Wind Resource Assessment for Potential Wind Turbine Operations in the City of Yanbu, Saudi Arabia
Abstract
:1. Introduction
2. Wind Resource Assessment Approach
2.1. Site Selection
2.2. Analysis of Measured Time Series Wind Data
2.3. Data Quality Assurance
- The first option consists of replacing the failed data using a variety of methods, from simple interpolation techniques to complex Artificial Intelligence (AI)-based models. This approach can incorporate historical data from similar sites to enhance accuracy.
- The second option consists of removing the failed data from the dataset.
2.4. Wind Speed Distribution
Estimating Weibull Probability Density Function Parameters
2.5. Wind Speed Variability
2.6. Wind Shear Profile
- -
- Smooth: 0.1
- -
- Untilled ground or short grass: 0.14
- -
- Few buildings and many trees: 0.22–0.24
- -
- Urban area: 0.4
2.7. Turbulence Intensity
2.8. Wind Turbine Class
2.9. Wind Turbine Power Curve
2.10. Wind Direction Variability and Its Affect on Power
2.11. Annual Energy Production
2.12. Capacity Factor
2.13. Wind Farm Site Selection Factors
3. Application and Results
3.1. Site Selection
3.2. Analysis of Measured Time Series Wind Data
- -
- Date of measurement;
- -
- Time of measurement with a time step of 60 min;
- -
- Global horizontal irradiation [Wh/m2];
- -
- Direct normal irradiation [Wh/m2];
- -
- Diffuse horizontal irradiation [Wh/m2];
- -
- Sun altitude (elevation) angle [deg.];
- -
- Sun azimuth angle [deg.];
- -
- Air temperature at 2 m [°C];
- -
- Atmospheric pressure [hPa];
- -
- Relative humidity [%];
- -
- Wind speed at 10 m [m/s];
- -
- Wind direction [deg.].
3.3. Data Quality Assurance
3.4. Wind Speed Distribution
3.5. Power Curve and Wind Distribution
3.6. Wind Speed Variability
3.6.1. Wind Rose
3.6.2. Monthly Average Wind Speeds
3.6.3. Diurnal Average Wind Speeds
3.7. Turbulence Intensity
3.8. Wind Power Density
3.9. Annual Energy Production and Capacity Factor
- -
- If the WT ‘Acciona AW82/1500 kW’ is selected, it can operate at two different hub heights. At 60 m hub height, the AEP and CF are 3.35 GWh and 25.52%, whilst at 80 m, the AEP and CF are 3.80 GWh and 28.95%, respectively.
- -
- Another example is the ‘ATB Riva Calzoni ATB500’ WT. This WT can be designed to operate at two different hub heights. At 50 m hub height, the AEP and CF are 1.20 GWh and 27.48%, respectively, whilst at 70 m, the AEP and CF are 1.39 GWh and 31.66%, respectively.
- -
- The ‘Enercon E48/400 kW’ can operate with four different hub heights, which are 50 m, 55.6 m, 60 m, and 75.6 m. The AEP for these for heights is 1.05 GWh, 1.08 GWh, 1.12 GWh, and 1.22 GWh, respectively. The CF for the four available heights is 29.88%, 30.95%, 32.03%, and 34.70%, respectively.
- -
- As mentioned, it is reported in [32] that the CF ranges generally between 20% and 40%, where obtaining a CF greater than 30% is the target. However, some solutions do not satisfy this constraint. For example, the ‘Acciona AW85/1500 kW’ with a 60 m hub height has an AEP and a CF of 35.53 GWh and 25.52%, respectively. Another example is the ‘Acciona AW85/1500 kW’. This WT can have two different hub heights. For the 60 m hub height, the AEP and CF are 60 GWh and 30%, respectively, whilst for the 80 m hub height, the AEP and CF are 60 GWh and 30%, respectively.
- -
- The maximum AEP is obtained for the ‘Enercon E126/7.5 MW’, with a value of 14.49 GWh, which corresponds to a CF of 21.82%.
- -
- The minimum AEP is obtained for the ‘Northern Power d’, with a value of 0.13 GWh, which corresponds to a CF of 14.89%.
- -
- The maximum CF is obtained for the ‘Leitwind LTW104/2.0 MW’, with a value of 40.67%, which corresponds to an AEP of 7.12 GWh.
- -
- The minimum CF is obtained for the ‘Powerwind PW100/2.5 MW’, with a value of 2.52%, which corresponds to an AEP of 0.55 GWh.
- -
- Among the tested wind turbines, the ‘Enercon E101/3 MW’ and the ‘Enercon E115/2.5 MW’ can be designed to operate at the highest hub height of 149 m. For the first WT, the obtained AEP is 8.59 GWh and the obtained CF is 32.17%, and for the second WT, the obtained AEP is 8.89 GWh and the obtained CF is 40.58%.
- -
- On the other side, among the tested WTs, the ‘WindFlow W33-500’, ‘Norwin 47-STALL-225 kW’, ‘Wind Technik Nord WTN250’, ’Norwin 47-STALL-200 kW’, ‘SRC Green Power SRC31-250’, ‘Northern Power d’, and ‘AnBonus AN33/300 kW’ WTs can be designed to operate at the lowest hub height, which is 30 m. For these turbines, the AEP ranges from 0.13 GWh to 0.41 GWh and the CF ranges from 5.46% to 15.40%.
