdf (accessed on 13 February 2025).
- Zhang, D.; Park, C.S.; Koh, C.S. A New Optimal Design Method of Rotor Slot of Three-Phase Squirrel Cage Induction Motor for NEMA Class D Speed-Torque Characteristic Using Multi-Objective Optimization Algorithm. IEEE Trans. Magn. 2012, 48, 879–882. [Google Scholar] [CrossRef]
- Lee, G.; Min, S.; Hong, J.-P. Optimal Shape Design of Rotor Slot in Squirrel-Cage Induction Motor Considering Torque Characteristics. IEEE Trans. Magn. 2013, 49, 2197–2200. [Google Scholar] [CrossRef]
- Marfoli, A.; Nardo, M.D.; Degano, M.; Gerada, C.; Chen, W. Rotor Design Optimization of Squirrel Cage Induction Motor—Part I: Problem Statement. IEEE Trans. Energy Convers. 2021, 36, 1271–1279. [Google Scholar] [CrossRef]
- Nardo, M.D.; Marfoli, A.; Degano, M.; Gerada, C.; Chen, W. Rotor Design Optimization of Squirrel Cage Induction Motor—Part II: Results Discussion. IEEE Trans. Energy Convers. 2021, 36, 1280–1288. [Google Scholar] [CrossRef]
- Operating Guide VLT Automation Drive FC 301/302. Available online: https://files.danfoss.com/download/Drives/MG33AT02.pdf (accessed on 15 February 2025).
- Facts Worth Knowing About AC Drives. Available online: https://assets.danfoss.com/documents/latest/242341/AV446558536912en-000101.pdf (accessed on 15 February 2025).
- Vukašinović, J.; Mitrović, N.; Štatkić, S.; Banković, B.; Filipović, F. Verification of the two Stage PSO Algorithm for Induction Motor Parameter Identification with offline Frequency Converter Identification Procedure. In Proceedings of the XVII International Conference on Systems, Automatic Control and Measurements, SAUM 2024, Niš, Serbia, 14–15 November 2024. [Google Scholar] [CrossRef]
Manufacturer’s Code | Pn [kW] | Pole Numb. | Uph [V] | fn [Hz] | nn [r/min] | Ifl [A] | Ist/Ifl | Tfl [Nm] | Tst/Tfl | Tmax/Tfl | pffl | pfst | ηfl |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
3GBP 091 530-ASK | 2.2 | 2 | 230 | 50 | 2900 | 7.00 | 8.3 | 7.2 | 2.9 | 3.5 | 0.89 | 0.48 | 0.859 |
3GBP 102 810-ASK | 4 | 230 | 50 | 1454 | 7.45 | 8.9 | 14.4 | 3.1 | 4.1 | 0.83 | 0.45 | 0.867 | |
3GBP 113 390-ASK | 6 | 230 | 50 | 967 | 9.00 | 6.5 | 21.7 | 2.4 | 3.5 | 0.69 | 0.49 | 0.843 | |
3GBP 134 210-ASK | 8 | 230 | 50 | 725 | 10.05 | 5.2 | 29 | 2.0 | 3.0 | 0.64 | 0.48 | 0.819 | |
3GBP 131 260-ADK | 5.5 | 2 | 230 | 50 | 2901 | 16.80 | 7.9 | 18.1 | 2.3 | 3.4 | 0.91 | 0.39 | 0.892 |
3GAA132 300-ADJ | 4 | 230 | 50 | 1460 | 19.05 | 6.6 | 36 | 2.2 | 3.3 | 0.82 | 0.39 | 0.896 | |
