Applications and New Technologies Pertaining to Waste Heat Recovery: A Vision Article
1. Introduction
2. Recent Advances, Applications, and Integrations
2.1. Advances in the Marine Waste Heat Recovery Sector
2.2. Advances in the Industry Waste Heat Recovery Sector
3. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
BPNN | Backpropagation neural network |
DPORC | Dual-pressure organic Rankine cycle |
ELM | Extreme learning machine |
LNG | Liquefied natural gas |
OC | Open cycle |
ORC | Organic Rankine cycle |
sCO2 | Supercritical carbon dioxide |
TEG | Thermoelectric generator |
WHR | Waste heat recovery |
References
- Christodoulides, P.; Agathokleous, R.; Aresti, L.; Kalogirou, S.A.; Tassou, S.A.; Florides, G.A. Waste Heat Recovery Technologies Revisited with Emphasis on New Solutions, Including Heat Pipes, and Case Studies. Energies 2022, 15, 384. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2007: Mitigation. Contribution of Working Group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Metz, B., Davidson, O., Bosch, P., Dave, R., Meyer, L., Eds.; Cambridge University Press: Cambridge, UK, 2007; ISBN 0521880114. [Google Scholar]
- Inayat, A. Current Progress of Process Integration for Waste Heat Recovery in Steel and Iron Industries. Fuel 2023, 338, 127237. [Google Scholar] [CrossRef]
- Panayiotou, G.P.; Bianchi, G.; Georgiou, G.; Aresti, L.; Argyrou, M.; Agathokleous, R.; Tsamos, K.M.; Tassou, S.A.; Florides, G.; Kalogirou, S.; et al. Preliminary Assessment of Waste Heat Potential in Major European Industries. Energy Procedia 2017, 123, 335–345. [Google Scholar] [CrossRef]
- Bianchi, G.; Panayiotou, G.P.; Aresti, L.; Kalogirou, S.A.; Florides, G.A.; Tsamos, K.; Tassou, S.A.; Christodoulides, P. Estimating the Waste Heat Recovery in the European Union Industry. Energy Ecol. Environ. 2019, 4, 211–221. [Google Scholar] [CrossRef]
- Kosmadakis, G. Industrial Waste Heat Potential and Heat Exploitation Solutions. Appl. Therm. Eng. 2024, 246, 122957. [Google Scholar] [CrossRef]
- Papapetrou, M.; Kosmadakis, G.; Cipollina, A.; La Commare, U.; Micale, G. Industrial Waste Heat: Estimation of the Technically Available Resource in the EU per Industrial Sector, Temperature Level and Country. Appl. Therm. Eng. 2018, 138, 207–216. [Google Scholar] [CrossRef]
- Miró, L.; McKenna, R.; Jäger, T.; Cabeza, L.F. Estimating the Industrial Waste Heat Recovery Potential Based on CO2 Emissions in the European Non-Metallic Mineral Industry. Energy Effic. 2018, 11, 427–443. [Google Scholar] [CrossRef]
- Josef Binderbauer, P.; Hammer, A.; Lachner, E.; Klingenstein, N.; Kienberger, T. Regarding the Generation of Time Resolved Industrial Waste Heat Profiles. Appl. Therm. Eng. 2023, 232, 120969. [Google Scholar] [CrossRef]
- Cruz, I.; Wallén, M.; Svensson, E.; Harvey, S. Electricity Generation from Low and Medium Temperature Industrial Excess Heat in the Kraft Pulp and Paper Industry. Energies 2021, 14, 8499. [Google Scholar] [CrossRef]
- Wen, S.; Qu, X.; Zhu, Y.L. Study on Recovery System for Marine Diesel Engine Waste Heat. In Proceedings of the Advanced Materials Research, Macau, China, 22–23 January 2014; Trans Tech Publications: Zurich, Switzerland, 2014; Volume 912–914, pp. 795–798. [Google Scholar]