3.10. Classification of WTs Based on AEP and CF Using K-Means Clustering
- -
- Cluster 1: High-Performance Turbines: These turbines exhibit high AEP and CF. WTs in this cluster are expected to have high annual energy output and efficient energy conversion.
- -
- Cluster 2: Moderate-Performance Turbines: WTs in this cluster show moderate AEP and CF. These WTs can provide a reasonable energy output but are less efficient than those in Cluster 1.
- -
- Cluster 3: Low-Performance Turbines: This group contains WTs with low AEP and CF values. WTs in this cluster are expected to have CF values below 20%. These turbines are less efficient and may not be suitable for large-scale wind energy production unless supplemented by other energy sources.
3.11. Synthetic Wind Turbine Data Generation
- -
- For the first option, the centroid obtained from the K-means clustering methodology used in the previous section represents the average AEP and CF for the selected cluster or class (high-, moderate-, or low-performance WTs). After that, to simulate real-world variability, random noise is added to the AEP and CF values of the centroid.
- -
- For the second option, noise is added directly to a number of class points obtained from the K-means clustering methodology.
4. Conclusions
- −
- Explore and compare ML techniques for imputing missing or failed data;
- −
- Assess the impact of AI-based data recovery on the accuracy of WRA;
- −
- Validate the synthetic WT data using physics-based simulation models and manufacturer specifications;
- −
- Compare the performance of synthetic WTs against real-world operational data to ensure robustness and practical applicability;
- −
- Utilize the generated synthetic WT data to support manufacturers in designing new turbines optimized for site-specific conditions;
- −
- Investigate alternative clustering methods (e.g., hierarchical clustering, Gaussian mixture models) to benchmark and potentially enhance the classification of WT;
- −
- Extend the analysis to include economic performance metrics such as LCOE, in addition to AEP and CF;
- −
- Conduct uncertainty analysis to improve the reliability and credibility of the study’s findings.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Nomenclature and Abbreviations
Symbol or Abbreviation | Description |
Turbulence intensity | |
Mean wind speed | |
Average speed measured | |
Cut-in Wind Speed (minimum wind speed at which the wind turbine starts generating power) | |
Cut-out Wind Speed (maximum wind speed at which the turbine operates) | |
Maximum wind speed considered | |
Rated Wind Speed (wind speed at which the turbine generates its maximum (rated) power output) | |
Roughness length | |
Area of the rotor | |
AEP | Annual energy production |
AI | Artificial intelligence |
ANFIS | Adaptive neuro-fuzzy inference system |
ANN | Artificial neural network |
CE | Cross-entropy |
CF | Capacity factor |
Energy produced by a given WT | |
GEV | Generalized extreme value |
GIS | Geographical information system |
IEC | International electrochemical commission |
Shape parameter | |
LCOE | Levelized Cost of Energy |
Power density | |
PRF | Power reduction factor |
Time period over which energy is calculated | |
Wind speed | |
Wind speed at height | |
Wind speed at height | |
WF | Wind farm |
WRA | Wind resource assessment |
WT | Wind turbine |
Roughness exponent | |
Yaw misalignment angle between the turbine rotor and the local wind direction | |
Scale parameter | |
Air density | |
Standard deviation |
Appendix A
WT Type | Hub Height (m) | AEP (GWh) | CF (%) |
---|---|---|---|
Acciona AW82/1500 kW | 60 | 3.35 | 25.52 |
