New Advances in CO2 Reduction and H2 Promotion Techniques in Energy Systems
1. Introduction
2. A Review of the Latest Advances
3. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- Bairq, Z.; Pang, Y.; Li, J.; Hezam, A.; Tontiwachwuthikul, P.; Chen, H. Reducing energy requirements and enhancing MEA-CO2 desorption rates in amine solutions with KIT-6 nanostructures. Sep. Purif. Technol. 2024, 346, 127536. [Google Scholar] [CrossRef]
- Bakhsh, S.; Zhang, W.; Ali, K.; Oláh, J. Strategy towards sustainable energy transition: The effect of environmental governance, economic complexity and geopolitics. Energy Strategy Rev. 2024, 52, 101330. [Google Scholar] [CrossRef]
- Le, T.T.; Sharma, P.; Bora, B.J.; Tran, V.D.; Truong, T.H.; Le, H.C.; Nguyen, P.Q.P. Fueling the future: A comprehensive review of hydrogen energy systems and their challenges. Int. J. Hydrogen Energy 2024, 54, 791–816. [Google Scholar] [CrossRef]
- Lefvert, A.; Grönkvist, S. Lost in the scenarios of negative emissions: The role of bioenergy with carbon capture and storage (BECCS). Energy Policy 2024, 184, 113882. [Google Scholar] [CrossRef]
- Hanson, E.; Nwakile, C.; Hammed, V.O. Carbon capture, utilization, and storage (CCUS) technologies: Evaluating the effectiveness of advanced CCUS solutions for reducing CO2 emissions. Results Surf. Interfaces 2025, 18, 100381. [Google Scholar] [CrossRef]
- Sun, P.; Lv, Z.; Sun, C.; Jin, H.; He, L.; Ren, T.; Cheng, Z. Experimental Investigation of the Effects of Inorganic Components on the Supercritical Water Gasification of Semi-Coke. Energies 2024, 17, 1193. [Google Scholar] [CrossRef]
- Leong, Y.K.; Chen, W.-H.; Lee, D.-J.; Chang, J.-S. Supercritical water gasification (SCWG) as a potential tool for the valorization of phycoremediation-derived waste algal biomass for biofuel generation. J. Hazard. Mater. 2021, 418, 126278. [Google Scholar] [CrossRef]
- Lee, C.S.; Conradie, A.V.; Lester, E. Review of supercritical water gasification with lignocellulosic real biomass as the feedstocks: Process parameters, biomass composition, catalyst development, reactor design and its challenges. Chem. Eng. J. 2021, 415, 128837. [Google Scholar] [CrossRef]
- Li, J.; Liu, C.; Han, W.; Xue, X.; Ma, W.; Jin, H. Efficient coal-based power generation via optimized supercritical water gasification with chemical recuperation. Appl. Therm. Eng. 2024, 238, 122164. [Google Scholar] [CrossRef]
- Kolenchukov, O.A.; Bashmur, K.A.; Kurashkin, S.O.; Tsygankova, E.V.; Shepeta, N.A.; Sergienko, R.B.; Pavlova, P.L.; Vaganov, R.A. Numerical and Experimental Study of Heat Transfer in Pyrolysis Reactor Heat Exchange Channels with Different Hemispherical Protrusion Geometries. Energies 2023, 16, 6086. [Google Scholar] [CrossRef]
- Xie, Y.; Qu, H.; Zhang, D. Numerical investigation of flow and heat transfer in rectangular channel with teardrop dimple/protrusion. Int. J. Heat Mass Transf. 2015, 84, 486–496. [Google Scholar] [CrossRef]
- Ebrahimi, A.; Naranjani, B. An investigation on thermo-hydraulic performance of a flat-plate channel with pyramidal protrusions. Appl. Therm. Eng. 2016, 106, 316–324. [Google Scholar] [CrossRef]
- Kumar, S.; Wang, Z.; He, Y.; Zhu, Y.; Cen, K. Numerical Analysis for Coal Gasification Performance in a Lab-Scale Gasifier: Effects of the Wall Temperature and Oxygen/Coal Ratio. Energies 2022, 15, 8645. [Google Scholar] [CrossRef]
- Kumar, S.; He, Y.; Mahmood, F.; Zhu, Y.; Liu, J.; Wang, Z.; Shuang, W. Catalytic influence of iron oxide (Fe2O3) on coal pyrolysis and char combustion at various temperatures. Mater. Today Commun. 2024, 39, 108982. [Google Scholar] [CrossRef]
- Kumar, S.; Wang, Z.; Kang, Z.; Xia, J.; Whiddon, R.; He, Y.; Gul-e-Rana, J.; Bairq, Z.A.S.; Cen, K. Influence of temperature and Ca(OH)2 on releasing tar and coal gas during lignite coal pyrolysis and char gasification. Chin. J. Chem. Eng. 2019, 27, 2788–2798. [Google Scholar] [CrossRef]