- Ononogbo, C.; Nwosu, E.C.; Nwakuba, N.R.; Nwaji, G.N.; Nwufo, O.C.; Chukwuezie, O.C.; Chukwu, M.M.; Anyanwu, E.E. Opportunities of Waste Heat Recovery from Various Sources: Review of Technologies and Implementation. Heliyon 2023, 9, e13590. [Google Scholar] [CrossRef]
- Yuan, M.; Vad Mathiesen, B.; Schneider, N.; Xia, J.; Zheng, W.; Sorknæs, P.; Lund, H.; Zhang, L. Renewable Energy and Waste Heat Recovery in District Heating Systems in China: A Systematic Review. Energy 2024, 294, 130788. [Google Scholar] [CrossRef]
- Zhou, X.; Xin, Z.; Tang, W.; Sheng, K.; Wu, Z. Comparative Study for Waste Heat Recovery in Immersion Cooling Data Centers with District Heating and Organic Rankine Cycle (ORC). Appl. Therm. Eng. 2024, 242, 122479. [Google Scholar] [CrossRef]
- Agathokleous, R.; Bianchi, G.; Panayiotou, G.; Aresti, L.; Argyrou, M.C.; Georgiou, G.S.; Tassou, S.A.; Jouhara, H.; Kalogirou, S.A.; Florides, G.A.; et al. Waste Heat Recovery in the EU Industry and Proposed New Technologies. Energy Procedia 2019, 161, 489–496. [Google Scholar] [CrossRef]
- Alshammari, F.; Alatawi, I.; Alshammari, A.S. Impact of Turbine Characteristics on Low Temperature Organic Rankine Cycles Operating with Zeotropic and Azeotropic Mixtures. Case Stud. Therm. Eng. 2024, 59, 104463. [Google Scholar] [CrossRef]
- Bellos, E. A Detailed Analysis of Waste Heat Recovery Organic Rankine Cycle with Partial Evaporation and Different Working Fluids. Appl. Therm. Eng. 2025, 263, 125410. [Google Scholar] [CrossRef]
- Ding, Y.; Guo, Q.; Guo, W.; Chu, W.; Wang, Q. Review of Recent Applications of Heat Pipe Heat Exchanger Use for Waste Heat Recovery. Energies 2024, 17, 2504. [Google Scholar] [CrossRef]
- Geum, G.; Kang, S.; Cho, S.; Kong, D.; Lee, S.; Seo, J.; Shin, D.H.; Lee, S.H.; Lee, J.; Lee, H. Thermal Performance Analysis of Heat Pipe Heat Exchanger for Effective Waste Heat Recovery. Int. Commun. Heat Mass Transf. 2024, 151, 107223. [Google Scholar] [CrossRef]
- Hou, S.; Zhang, F.; Yang, Q. Comparative Analysis of Supercritical CO2–ORC Combined Cycle for Gas Turbine Waste Heat Recovery Based on Multi-Objective Optimization. Appl. Therm. Eng. 2024, 236, 121776. [Google Scholar] [CrossRef]
- Naveiro, M.; Romero Gómez, M.; Arias-Fernández, I.; Baaliña Insua, Á. Thermodynamic and Economic Analyses of Zero-Emission Open Loop Offshore Regasification Systems Integrating ORC with Zeotropic Mixtures and LNG Open Power Cycle. Energies 2022, 15, 8622. [Google Scholar] [CrossRef]
- Sun, Y.; Sun, P.; Zhang, Z.; Zhang, S.; Zhao, J.; Mei, N. Performance Prediction for a Marine Diesel Engine Waste Heat Absorption Refrigeration System. Energies 2022, 15, 7070. [Google Scholar] [CrossRef]
- Christodoulides, P.; Aresti, L.; Panayiotou, G.P.; Tassou, S.; Florides, G.A. Adoption of Waste Heat Recovery Technologies: Reviewing the Relevant Barriers and Recommendations on How to Overcome Them. Oper. Res. Forum 2022, 3, 3. [Google Scholar] [CrossRef]
- Mondejar, M.E.; Andreasen, J.G.; Pierobon, L.; Larsen, U.; Thern, M.; Haglind, F. A Review of the Use of Organic Rankine Cycle Power Systems for Maritime Applications. Renew. Sustain. Energy Rev. 2018, 91, 126–151. [Google Scholar] [CrossRef]