Acciona AW82/1500 kW | 80 | 3.80 | 28.95 |
AnBonus AN33/300 kW | 30 | 0.41 | 15.40 |
AnBonus AN33/300 kW | 40 | 0.48 | 18.15 |
Enercon E33/330 kW | 37 | 0.50 | 17.17 |
Enercon E33/330 kW | 44 | 0.55 | 18.79 |
Enercon E33/330 kW | 49 | 0.58 | 19.82 |
Enercon E33/330 kW | 50 | 0.59 | 20.05 |
AnBonus AN41/600 kW | 42.3 | 0.61 | 11.00 |
AnBonus AN41/600 kW | 50 | 0.68 | 12.30 |
AnBonus AN44/600 kW | 42 | 0.80 | 14.90 |
AnBonus AN44/600 kW | 50 | 0.87 | 16.28 |
AnBonus AN44/600 kW | 55 | 0.91 | 17.05 |
AnBonus AN44/600 kW | 58 | 0.95 | 17.80 |
ATB Riva Calzoni ATB500 | 50 | 1.20 | 27.48 |
ATB Riva Calzoni ATB500 | 70 | 1.39 | 31.66 |
Enercon E44/900 kW | 45 | 1.01 | 12.69 |
Enercon E44/900 kW | 55 | 1.13 | 14.14 |
Enercon E48/400 kW | 50 | 1.05 | 29.88 |
Enercon E48/400 kW | 55.6 | 1.08 | 30.95 |
Enercon E48/400 kW | 60 | 1.12 | 32.03 |
Enercon E48/400 kW | 75.6 | 1.22 | 34.70 |
Enercon E48/500 kW | 50 | 1.10 | 25.15 |
Enercon E48/500 kW | 55 | 1.15 | 26.17 |
Enercon E48/500 kW | 60 | 1.19 | 27.23 |
Enercon E48/500 kW | 76 | 1.33 | 30.36 |
Enercon E48/600 kW | 50 | 1.18 | 22.55 |
Enercon E48/600 kW | 55.6 | 1.23 | 23.49 |
Enercon E48/600 kW | 60 | 1.28 | 24.44 |
Enercon E48/600 kW | 75.6 | 1.41 | 26.90 |
Enercon E48/700 kW | 50 | 1.23 | 20.04 |
Enercon E48/700 kW | 55.6 | 1.28 | 20.92 |
Enercon E48/700 kW | 60 | 1.34 | 21.80 |
Enercon E48/700 kW | 75.6 | 1.48 | 24.15 |
Enercon E48/800 kW | 50 | 1.23 | 17.30 |
Enercon E48/800 kW | 55.6 | 1.29 | 18.14 |
Enercon E48/800 kW | 60 | 1.35 | 18.98 |
Enercon E48/800 kW | 75.6 | 1.51 | 21.25 |
Enercon E53/500 | 60 | 1.38 | 31.43 |
Enercon E53/500 | 73 | 1.49 | 33.96 |
Enercon E53/600 | 60 | 1.46 | 27.78 |
Enercon E53/600 | 73 | 1.59 | 30.19 |
Enercon E53/700 | 60 | 1.53 | 24.95 |
Enercon E53/700 | 73 | 1.67 | 27.25 |
Enercon E53/750 | 60 | 1.58 | 23.99 |
Enercon E53/750 | 73 | 1.73 | 26.31 |
Enercon E53/800 | 60 | 1.61 | 22.65 |
Enercon E53/800 | 73 | 1.77 | 24.92 |
Enercon E70/2.3 MW | 57 | 3.02 | 14.94 |
Enercon E70/2.3 MW | 64 | 3.24 | 16.00 |
Enercon E70/2.3 MW | 85 | 3.78 | 18.66 |
Enercon E70/2.3 MW | 98 | 4.03 | 19.90 |
Enercon E70/2.3 MW | 113 | 4.31 | 21.30 |
Enercon E82 E1/2 MW | 78 | 4.40 | 24.50 |
Enercon E82 E1/2 MW | 85 | 4.60 | 25.59 |
Enercon E82 E1/2 MW | 98 | 4.85 | 27.02 |
Enercon E82 E1/2 MW | 108 | 5.05 | 28.11 |
Enercon E82 E1/2 MW | 138 | 5.55 | 30.90 |
Enercon E82 E2/2.3 MW | 78 | 4.50 | 21.85 |
Enercon E82 E2/2.3 MW | 85 | 4.70 | 22.84 |
Enercon E82 E2/2.3 MW | 98 | 4.98 | 24.20 |
Enercon E82 E2/2.3 MW | 108 | 5.20 | 25.24 |
Enercon E82 E2/2.3 MW | 138 | 5.74 | 27.89 |
Enercon E82 E3/3 MW | 78 | 4.51 | 17.05 |
Enercon E82 E3/3 MW | 85 | 4.73 | 17.87 |
Enercon E82 E3/3 MW | 98 | 5.03 | 19.03 |
Enercon E82 E3/3 MW | 108 | 5.27 | 19.92 |
Enercon E82 E3/3 MW | 138 | 5.88 | 22.22 |
Enercon E82 E4/3 MW | 78 | 4.51 | 17.05 |
Enercon E82 E4/3 MW | 84 | 4.65 | 17.57 |
Enercon E92/2.35 MW | 84 | 5.30 | 25.74 |
Enercon E92/2.35 MW | 85 | 5.38 | 26.12 |
Enercon E92/2.35 MW | 98 | 5.67 | 27.57 |
Enercon E92/2.35 MW | 104 | 5.83 | 28.30 |
Enercon E92/2.35 MW | 108 | 5.90 | 28.65 |
Enercon E92/2.35 MW | 138 | 6.47 | 31.44 |
Enercon E101/3 MW | 99 | 7.25 | 27.13 |
Enercon E101/3 MW | 135 | 8.30 | 31.06 |
Enercon E101/3 MW | 149 | 8.59 | 32.17 |
Enercon E115/2.5 MW | 92.5 | 7.57 | 34.57 |
Enercon E115/2.5 MW | 149 | 8.89 | 40.58 |
Enercon E126/7.5 MW | 135 | 14.49 | 21.82 |
RRB/Vestas V47/500 | 33.2 | 0.76 | 17.35 |
RRB/Vestas V47/500 | 50 | 0.94 | 21.45 |
RRB/Vestas V47/500 | 60 | 1.02 | 23.37 |
Gamesa G52/500 kW | 44 | 1.13 | 25.82 |
Gamesa G52/500 kW | 49 | 1.19 | 27.07 |
Gamesa G52/500 kW | 55 | 1.24 | 28.41 |
Gamesa G52/500 kW | 65 | 1.35 | 30.74 |