3GBP 133 280-ADK | 6 | 230 | 50 | 966 | 20.96 | 5.0 | 54 | 1.83 | 2.7 | 0.73 | 0.31 | 0.880 | |
3GBP 164 420-ADK | 8 | 230 | 50 | 732 | 22.52 | 5.0 | 72 | 2.0 | 2.4 | 0.69 | 0.50 | 0.862 | |
3GBP 251 210-ADK | 55 | 2 | 400 | 50 | 2963 | 94.57 | 5.9 | 177 | 2.1 | 2.5 | 0.89 | 0.35 | 0.943 |
3GBP 252 210-ADK | 4 | 400 | 50 | 1485 | 98.21 | 7.9 | 354 | 3.0 | 3.3 | 0.85 | 0.42 | 0.946 | |
3GBP 283 230-ADK | 6 | 400 | 50 | 990 | 99.59 | 6.8 | 531 | 2.4 | 2.6 | 0.85 | 0.37 | 0.941 | |
3GBP 314 210-ADK | 8 | 400 | 50 | 742 | 106.69 | 7.1 | 708 | 1.6 | 2.7 | 0.80 | 0.27 | 0.925 | |
3GBP 281 230-ADL | 90 | 2 | 400 | 50 | 2976 | 155.02 | 7.4 | 289 | 2.1 | 2.9 | 0.89 | 0.32 | 0.950 |
3GBP 282 230-ADL | 4 | 400 | 50 | 1485 | 159.35 | 7.0 | 579 | 2.5 | 2.9 | 0.86 | 0.37 | 0.952 | |
3GBP 313 240-ADK | 6 | 400 | 50 | 994 | 169.74 | 7.2 | 865 | 2.4 | 2.9 | 0.81 | 0.33 | 0.949 | |
3GBP 314 230-ADK | 8 | 400 | 50 | 741 | 171.13 | 7.4 | 1160 | 1.8 | 2.7 | 0.82 | 0.27 | 0.934 |
Xs/Xr | Class of Torque-Speed Characteristics |
---|---|
1 | A and D |
0.76 | B |
0.43 | C |
Pn [kW] | Pole Numb. | Motor Parameters | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Rs [Ω] | Rr [Ω] | Xs [Ω] | Xr [Ω] | Xm [Ω] | RFe [Ω] | (Xr_st = Xs) | (Xr_st ≠ Xs) | ||||
Rr_st [Ω] | Xr_st [Ω] | Rr_st [Ω] | Xr_st [Ω] | ||||||||
2.2 | 2 | 1.1825 | 2.1240 | 3.5027 | 4.9274 | 147.446 | 550.5262 | 2.7396 | 3.5027 | 2.7111 | 3.4711 |
4 | 1.0414 | 1.9234 | 2.8904 | 4.2004 | 105.305 | 913.7245 | 1.9235 | 2.8904 | 2.0812 | 3.1052 | |
6 | 1.7062 | 1.8940 | 3.4572 | 3.8029 | 59.0461 | 994.7469 | 2.3437 | 3.4572 | 2.1179 | 3.1433 | |
8 | 1.9746 | 1.8239 | 3.8181 | 4.5281 | 49.7985 | 1397.929 | 2.4024 | 3.8181 | 2.1540 | 3.4407 | |
5.5 | 2 | 0.3680 | 0.8415 | 1.6164 | 1.9441 | 74.6671 | 404.2879 | 1.0525 | 1.6164 | 0.9177 | 1.4225 |
4 | 0.4520 | 0.6610 | 1.5315 | 2.0061 | 42.6501 | 426.9546 | 0.9380 | 1.5315 | 0.8344 | 1.3721 | |
6 | 0.1553 | 0.8063 | 1.8501 | 2.7356 | 31.7261 | 291.7224 | 1.0513 | 1.8501 | 1.2412 | 2.1317 | |
8 | 0.7529 | 0.5215 | 2.0497 | 2.3513 | 25.0096 | 383.9699 | 1.8239 | 2.0497 | 2.0589 | 2.2455 | |
55 | 2 | 0.1209 | 0.0960 | 0.4445 | 1.1041 | 24.4347 | 260.3490 | 0.2258 | 0.4445 | 0.2816 | 0.5412 |
4 | 0.1246 | 0.0793 | 0.3228 | 0.7911 | 16.1477 | 325.2691 | 0.1809 | 0.3228 | 0.2212 | 0.3863 | |
6 | 0.0862 | 0.0769 | 0.4670 | 1.0227 | 16.6089 | 218.5872 | 0.2906 | 0.4670 | 0.3570 | 0.5560 | |
8 | 0.0417 | 0.0807 | 0.6142 | 0.8197 | 13.5210 | 116.0817 | 0.3188 | 0.6142 | 0.3965 | 0.7411 | |
90 | 2 | 0.0388 | 0.0390 | 0.2692 | 0.5612 | 12.9662 | 127.8566 | 0.1291 | 0.2692 | 0.1913 | 0.3762 |
