Silicon Carbide Converter Design: A Review
Abstract
:1. Introduction
- Medium-Voltage Converters: SiC IGBTs operate efficiently in voltage ranges of 3.3 kV to 15 kV, making them ideal for grid-tied applications and industrial motor drives.
- Electric Vehicle Traction Inverters: In high-power applications where conduction losses dominate over switching losses, SiC IGBTs provide a balance between efficiency and cost.
- High-Power DC-DC Converters: Their capability to handle high-voltages while maintaining efficiency makes them attractive for renewable energy and energy storage applications.
- 2014–2016: Initial adoption of SiC MOSFETs in DC-DC converters with high switching frequencies (~800 kHz).
- 2017–2019: Introduction of SiC IGBTs in medium-voltage applications, reducing conduction losses in high-power converters.
- 2020–2024: Development of hybrid SiC-Si converter designs to balance cost and performance, improving overall system efficiency.
2. Methodology
3. Statistical Analysis of Dataset (Research Papers)
4. Results
4.1. SiC MOSFETs
4.1.1. Dead-Time Analysis
4.1.2. DC-DC Buck/Boost Converter
4.1.3. AC-DC Converter
4.1.4. DC-DC Multilevel Converter
4.2. SiC Applications
4.2.1. High-Speed Machines
4.2.2. SiC Converter
4.2.3. Three-Phase Converters
4.3. SiC Devices
4.3.1. Grid-Connected Wind Power Systems
4.3.2. Data Driven Losses
4.3.3. DC Current Transformer Calibration
4.3.4. Multilevel/Interleaved Converter
4.3.5. Switching Capabilities
4.4. Power Converters
4.4.1. SiC MOSFET with Schottky Diode
4.4.2. 1200 V SiC Module
4.4.3. 500 kW, 100 kW, 52 Kw, 10 kW, Converter
4.5. PCB Design
4.5.1. Thermal Performance of SiC MOSFETs
4.5.2. Gate Driver for SiC MOSFETs
4.5.3. Slew Rate Control Gate Driver
4.5.4. Improved Gate Driver
4.5.5. EMI Issues
4.6. Si, SiC, and GaN
4.6.1. Three-Phase Voltage Source Converters
4.6.2. Comparative Converter Study
4.6.3. Grid-Tie Converters
4.7. Temperature Sensitive
4.7.1. Si and SiC Devices
4.7.2. Power Devices Challenges
4.8. Issue Addressed
4.8.1. Crosstalk Suppression
4.8.2. Charging Systems Using SiC Devices
4.8.3. Short Circuit Deduction
4.8.4. Current Density Effects
4.9. Efficiency
4.9.1. Buck/Boost Converter
4.9.2. Medium-Voltage High-Frequency
4.9.3. High-Density
4.10. Analysis Using SiC Converter
4.10.1. Suppression of Common Mode Voltage
4.10.2. DC Link Voltage Ripple/Capacitor
4.10.3. Controller Design
4.10.4. SiC MOSFET Half-Bridge/Coupled Inductor
5. Upcoming Challenges
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- HIS. The World Market for Silicon Carbide and Gallium Nitride Power Semiconductors, 2013th ed.; HIS: Wellingborough, UK, 2013; Volume 9790. [Google Scholar]
- Tolstoy, G.; Ranstad, P.; Colmenares, J.; Peftitsis, D.; Giezendanner, F.; Rabkowski, J.; Nee, H.P. An experimental analysis on how the dead time of SiC BJT and SiC MOSFET impacts the losses in a high-frequency resonant converter. In Proceedings of the 2014 16th European Conference on Power Electronics and Applications, Lappeenranta, Finland, 26–28 August 2014. [Google Scholar]
- Zhong, X.; Wu, X.; Zhou, W.; Cheng, S.; Sheng, K. Design and Experimental Analysis of a 1 kW 800 kHz All-SiC Boost DC-DC Converter. Available online: https://ieeexplore.ieee.org/document/6803353?utm_source=chatgpt.com (accessed on 26 October 2024).