Gamesa G58/500 kW | 44 | 1.27 | 29.10 |
Gamesa G58/500 kW | 55 | 1.39 | 31.69 |
Gamesa G58/500 kW | 65 | 1.49 | 34.11 |
Gamesa G58/500 kW | 74 | 1.56 | 35.63 |
Gamesa G52/850 kW | 44 | 1.23 | 16.49 |
Gamesa G52/850 kW | 55 | 1.38 | 18.52 |
Gamesa G52/850 kW | 65 | 1.51 | 20.27 |
Gamesa G58/850 kW | 49 | 1.55 | 20.79 |
Gamesa G58/850 kW | 55 | 1.64 | 21.99 |
Gamesa G58/850 kW | 65 | 1.78 | 23.97 |
lagerwey L82/2000 kW | 80 | 4.07 | 23.20 |
lagerwey L82/2000 kW | 105 | 4.57 | 26.11 |
Leitwind LTW77/950 kW | 65 | 2.79 | 33.52 |
Leitwind LTW77/1.0 MW | 65 | 2.82 | 32.15 |
Leitwind LTW70/1.7 MW | 60 | 2.64 | 17.74 |
Leitwind LTW70/2.0 MW | 60 | 2.67 | 15.27 |
Leitwind LTW70/2.0 MW | 60 | 2.41 | 13.77 |
Leitwind LTW77/1.5 MW | 61.5 | 2.94 | 22.37 |
Leitwind LTW77/1.5 MW | 65 | 3.06 | 23.25 |
Leitwind LTW77/1.5 MW | 80 | 3.34 | 25.40 |
Leitwind LTW77/1.5 MW | 61.5 | 2.86 | 21.76 |
Leitwind LTW77/1.5 MW | 65 | 2.98 | 22.65 |
Leitwind LTW77/1.5 MW | 80 | 3.26 | 24.84 |
Leitwind LTW80/1.5 MW | 60 | 3.40 | 25.87 |
Leitwind LTW80/1.5 MW | 80 | 3.85 | 29.30 |
Leitwind LTW80/1.5 MW | 100 | 4.19 | 31.85 |
Leitwind LTW80/1.8 MW | 60 | 3.40 | 21.59 |
Leitwind LTW80/1.8 MW | 80 | 3.91 | 24.82 |
Leitwind LTW80/1.5 MW | 60 | 3.14 | 23.87 |
Leitwind LTW80/1.5 MW | 80 | 3.58 | 27.24 |
Leitwind LTW80/1.5 MW | 100 | 3.92 | 29.84 |
Leitwind LTW80/1.8 MW | 60 | 3.17 | 20.13 |
Leitwind LTW80/1.8 MW | 80 | 3.67 | 23.29 |
Leitwind LTW86/1.5 MW | 80 | 3.95 | 30.09 |
Leitwind LTW86/1.5 MW | 100 | 4.30 | 32.76 |
Leitwind LTW86/1.5 MW | 80 | 3.77 | 28.68 |
Leitwind LTW86/1.5 MW | 100 | 4.11 | 31.24 |
Leitwind LTW101/3.0 MW | 97 | 6.69 | 25.46 |
Leitwind LTW101/3.0 MW | 95 | 6.76 | 25.73 |
Leitwind LTW101/3.0 MW | 143 | 8.04 | 30.59 |
Leitwind LTW104/2.0 MW | 95 | 6.20 | 35.38 |
Leitwind LTW104/2.0 MW | 143 | 7.12 | 40.67 |
Leitwind LTW104/2.5 MW | 95 | 6.72 | 30.70 |
Leitwind LTW104/2.5 MW | 143 | 7.86 | 35.87 |
Neg-Micon NM-48/600 | 46 | 0.98 | 18.37 |
Neg-Micon NM-48/600 | 50 | 1.03 | 19.14 |
Neg-Micon M750 | 36 | 0.35 | 15.28 |
Nordex N60/1300 kW | 46 | 1.53 | 12.79 |
Nordex N60/1300 kW | 60 | 1.77 | 14.78 |
Nordex N60/1300 kW | 69 | 1.92 | 16.07 |
Nordex N60/1300 kW | 85 | 2.15 | 17.95 |
Northern Power d | 37 | 0.15 | 16.78 |
Northern Power d | 30 | 0.13 | 14.87 |
Norwin 47-STALL-200 kW | 30 | 0.23 | 12.69 |
Norwin 47-STALL-200 kW | 40 | 0.27 | 15.44 |
Norwin 47-STALL-225 kW | 30 | 0.24 | 12.00 |
Norwin 47-STALL-225 kW | 40 | 0.29 | 14.57 |
Norwin 47-STALL-225 kW | 50 | 0.33 | 16.44 |
Norwin 47-ASR-500 kW | 40 | 0.87 | 19.92 |
Norwin 47-ASR-500 kW | 65 | 1.10 | 25.20 |
Norwin 47-ASR-750 kW | 40 | 0.92 | 13.97 |
Norwin 47-ASR-750 kW | 65 | 1.19 | 18.11 |
Norwin 54-ASR-750 kW | 40 | 1.17 | 17.82 |
Norwin 54-ASR-750 kW | 65 | 1.49 | 22.74 |
Powerwind PW56/500 kW | 44 | 1.17 | 26.77 |
Powerwind PW56/500 kW | 46 | 1.20 | 27.33 |
Powerwind PW56/500 kW | 49 | 1.23 | 28.00 |
Powerwind PW56/500 kW | 50 | 1.24 | 28.31 |
Powerwind PW56/900 kW | 59 | 1.65 | 20.98 |
Powerwind PW56/900 kW | 71 | 1.81 | 22.90 |
Powerwind PW56/900 kW | 59 | 1.60 | 20.31 |
Powerwind PW56/900 kW | 71 | 1.75 | 22.23 |
Powerwind PW60/850 kW | 70 | 1.71 | 22.94 |
Powerwind PW90/2.5 MW | 98 | 5.47 | 24.99 |
Powerwind PW100/2.5 MW | 80 | 0.55 | 2.52 |
Powerwind PW100/2.5 MW | 100 | 0.82 | 3.74 |
REPower MM82/2.0 MW | 59 | 3.37 | 19.25 |
REPower MM82/2.0 MW | 69 | 3.64 | 20.79 |
REPower MM82/2.0 MW | 80 | 3.90 | 22.27 |
REPower MM82/2.0 MW | 100 | 4.31 | 24.58 |
REPower MM82/2050 kW | 59 | 3.60 | 20.05 |
REPower MM82/2050 kW | 69 | 3.89 | 21.64 |
REPower MM82/2050 kW | 80 | 4.15 | 23.13 |
REPower MM82/2050 kW | 100 | 4.59 | 25.54 |
REPower MM92/2050 kW | 68.5 | 4.71 | 26.21 |