4 | 0.0520 | 0.0483 | 0.2670 | 0.5602 | 11.4274 | 128.8865 | 0.1604 | 0.2670 | 0.1861 | 0.3039 | |
6 | 0.0553 | 0.0285 | 0.2555 | 0.5509 | 8.5306 | 119.8540 | 0.1399 | 0.2555 | 0.1723 | 0.3066 | |
8 | 0.0067 | 0.0565 | 0.3700 | 0.5321 | 10.1234 | 96.5582 | 0.2116 | 0.3700 | 0.2633 | 0.4455 |
Pn [kW] | Pole Numb. | Xr_s = Xs | Xr_s ≠ Xs | e1−e4 | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Tst | Tmax | Tfl | Tst | |||||||
Value [Nm] | Error (e1) [%] | Value [Nm] | Error (e2) [%] | Value [Nm] | Error (e3) [%] | Value [Nm] | Error (e4) [%] | |||
2.2 | 2 | 20.87954 | 0.00222 | 25.06878 | 0.52073 | 7.15011 | 0.69289 | 20.87986 | 0.00069 | 0.00153 |
4 | 44.70970 | 0.15614 | 58.97634 | 0.10782 | 14.57668 | 1.22694 | 44.63458 | 0.01214 | 0.14400 | |
6 | 52.08053 | 0.00102 | 75.44506 | 0.66483 | 21.95273 | 1.16465 | 52.07961 | 0.00075 | 0.00027 | |
8 | 57.99982 | 0.00031 | 86.45417 | 0.62739 | 29.23668 | 0.81613 | 58.00008 | 0.00014 | 0.00017 | |
5.5 | 2 | 41.62890 | 0.00265 | 61.67958 | 0.22681 | 18.08793 | 0.06670 | 41.62971 | 0.00070 | 0.00195 |
4 | 80.64353 | 0.00438 | 119.00864 | 0.17562 | 35.94635 | 0.14904 | 80.63921 | 0.00098 | 0.00340 | |
6 | 98.81734 | 0.00269 | 145.83268 | 0.02242 | 54.37018 | 0.68551 | 98.81978 | 0.00023 | 0.00246 | |
8 | 144.00199 | 0.00138 | 172.92663 | 0.07328 | 71.96895 | 0.04313 | 143.99859 | 0.00098 | 0.00040 | |
55 | 2 | 371.77452 | 0.02005 | 442.79902 | 0.06758 | 176.86406 | 0.07680 | 371.71209 | 0.00325 | 0.01680 |
4 | 1061.64468 | 0.03346 | 1169.37983 | 0.10100 | 352.45933 | 0.43522 | 1062.03128 | 0.00294 | 0.03052 | |
6 | 1274.51085 | 0.00870 | 1369.14998 | 0.82935 | 532.34476 | 0.25325 | 1274.38432 | 0.00123 | 0.00747 | |
8 | 1132.57379 | 0.01997 | 1912.87389 | 0.06664 | 706.48690 | 0.21371 | 1132.79282 | 0.00063 | 0.01934 | |
90 | 2 | 606.77281 | 0.02096 | 830.79009 | 0.87220 | 287.89329 | 0.38295 | 606.92321 | 0.00382 | 0.01714 |
4 | 1447.65759 | 0.01089 | 1667.84742 | 0.67016 | 575.00282 | 0.69036 | 1447.47606 | 0.00165 | 0.00924 | |
6 | 2077.14989 | 0.05539 | 2505.61489 | 0.11501 | 865.08823 | 0.01020 | 2075.55873 | 0.02126 | 0.03413 | |
8 | 2087.77875 | 0.01060 | 3170.43832 | 1.22728 | 1162.74373 | 0.23653 | 2087.89505 | 0.00503 | 0.00557 |
Pn [kW] | Pole Numb. | Errors | |||
---|---|---|---|---|---|
(Xr_st = Xs) | (Xr_st ≠ Xs) | ||||
SRA | LA | SRA | LA | ||
e5 [%] | e6 [%] | e7 [%] | e8 [%] | ||
2.2 | 2 | 1.78 | 8.26 | 1.76 | 8.27 |
4 | 4.85 | 10.24 | 4.75 | 9.86 | |