- Rabkowski, J.; Piasecki, S.; Kazmierkowski, M.P. Design of a three-phase AC-DC converter with paralleled SiC MOSFETs. In Proceedings of the 2014 16th International Power Electronics and Motion Control Conference and Exposition, Antalya, Turkey, 21–24 September 2014. [Google Scholar]
- Todorcevic, T.; Bauer, P.; Ferreira, J.A. Efficiency improvements using SiC MOSFETs in a DC-DC modular multilevel converter for renewable energy extraction. In Proceedings of the 2014 16th International Power Electronics and Motion Control Conference and Exposition, Antalya, Turkey, 21–24 September 2014. [Google Scholar]
- Calderon-Lopez, G.; Forsyth, A.J.; Gordon, D.L.; McIntosh, J.R. Evaluation of SiC BJTs for High-Power DC/DC Converters. IEEE Trans. Power Electron. 2013, 29, 2474–2481. [Google Scholar] [CrossRef]
- Cao, Y.; Yuan, L.; Chen, K.; Zhao, Z.; Lu, T.; He, F. Modeling of SiC MOSFET in Matlab Simulink. In Proceedings of the 2014 IEEE Conference and Expo Transportation Electrification Asia-Pacific (ITEC Asia-Pacific), Beijing, China, 31 August–3 September 2014. [Google Scholar]
- Smith, N.; McCann, R.; Makableh, Y.; Vasan, R.; Manasreh, M.O. Performance analysis of a boost inverter with a silicon carbide device for commercial applications. In Proceedings of the 2014 IEEE Industry Application Society Annual Meeting, Vancouver, BC, Canada, 5–9 October 2014. [Google Scholar]
- Ahmed, M.R.; Todd, R.; Forsyth, A.J. Analysis of SiC MOSFETs under hard and soft-switching. In Proceedings of the 2015 IEEE Energy Conversion Congress and Exposition (ECCE), Montreal, QC, Canada, 20–24 September 2015. [Google Scholar]
- Vechalapu, K.; Bhattacharya, S.; Van Brunt, E.; Ryu, S.H.; Grider, D.; Palmour, J.W. Comparative evaluation of 15 kV SiC MOSFET and 15 kV SiC IGBT for medium voltage converter under same dv/dt conditions. IEEE J. Emerg. Sel. Top. Power Electron. 2016, 5, 469–489. [Google Scholar] [CrossRef]
- Li, Y.; Han, D.; Sarlioglu, B. Design of High-Speed Machines Using Silicon-Carbide-Based Inverters. In Proceedings of the 2015 IEEE Energy Conversion Congress and Exposition (ECCE), Montreal, QC, Canada, 20–24 September 2015. [Google Scholar]
- Sun, B.; Burgos, R.; Zhang, X.; Boroyevich, D. Differential-mode EMI emission prediction of SiC-based power converters using a mixed-mode unterminated behavioral model. In Proceedings of the 2015 IEEE Energy Conversion Congress and Exposition (ECCE), Montreal, QC, Canada, 20–24 September 2015. [Google Scholar]
- Sivkov, O.; Novák, M.; Novák, J. Investigation of SiC 1200 V 50 A inverter with improved design. In Proceedings of the 2015 International Conference on Electrical Drives and Power Electronics (EDPE), Tatranska Lomnica, Slovakia, 21–23 September 2015. [Google Scholar]
- Zhang, Z.; Wang, F.; Tolbert, L.M.; Blalock, B.J.; Costinett, D.J. Realization of high-speed switching of SiC power devices in voltage source converters. In Proceedings of the 2015 IEEE 3rd Workshop on Wide Bandgap Power Devices and Applications (WiPDA), Blacksburg, VA, USA, 2–4 November 2015. [Google Scholar]
- Rasoanarivo, I.; Urbain, M.; Boileau, T. Strength Pareto Evolutionary Algorithm for Sizing a Set of SiC Converters Connected to AC Machines Winding by Short Planar Cable. In Proceedings of the 2015 17th European Conference on Power Electronics and Applications (EPE’15 ECCE-Europe), Geneva, Switzerland, 8–10 September 2015. [Google Scholar]
- Li, X.; Yhang, L.; Gho, S.; Lei, Y.; Huang, A.Q.; Yhang, B. Understanding switching losses in SiC MOSFET toward lossless switching. In Proceedings of the 2015 IEEE 3rd Workshop on Wide Bandgap Power Devices and Applications (WiPDA), Blacksburg, VA, USA, 2–4 November 2015. [Google Scholar]
- Zheng, H.; Wang, X.; Wang, X.; Ran, L.; Zhang, B. Using SiC MOSFETs to improve reliability of EV inverters. In Proceedings of the 2015 IEEE 3rd Workshop on Wide Bandgap Power Devices and Applications (WiPDA), Blacksburg, VA, USA, 2–4 November 2015. [Google Scholar]