REPower MM92/2050 kW | 78.5 | 5.00 | 27.86 |
REPower MM92/2050 kW | 80 | 5.05 | 28.10 |
REPower MM92/2050 kW | 100 | 5.52 | 30.75 |
SRC Green Power SRC31-250 | 30 | 0.33 | 14.78 |
Suslon S64/950 kW | 80 | 2.36 | 28.34 |
Turbowinds T500/48 | 50 | 0.98 | 22.41 |
Turbowinds T500/48 | 60 | 1.06 | 24.26 |
Unison U50/750 kW | 50 | 1.28 | 19.22 |
Unison U54/750 kW | 60 | 1.64 | 24.61 |
Unison U57/750 kW | 68 | 1.88 | 28.20 |
Unison U88/2000 kW | 80 | 3.70 | 21.11 |
Unison U93/2000 kW | 80 | 4.01 | 22.86 |
Vergnet GEV MP R 32/275 kW | 32 | 0.32 | 13.16 |
Vergnet GEV MP R 30/275 kW | 32 | 0.26 | 10.75 |
Vergnet GEV MP C 32/275 kW | 55 | 0.44 | 18.07 |
Vergnet GEV MP C 32/275 kW | 60 | 0.46 | 18.95 |
Vergnet GEV MP C 30/275 kW | 55 | 0.36 | 14.91 |
Vergnet GEV MP C 30/275 kW | 60 | 0.38 | 15.67 |
Vergnet GEV HP 62/1000 kW | 70 | 1.84 | 21.06 |
Vestas V44/600 kW | 40 | 0.73 | 13.98 |
Vestas V44/600 kW | 45 | 0.78 | 14.92 |
Vestas V44/600 kW | 50 | 0.83 | 15.84 |
Vestas V52/104.2 dBA | 44 | 1.21 | 16.31 |
Vestas V52/104.2 dBA | 49 | 1.29 | 17.27 |
Vestas V52/104.2 dBA | 55 | 1.36 | 18.30 |
Vestas V52/104.2 dBA | 60 | 1.42 | 19.12 |
Vestas V52/104.2 dBA | 65 | 1.49 | 20.01 |
Vestas V52/104.2 dBA | 74 | 1.59 | 21.30 |
Vestas V52/104.2 dBA | 86 | 1.70 | 22.87 |
Vestas V90/1800 kW (0) | 80 | 4.55 | 28.84 |
Vestas V90/1800 kW (0) | 95 | 4.86 | 30.85 |
Vestas V90/1800 kW (0) | 105 | 5.06 | 32.07 |
Vestas V90/1800 kW (0) | 125 | 5.35 | 33.94 |
Vestas V90/1800 kW (1) | 80 | 4.52 | 28.67 |
Vestas V90/1800 kW (1) | 95 | 4.84 | 30.67 |
Vestas V90/1800 kW (1) | 105 | 5.03 | 31.89 |
Vestas V90/1800 kW (1) | 125 | 5.32 | 33.73 |
Vestas V90/1800 kW (2) | 80 | 4.35 | 27.56 |
Vestas V90/1800 kW (2) | 95 | 4.65 | 29.46 |
Vestas V90/1800 kW (2) | 105 | 4.83 | 30.63 |
Vestas V90/1800 kW (2) | 125 | 5.11 | 32.38 |
Vestas V90/1800 kW (3) | 80 | 4.51 | 28.60 |
Vestas V90/1800 kW (3) | 95 | 4.82 | 30.59 |
Vestas V90/1800 kW (3) | 105 | 5.02 | 31.81 |
Vestas V90/1800 kW (3) | 125 | 5.31 | 33.67 |
Vestas V90/2000 kW (0) | 80 | 4.67 | 26.66 |
Vestas V90/2000 kW (0) | 95 | 5.01 | 28.61 |
Vestas V90/2000 kW (0) | 105 | 5.22 | 29.80 |
Vestas V90/2000 kW (0) | 125 | 5.54 | 31.62 |
Vestas V90/2000 kW (1) | 80 | 4.63 | 26.43 |
Vestas V90/2000 kW (1) | 95 | 4.97 | 28.37 |
Vestas V90/2000 kW (1) | 105 | 5.18 | 29.55 |
Vestas V90/2000 kW (1) | 125 | 5.49 | 31.35 |
Vestas V90/2000 kW (2) | 80 | 4.42 | 25.21 |
Vestas V90/2000 kW (2) | 95 | 4.73 | 27.02 |
Vestas V90/2000 kW (2) | 105 | 4.93 | 28.14 |
Vestas V90/2000 kW (2) | 125 | 5.22 | 29.82 |
Vestas V90/2000 kW (3) | 80 | 4.63 | 26.44 |
Vestas V90/2000 kW (3) | 95 | 4.97 | 28.38 |
Vestas V90/2000 kW (3) | 105 | 5.18 | 29.56 |
Vestas V90/2000 kW (3) | 125 | 5.50 | 31.38 |
Vestas V90/3000 kW 60 Hz (mode 0) | 80 | 5.06 | 19.25 |
Vestas V90/3000 kW 60 Hz (mode 1) | 80 | 5.02 | 19.11 |
Vestas V90/3000 kW 60 Hz (mode 2) | 80 | 4.91 | 18.70 |
WindFlow W33-500 | 30 | 0.24 | 5.46 |
WindFlow W33-500 | 50 | 0.37 | 8.45 |
Wind Technik Nord WTN250 | 30 | 0.27 | 12.16 |
Wind Technik Nord WTN250 | 40 | 0.32 | 14.59 |
Wind Technik Nord WTN500 | 50 | 0.92 | 21.06 |
Wind Technik Nord WTN500 | 65 | 1.05 | 23.99 |
WinWinD WWD56/1000 | 80 | 1.86 | 20.83 |
WinWinD WWD-1/60 | 70 | 2.08 | 22.73 |
WinWinD WWD64/1000 | 80 | 2.29 | 25.78 |
WinWinD WWD-3/90 | 80 | 5.35 | 19.88 |
WinWinD WWD-3/90 | 88 | 5.59 | 20.79 |
WinWinD WWD-3/90 | 100 | 5.95 | 22.11 |
WinWinD WWD-3/100 | 80 | 6.09 | 22.66 |
WinWinD WWD-3/100 | 88 | 6.35 | 23.60 |
WinWinD WWD-3/100 | 100 | 6.73 | 25.02 |
EWT DW54*900HH50 | 80 | 1.83 | 23.26 |
EWT DW54*750HH50 | 80 | 1.78 | 27.13 |
EWT DW54*500HH50 | 80 | 1.57 | 35.82 |