- Altosole, M.; Campora, U.; Mocerino, L.; Zaccone, R. An Innovative Variable Layout Steam Plant for Waste Heat Recovery from Marine Dual-Fuel Engines. Ships Offshore Struct. 2023, 18, 429–437. [Google Scholar] [CrossRef]
- Stoumpos, S.; Theotokatos, G.; Boulougouris, E.; Vassalos, D.; Lazakis, I.; Livanos, G. Marine Dual Fuel Engine Modelling and Parametric Investigation of Engine Settings Effect on Performance-Emissions Trade-Offs. Ocean Eng. 2018, 157, 376–386. [Google Scholar] [CrossRef]
- Ouyang, T.; Huang, G.; Lu, Y.; Liu, B.; Hu, X. Multi-Criteria Assessment and Optimization of Waste Heat Recovery for Large Marine Diesel Engines. J. Clean. Prod. 2021, 309, 127307. [Google Scholar] [CrossRef]
- Lhermet, G.; Tauveron, N.; Caney, N.; Blondel, Q.; Morin, F. A Recent Advance on Partial Evaporating Organic Rankine Cycle: Experimental Results on an Axial Turbine. Energies 2022, 15, 7559. [Google Scholar] [CrossRef]
- Saha, M.; Tregenza, O.; Twelftree, J.; Hulston, C. A Review of Thermoelectric Generators for Waste Heat Recovery in Marine Applications. Sustain. Energy Technol. Assess. 2023, 59, 103394. [Google Scholar] [CrossRef]
- Kimball, R.; Wallace, T. Thermoelectric Exhaust Heat Recovery Generator (TEG) Project: Marine Engine Testing and Emissions Laboratory (METEL); Maine Maritime Academy: Castine, ME, USA, 2019. [Google Scholar]
- Wang, J.; Guo, Y.; Yue, C.; Deng, W.; Zeng, L. Comprehensive Assessment of Waste Heat Recovery Mismatch and Renewable Energy Integration in Data Centers: A Multifaceted Energy, Economic, and Environmental Perspectives. J. Clean. Prod. 2024, 472, 143466. [Google Scholar] [CrossRef]
- Kim, Y.; Mehmood, M.U.; Han, H.J.; Kim, Y.J.; Oh, S.J.; Lim, S.-H. Reclaiming Power Potential from Low Temperature Waste Heat by Thermomagnetic Heat Engines. Energies 2022, 15, 2817. [Google Scholar] [CrossRef]
- Hao, Y.; Zhou, H.; Tian, T.; Zhang, W.; Zhou, X.; Shen, Q.; Wu, T.; Li, J. Data Centers Waste Heat Recovery Technologies: Review and Evaluation. Appl. Energy 2025, 384, 125489. [Google Scholar] [CrossRef]
- Ding, W.; Ebrahimi, B.; Kim, B.-D.; Devenport, C.L.; Childress, A.E. Analysis of Anthropogenic Waste Heat Emission from an Academic Data Center. Energies 2024, 17, 1835. [Google Scholar] [CrossRef]
- Popp, T.; Weiß, A.P.; Heberle, F.; Winkler, J.; Scharf, R.; Weith, T.; Brüggemann, D. Experimental Characterization of an Adaptive Supersonic Micro Turbine for Waste Heat Recovery Applications. Energies 2021, 15, 25. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aresti, L.; Panayiotou, G. Applications and New Technologies Pertaining to Waste Heat Recovery: A Vision Article. Energies 2025, 18, 2086. https://doi.org/10.3390/en18082086
Aresti L, Panayiotou G. Applications and New Technologies Pertaining to Waste Heat Recovery: A Vision Article. Energies. 2025; 18(8):2086. https://doi.org/10.3390/en18082086
Chicago/Turabian StyleAresti, Lazaros, and Gregoris Panayiotou. 2025. "Applications and New Technologies Pertaining to Waste Heat Recovery: A Vision Article" Energies 18, no. 8: 2086. https://doi.org/10.3390/en18082086
APA StyleAresti, L., & Panayiotou, G. (2025). Applications and New Technologies Pertaining to Waste Heat Recovery: A Vision Article. Energies, 18(8), 2086. https://doi.org/10.3390/en18082086