- Niu, X.; Tian, H.; Jiang, X.; Lu, Y.; Chen, R.; Gao, J.; Cai, G. A comprehensive transient fluid-solid coupled numerical model for hybrid rocket nozzle erosion and its experimental validation. Acta Astronaut. 2025, 230, 16–29. [Google Scholar] [CrossRef]
- Cheng, J.; Yue, L.; Hua, J.; Dong, H.; Zhou, J.; Li, Y.-Y. Hydrothermal alkali pretreatment contributes to fermentative methane production of a typical lipid from food waste through co-production of hydrogen with methane. Bioresour. Technol. 2020, 306, 123164. [Google Scholar] [CrossRef]
- Ayim, I.; Ma, H.; Alenyorege, E.A.; Ali, Z.; Donkor, P.O. Integration of ultrasonic treatment in biorefinery of tea residue: Protein structural characteristics and functionality, and the generation of by-products. J. Food Meas. Charact. 2018, 12, 2695–2707. [Google Scholar] [CrossRef]
- Golly, M.K.; Ma, H.; Yuqing, D.; Wu, P.; Dabbour, M.; Sarpong, F.; Farooq, M. Enzymolysis of walnut (Juglans regia L.) meal protein: Ultrasonication-assisted alkaline pretreatment impact on kinetics and thermodynamics. J. Food Biochem. 2019, 43, e12948. [Google Scholar] [CrossRef]
- Kim, T.-H.; Song, D.; Lee, J.-S.; Yun, Y.-M. Enhanced Methane Production from Pretreatment of Waste Activated Sludge by Economically Feasible Biocatalysts. Energies 2023, 16, 552. [Google Scholar] [CrossRef]
- Yang, W.-S.; Park, J.-K.; Park, S.-W. Past, present and future of waste management in Korea. J. Mater. Cycles Waste Manag. 2015, 17, 207–217. [Google Scholar] [CrossRef]
- Anacleto, T.M.; Kozlowsky-Suzuki, B.; Björn, A.; Yekta, S.S.; Masuda, L.S.M.; de Oliveira, V.P. Methane yield response to pretreatment is dependent on substrate chemical composition: A meta-analysis on anaerobic digestion systems. Sci. Rep. 2024, 14, 1240. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Jia, Y.; Kumar, S.; Li, R.; Mahar, R.B.; Ali, M.; Unar, I.N.; Sultan, U.; Memon, K. Numerical analysis on the influential factors of coal gasification performance in two-stage entrained flow gasifier. Appl. Therm. Eng. 2017, 112, 1601–1611. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, K.; Qiu, Y.; Chen, H.; Wang, J.; Wang, Z. Catalytic and Sulfur-Tolerant Performance of Bimetallic Ni–Ru Catalysts on HI Decomposition in the Sulfur-Iodine Cycle for Hydrogen Production. Energies 2021, 14, 8539. [Google Scholar] [CrossRef]
- Kolenchukov, O.A.; Bashmur, K.A.; Bukhtoyarov, V.V.; Kurashkin, S.O.; Tynchenko, V.S.; Tsygankova, E.V.; Sergienko, R.B.; Kukartsev, V.V. Experimental Study of Oil Non-Condensable Gas Pyrolysis in a Stirred-Tank Reactor for Catalysis of Hydrogen and Hydrogen-Containing Mixtures Production. Energies 2022, 15, 8346. [Google Scholar] [CrossRef]
- Chen, H.; Wang, X.; Liang, H.; Chen, B.; Liu, Y.; Ma, Z.; Wang, Z. Characterization and treatment of oily sludge: A systematic review. Environ. Pollut. 2024, 344, 123245. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kumar, S.; Yuan, D.; Zain, B. New Advances in CO2 Reduction and H2 Promotion Techniques in Energy Systems. Energies 2025, 18, 2025. https://doi.org/10.3390/en18082025
Kumar S, Yuan D, Zain B. New Advances in CO2 Reduction and H2 Promotion Techniques in Energy Systems. Energies. 2025; 18(8):2025. https://doi.org/10.3390/en18082025
Chicago/Turabian StyleKumar, Sunel, Dingkun Yuan, and Bairq Zain. 2025. "New Advances in CO2 Reduction and H2 Promotion Techniques in Energy Systems" Energies 18, no. 8: 2025. https://doi.org/10.3390/en18082025
APA StyleKumar, S., Yuan, D., & Zain, B. (2025). New Advances in CO2 Reduction and H2 Promotion Techniques in Energy Systems. Energies, 18(8), 2025. https://doi.org/10.3390/en18082025