WinWinD WWD-3/103 | 80 | 6.37 | 23.68 |
WinWinD WWD-3/103 | 88 | 6.62 | 24.63 |
WinWinD WWD-3/103 | 100 | 7.01 | 26.07 |
References
- Li, X.; Chen, Y.; Li, K.; Gao, S.; Cui, Y. The Optimal Wind Speed Product Selection for Wind Energy Assessment under Multi-Factor Constraints. Clean. Eng. Technol. 2025, 24, 100883. [Google Scholar] [CrossRef]
- REN21. Renewables 2022 Global Status; REN21: Paris, France, 2022; ISBN 9783948393045. [Google Scholar]
- Lazard. Lazard’s Levelized Cost of Energy V15.0; Lazard: Melbourne, VIC, Australia, 2021. [Google Scholar]
- Liu, J.; Xiong, G.; Suganthan, P.N. Differential Evolution-Based Mixture Distribution Models for Wind Energy Potential Assessment: A Comparative Study for Coastal Regions of China. Energy 2025, 321, 135151. [Google Scholar] [CrossRef]
- Faraz, M.I. Strategic Analysis of Wind Energy Potential and Optimal Turbine Selection in Al-Jouf, Saudi Arabia. Heliyon 2024, 10, e39188. [Google Scholar] [CrossRef]
- Li, X.; Huang, G.; Yu, W.; Yin, R.; Zheng, H. Distribution Inference of Wind Speed at Adjacent Spaces Using Generative Conditional Distribution Sampler. Comput. Electr. Eng. 2025, 123, 110123. [Google Scholar] [CrossRef]
- Dong, S.; Gong, Y.; Wang, Z.; Incecik, A. Wind and Wave Energy Resources Assessment around the Yangtze River Delta. Ocean Eng. 2019, 182, 75–89. [Google Scholar] [CrossRef]
- Zhang, H.; Cao, Y.; Zhang, Y.; Terzija, V. Quantitative Synergy Assessment of Regional Wind-Solar Energy Resources Based on MERRA Reanalysis Data. Appl. Energy 2018, 216, 172–182. [Google Scholar] [CrossRef]
- Wang, Z.; Duan, C.; Dong, S. Long-Term Wind and Wave Energy Resource Assessment in the South China Sea Based on 30-Year Hindcast Data. Ocean Eng. 2018, 163, 58–75. [Google Scholar] [CrossRef]
- Sobchenko, A.; Khomenko, I. Assessment of Regional Wind Energy Resources over the Ukraine. Energy Procedia 2015, 76, 156–163. [Google Scholar] [CrossRef]
- Chandel, S.S.; Murthy, K.S.R.; Ramasamy, P. Wind Resource Assessment for Decentralised Power Generation: Case Study of a Complex Hilly Terrain in Western Himalayan Region. Sustain. Energy Technol. Assess. 2014, 8, 18–33. [Google Scholar] [CrossRef]
- Dayal, K.K.; Cater, J.E.; Kingan, M.J.; Bellon, G.D.; Sharma, R.N. Wind Resource Assessment and Energy Potential of Selected Locations in Fiji. Renew. Energy 2021, 172, 219–237. [Google Scholar] [CrossRef]
- Saeed, M.A.; Ahmed, Z.; Hussain, S.; Zhang, W. Wind Resource Assessment and Economic Analysis for Wind Energy Development in Pakistan. Sustain. Energy Technol. Assess. 2021, 44, 101068. [Google Scholar] [CrossRef]
- Boudia, S.M.; Santos, J.A. Assessment of Large-Scale Wind Resource Features in Algeria. Energy 2019, 189, 116299. [Google Scholar] [CrossRef]
- Wan, J.; Zheng, F.; Luan, H.; Tian, Y.; Li, L.; Ma, Z.; Xu, Z.; Li, Y. Assessment of Wind Energy Resources in the Urat Area Using Optimized Weibull Distribution. Sustain. Energy Technol. Assess. 2021, 47, 101351. [Google Scholar] [CrossRef]
- Jain, A.; Das, P.; Yamujala, S.; Bhakar, R.; Mathur, J. Resource Potential and Variability Assessment of Solar and Wind Energy in India. Energy 2020, 211, 118993. [Google Scholar] [CrossRef]
- Aukitino, T.; Khan, M.G.M.; Ahmed, M.R. Wind Energy Resource Assessment for Kiribati with a Comparison of Different Methods of Determining Weibull Parameters. Energy Convers. Manag. 2017, 151, 641–660. [Google Scholar] [CrossRef]
- Kazet, M.Y.; Mouangue, R.; Kuitche, A.; Ndjaka, J.M. Wind Energy Resource Assessment in Ngaoundere Locality. Energy Procedia 2016, 93, 74–81. [Google Scholar] [CrossRef]