6 | 2.95 | 5.89 | 2.89 | 6.07 | |
8 | 3.68 | 8.04 | 3.51 | 8.22 | |
5.5 | 2 | 3.65 | 8.36 | 3.54 | 8.72 |
4 | 4.79 | 8.97 | 4.66 | 8.93 | |
6 | 4.43 | 4.85 | 3.67 | 5.22 | |
8 | 4.23 | 8.03 | 3.47 | 8.62 | |
55 | 2 | 23.93 | 4.90 | 21.04 | 2.82 |
4 | 21.64 | 3.41 | 18.98 | 2.16 | |
6 | 24.55 | 4.85 | 21.07 | 3.25 | |
8 | 19.25 | 5.50 | 15.84 | 4.39 | |
90 | 2 | 24.66 | 5.87 | 17.96 | 3.82 |
4 | 22.75 | 4.92 | 20.44 | 3.65 | |
6 | 27.19 | 4.39 | 23.04 | 3.08 | |
8 | 20.97 | 5.52 | 17.50 | 3.74 |
Manufacturer’s Code | Pn [kW] | Pole Numb. | Uph [V] | fn [Hz] | nn [r/min] | Ifl [A] | Ist/Ifl | Tfl [Nm] | Tst/Tfl | Tmax/Tfl | pffl | ηfl |
---|---|---|---|---|---|---|---|---|---|---|---|---|
1LE10011AB422AA4-Z | 2.2 | 4 | 230 | 50 | 1455 | 4.65 | 6.96 | 14.44 | 2.18 | 3.3 | 0.81 | 0.843 |
Method | Motor Parameters | |||||||
---|---|---|---|---|---|---|---|---|
Rs [Ω] | Rr [Ω] | Xr [Ω] | Xs [Ω] | Xm [Ω] | RFe [Ω] | Rr_st [Ω] | Xr_st [Ω] | |
AMA test | 2.785 | 1.885 | 3.349 | 3.349 | 98.5796 | 1803.90 | / | / |
Two-stage PSO (approach 2) | 2.69 | 1.77 | 3.22 | 3.68 | 94.28 | 970.53 | 1.84 | 2.83 |
Error e9 [%] | 3.42 | 6.12 | 3.87 | 9.86 | 4.36 | 46.19 | / | / |
Method | Tst | Tmax | Tfl |
---|---|---|---|
[Nm] | [Nm] | [Nm] | |
AMA test | 29.39196 | 46.63259 | 13.67479 |
Two-stage PSO | 31.32862 | 46.95063 | 14.46165 |
Error e10 [%] | 6.57 | 0.68 | 5.75 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vukašinović, J.; Štatkić, S.; Arsić, N.; Mitrović, N.; Perović, B.; Jovanović, A. Improved Estimation Procedure of Cage-Induction-Motor-Equivalent Circuit Parameters Based on Two-Stage PSO Algorithm. Energies 2025, 18, 1952. https://doi.org/10.3390/en18081952
Vukašinović J, Štatkić S, Arsić N, Mitrović N, Perović B, Jovanović A. Improved Estimation Procedure of Cage-Induction-Motor-Equivalent Circuit Parameters Based on Two-Stage PSO Algorithm. Energies. 2025; 18(8):1952. https://doi.org/10.3390/en18081952
Chicago/Turabian StyleVukašinović, Jovan, Saša Štatkić, Nebojša Arsić, Nebojša Mitrović, Bojan Perović, and Andrijana Jovanović. 2025. "Improved Estimation Procedure of Cage-Induction-Motor-Equivalent Circuit Parameters Based on Two-Stage PSO Algorithm" Energies 18, no. 8: 1952. https://doi.org/10.3390/en18081952
APA StyleVukašinović, J., Štatkić, S., Arsić, N., Mitrović, N., Perović, B., & Jovanović, A. (2025). Improved Estimation Procedure of Cage-Induction-Motor-Equivalent Circuit Parameters Based on Two-Stage PSO Algorithm. Energies, 18(8), 1952. https://doi.org/10.3390/en18081952