- DiMarino, C.; Zhang, W.; Haryani, N.; Wang, Q.; Burgos, R.; Boroyevich, D. A high-density high-efficiency 1.2 kV SiC MOSFET module and gate drive circuit. In Proceedings of the 2016 IEEE 4th Workshop on Wide Bandgap Power Devices and Applications (WiPDA), Fayetteville, AR, USA, 7–9 November 2016. [Google Scholar]
- Li, H.; Munk-Nielsen, S.; Bęczkowski, S.; Wang, X. A novel DBC layout for current imbalance mitigation in SiC MOSFET multichip power modules. IEEE Trans. Power Electron. 2016, 31, 8042–8045. [Google Scholar] [CrossRef]
- Guo, S.; Liu, P.; Yu, R.; Zhang, L.; Huang, A.Q. Analysis and Loss Comparison of Megahertz High Voltage Isolated DC-DC Converters Utilizing Integrated SiC MOSFET Module. In Proceedings of the 2016 IEEE 4th Workshop on Wide Bandgap Power Devices and Applications (WiPDA), Fayetteville, AR, USA, 7–9 November 2016. [Google Scholar]
- Rąbkowski, J.; Płatek, T. A study on power losses of the 50 kVA SiC converter including reverse conduction phenomenon. Bull. Pol. Acad. Sci. Tech. Sci. 2016, 64, 907–914. [Google Scholar] [CrossRef]
- Bertelshofer, T.; Horff, R.; März, A.; Bakran, M.M. Comparing 650V and 900V SiC MOSFETs for the application in an automotive inverter. In Proceedings of the 2016 18th European Conference on Power Electronics and Applications (EPE’16 ECCE Europe), Karlsruhe, Germany, 5–9 September 2016. [Google Scholar]
- Han, D.; Sarlioglu, B. Comprehensive study of the performance of SiC MOSFET-based automotive DC-DC converter under the influence of parasitic inductance. IEEE Trans. Ind. Appl. 2016, 52, 5100–5111. [Google Scholar] [CrossRef]
- Almasoudi, F.M.; Alatawi, K.S.; Matin, M. Design of isolated interleaved boost DC-DC converter based on SiC power devices for microinverter applications. In Proceedings of the 2016 North American Power Symposium (NAPS), Denver, CO, USA, 18–20 September 2016. [Google Scholar]
- Wall, S.; Ruan, R.-H.; Wang, C.-G.; Xie, J.-R. Evaluation of three-phase solar inverters using SiC devices. In Proceedings of the 2016 18th European Conference on Power Electronics and Applications (EPE’16 ECCE Europe), Karlsruhe, Germany, 5–9 September 2016. [Google Scholar]
- Wang, Z.; Castellazzi, A.; Saeed, S.; Navarro-Rodríguez, Á.; Garcia, P. Impact of SiC technology in a three-port active bridge converter for energy storage integrated solid-state transformer applications. In Proceedings of the 2016 IEEE 4th Workshop on Wide Bandgap Power Devices and Applications (WiPDA), Fayetteville, AR, USA, 7–9 November 2016. [Google Scholar]
- Son, G.; Huang, Z.; Li, Q.; Lee, F.C. PCB winding coupled inductor design for SiC-based soft-switching three-phase AC-DC converter with balance technique. In Proceedings of the 2021 IEEE Energy Conversion Congress and Exposition (ECCE), Virtual, 10–14 October 2021. [Google Scholar]
- Li, K.; Evans, P.; Johnson, M. SiC GaN Power Semiconductor Devices: Theoretical Comparison and Experimental Evaluation. In Proceedings of the 2016 IEEE Vehicle Power and Propulsion Conference (VPPC), Hangzhou, China, 17–20 October 2016. [Google Scholar]
- O’Donnell, S.; Debauche, J.-L.; Wheeler, P.; Castellazzi, A. Silicon carbide MOSFETs in more electric aircraft power converters: The performance and reliability benefits over silicon IGBTs for a specified flight mission profile. In Proceedings of the 2016 18th European Conference on Power Electronics and Applications (EPE’16 ECCE Europe), Karlsruhe, Germany, 5–9 September 2016. [Google Scholar]
- Drozhzhin, D.; Griepentrog, G.; Sauer, A.; De Maglie, R.; Engler, A. Suppression of conducted high-frequency signals in aerospace DC-AC converters designed with SiC MOSFETs. In Proceedings of the 2016 18th European Conference on Power Electronics and Applications (EPE’16 ECCE Europe), Karlsruhe, Germany, 5–9 September 2016. [Google Scholar]