- Sharma, K.; Ahmed, M.R. Wind Energy Resource Assessment for the Fiji Islands: Kadavu Island and Suva Peninsula. Renew. Energy 2016, 89, 168–180. [Google Scholar] [CrossRef]
- Ramadan, H.S. Wind Energy Farm Sizing and Resource Assessment for Optimal Energy Yield in Sinai Peninsula, Egypt. J. Clean. Prod. 2017, 161, 1283–1293. [Google Scholar] [CrossRef]
- Charabi, Y.; Al-Yahyai, S.; Gastli, A. Evaluation of NWP Performance for Wind Energy Resource Assessment in Oman. Renew. Sustain. Energy Rev. 2011, 15, 1545–1555. [Google Scholar] [CrossRef]
- Ayik, A.; Ijumba, N.; Kabiri, C.; Goffin, P. Preliminary Wind Resource Assessment in South Sudan Using Reanalysis Data and Statistical Methods. Renew. Sustain. Energy Rev. 2021, 138, 110621. [Google Scholar] [CrossRef]
- Samal, R.K. Assessment of Wind Energy Potential Using Reanalysis Data: A Comparison with Mast Measurements. J. Clean. Prod. 2021, 313, 127933. [Google Scholar] [CrossRef]
- Olaofe, Z.O. Review of Energy Systems Deployment and Development of Offshore Wind Energy Resource Map at the Coastal Regions of Africa. Energy 2018, 161, 1096–1114. [Google Scholar] [CrossRef]
- Neupane, D.; Kafle, S.; Karki, K.R.; Kim, D.H.; Pradhan, P. Solar and Wind Energy Potential Assessment at Provincial Level in Nepal: Geospatial and Economic Analysis. Renew. Energy 2022, 181, 278–291. [Google Scholar] [CrossRef]
- Wang, L.; Liu, J.; Qian, F. Wind Speed Frequency Distribution Modeling and Wind Energy Resource Assessment Based on Polynomial Regression Model. Int. J. Electr. Power Energy Syst. 2021, 130, 106964. [Google Scholar] [CrossRef]
- Adedeji, P.A.; Akinlabi, S.A.; Madushele, N.; Olatunji, O.O. Neuro-Fuzzy Resource Forecast in Site Suitability Assessment for Wind and Solar Energy: A Mini Review. J. Clean. Prod. 2020, 269, 122104. [Google Scholar] [CrossRef]
- Hernández Galvez, G.; Saldaña Flores, R.; Miranda Miranda, U.; Sarracino Martínez, O.; Castillo Téllez, M.; Almenares López, D.; Gómez, A.K.T. Wind Resource Assessment and Sensitivity Analysis of the Levelised Cost of Energy. A Case Study in Tabasco, Mexico. Renew. Energy Focus 2019, 29, 94–106. [Google Scholar] [CrossRef]
- Silvera, O.C.; Chamorro, M.V.; Ochoa, G.V. Wind and Solar Resource Assessment and Prediction Using Artificial Neural Network and Semi-Empirical Model: Case Study of the Colombian Caribbean Region. Heliyon 2021, 7, e07959. [Google Scholar] [CrossRef]
- Elshafei, B.; Peña, A.; Xu, D.; Ren, J.; Badger, J.; Pimenta, F.M.; Giddings, D.; Mao, X. A Hybrid Solution for Offshore Wind Resource Assessment from Limited Onshore Measurements. Appl. Energy 2021, 298, 117245. [Google Scholar] [CrossRef]
- Teumzghi, T. Wind Resource Assessment for Possible Wind Farm Development in Dekemhare and Assab, Eritrea. Master’s Thesis, Halmstad University, Halmstad, Sweden, 2018; pp. 1–6. [Google Scholar]
- Lam, V. Development of Wind Resource Assessment Methods and Application to the Waterloo Region. Master’s Thesis, University of Waterloo, Waterloo, ON, Canada, 2013. [Google Scholar]
- Gottschall, J.; Dörenkämper, M. Understanding and Mitigating the Impact of Data Gaps on Offshore Wind Resource Estimates. Wind Energy Sci. 2021, 6, 505–520. [Google Scholar] [CrossRef]
- Coville, A.; Siddiqui, A.; Vogstad, K.O. The Effect of Missing Data on Wind Resource Estimation. Energy 2011, 36, 4505–4517. [Google Scholar] [CrossRef]
- Zapata-Sierra, A.J.; Cama-Pinto, A.; Montoya, F.G.; Alcayde, A.; Manzano-Agugliaro, F. Wind Missing Data Arrangement Using Wavelet Based Techniques for Getting Maximum Likelihood. Energy Convers. Manag. 2019, 185, 552–561. [Google Scholar] [CrossRef]
- Burton, T.; Jenkins, N.; Sharpe, D.; Bossanyi, E. Wind Energy Handbook; John Wiley & Sons, Ltd.: Chichester, UK, 2011; ISBN 9781119992714. [Google Scholar]
- Petersen, E.L.; Mortensen, N.G.; Landberg, L.; Hùjstrup, J.; Frank, H.P. Wind Power Meteorology. Part I: Climate and Turbulence. Wind Energy 1998, 1, 25–45. [Google Scholar] [CrossRef]
- Machidon, D.; Istrate, M.; Beniuga, R. Wind Shear Coefficient Estimation Based on LIDAR Measurements to Improve Power Law Extrapolation Performance. Remote Sens. 2025, 17, 23. [Google Scholar] [CrossRef]
- Meng, W.; Yang, Z.; Rao, Z.; Li, S.; Lin, X.; Peng, J.; Cao, Y.; Chen, Y. Refined Assessment Method of Offshore Wind Resources Based on Interpolation Method. Energies 2025, 18, 213. [Google Scholar] [CrossRef]
- Ray, M.L.; Rogers, A.L.; Mcgowan, J.G. Analysis of Wind Shear Models and Trends in Different Terrains. Wind. Eng. 2006, 30, 341–350. [Google Scholar]
- White, F.M. Fluid Mechanics; McGraw Hill: New York, NY, USA, 2002; ISBN 007124493X. [Google Scholar]
- IEC 61400-1; Wind Turbines—Part 1: Design Requirements, 3rd ed. International Electrotechnical Commission: Geneva, Switzerland, 2019.
- Wind Power Generation|CRC Research. Available online: https://www.crcresearch.org/node/304 (accessed on 8 July 2021).
- Ismaiel, A.M.M.; Yoshida, S. Study of Turbulence Intensity Effect on the Fatigue Lifetime of Wind Turbines. Evergr. Jt. J. Nov. Carbon Resour. Sci. Green Asia Strategy 2018, 5, 25–32. [Google Scholar] [CrossRef]
- Wind Resource Analysis and Power Curves—Edward Bodmer—Project and Corporate Finance. Available online: https://edbodmer.com/wind-financial-modelling-and-resource-analysis/ (accessed on 10 July 2021).
- Dallas, S.; Stock, A.; Hart, E. Control-Oriented Modelling of Wind Direction Variability. Wind Energy Sci. 2024, 9, 841–867. [Google Scholar] [CrossRef]
- Liew, J.; Urbán, A.M.; Andersen, S.J. Analytical Model for the Power-Yaw Sensitivity of Wind Turbines Operating in Full Wake. Wind Energy Sci. 2020, 5, 427–437. [Google Scholar] [CrossRef]
- Rediske, G.; Burin, H.P.; Rigo, P.D.; Rosa, C.B.; Michels, L.; Siluk, J.C.M. Wind Power Plant Site Selection: A Systematic Review. Renew. Sustain. Energy Rev. 2021, 148, 111293. [Google Scholar] [CrossRef]
- Rehman, S. Wind Energy Resources Assessment for Yanbo, Saudi Arabia. Energy Convers. Manag. 2004, 45, 2019–2032. [Google Scholar] [CrossRef]
- Solar Resource Maps and GIS Data for 200+ Countries|Solargis. Available online: https://solargis.com/maps-and-gis-data/download/saudi-arabia (accessed on 29 August 2020).
- Rehman, S.; Halawani, T.O.; Husain, T. Weibull Parameters for Wind Speed Distribution in Saudi Arabia. Sol. Energy 1994, 53, 473–479. [Google Scholar] [CrossRef]
- National Renewable Energy Laboratory. Wind Resource Assessment Handbook; National Renewable Energy Laboratory: Golden, CO, USA, 2010. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ramli, M.A.M.; Bouchekara, H.R.E.H. Wind Resource Assessment for Potential Wind Turbine Operations in the City of Yanbu, Saudi Arabia. Energies 2025, 18, 2139. https://doi.org/10.3390/en18082139
Ramli MAM, Bouchekara HREH. Wind Resource Assessment for Potential Wind Turbine Operations in the City of Yanbu, Saudi Arabia. Energies. 2025; 18(8):2139. https://doi.org/10.3390/en18082139
Chicago/Turabian StyleRamli, Makbul A. M., and Houssem R. E. H. Bouchekara. 2025. "Wind Resource Assessment for Potential Wind Turbine Operations in the City of Yanbu, Saudi Arabia" Energies 18, no. 8: 2139. https://doi.org/10.3390/en18082139
APA StyleRamli, M. A. M., & Bouchekara, H. R. E. H. (2025). Wind Resource Assessment for Potential Wind Turbine Operations in the City of Yanbu, Saudi Arabia. Energies, 18(8), 2139. https://doi.org/10.3390/en18082139