- Al, A.M.S.; Alharbi, S.S.; Alharbi, S.S.; Matin, M. A comparative design and performance study of a non-isolated DC-DC buck converter based on Si-MOSFET, Si-Diode, SiC-JFET, SiC-Schottky diode, and GaN-transistor. In Proceedings of the 2017 North American Power Symposium (NAPS), Morgantown, WV, USA, 17–19 September 2017. [Google Scholar]
- Li, H.; Zhao, X.; Hao, R.; Sun, K. A non-segmented PSpice model of SiC MOSFETs. In Proceedings of the IECON 2017-43rd Annual Conference of the IEEE Industrial Electronics Society, Beijing, China, 29 October–1 November 2017. [Google Scholar]
- Zhang, L.; Liu, P.; Huang, A.Q.; Guo, S.; Yu, R. An improved SiC MOSFET gate driver integrated power module with ultra-low stray inductances. In Proceedings of the 2017 IEEE 5th Workshop on Wide Bandgap Power Devices and Applications (WiPDA), Albuquerque, NM, USA, 30 October–1 November 2017. [Google Scholar]
- Yuan, X. Application of silicon carbide (SiC) power devices: Opportunities, challenges, and potential solutions. In Proceedings of the IECON 2017-43rd Annual Conference of the IEEE Industrial Electronics Society, Beijing, China, 29 October–1 November 2017. [Google Scholar]
- Liu, Y.; Song, Z.; Wang, H.; Wang, G.; Peng, J.; Yin, S. Comparative evaluation of WBG and Si power devices for the flyback converter. In Proceedings of the IECON 2017-43rd Annual Conference of the IEEE Industrial Electronics Society, Beijing, China, 29 October–1 November 2017. [Google Scholar]
- März, A.; Bertelshofer, T.; Helsper, M.; Bakran, M.-M. Comparison of SiC MOSFET gate drive concepts to suppress parasitic turn-on in low inductance power modules. In Proceedings of the 2017 19th European Conference on Power Electronics and Applications (EPE’17 ECCE Europe), Warsaw, Poland, 11–14 September 2017. [Google Scholar]
- Liu, G.; Bai, K.H.; McAmmond, M.; Brown, A.; Johnson, P.M.; Taylor, A.; Lu, J. Comparison of SiC MOSFETs and GaN HEMTs based high-efficiency, high-power-density 7.2 kW EV battery chargers. In Proceedings of the 2017 IEEE 5th Workshop on Wide Bandgap Power Devices and Applications (WiPDA), Albuquerque, NM, USA, 30 October–1 November 2017. [Google Scholar]
- Dyer, J.; Zhang, Z.; Wang, F.; Costinett, D.; Tolbert, L.M.; Blalock, B.J. Dead-time optimization for SiC-based voltage source converters using online condition monitoring. In Proceedings of the 2017 IEEE 5th Workshop on Wide Bandgap Power Devices and Applications (WiPDA), Albuquerque, NM, USA, 30 October–1 November 2017. [Google Scholar]
- Alharbi, S.S.; Alharbi, S.S.; Al, A.M.S.; Matin, M. Design and performance evaluation of a DC-DC buck-boost converter with cascode GaN FET, SiC JFET, and Si IGBT power devices. In Proceedings of the 2017 North American Power Symposium (NAPS), Morgantown, WV, USA, 17–19 September 2017. [Google Scholar]
- Maneiro, J.; Ryndzionek, R.; Lagier, T.; Dworakowski, P.; Buttay, C. Design of a SiC-based triple active bridge cell for a multi-megawatt DC-DC converter. In Proceedings of the 2017 19th European Conference on Power Electronics and Applications (EPE’17 ECCE Europe), Warsaw, Poland, 11–14 September 2017. [Google Scholar]
- Hanif, A.; Roy, S.; Khan, F. Detection of gate oxide and channel degradation in SiC power MOSFETs using reflectometry. In Proceedings of the 2017 IEEE 5th Workshop on Wide Bandgap Power Devices and Applications (WiPDA), Albuquerque, NM, USA, 30 October–1 November 2017. [Google Scholar]
- Prantner, M.; Buticchi, G.; Liserre, M. Evaluation of SiC and GaN technologies for a full-bridge grid-connected converter through a comprehensive performance index. In Proceedings of the 2017 19th European Conference on Power Electronics and Applications (EPE’17 ECCE Europe), Warsaw, Poland, 11–14 September 2017. [Google Scholar]
- Narasimhan, S.; Karami, M.; Tallam, R.; Das, M. Evaluation of SiC based inverter drives. In Proceedings of the 2017 IEEE 5th Workshop on Wide Bandgap Power Devices and Applications (WiPDA), Albuquerque, NM, USA, 30 October–1 November 2017. [Google Scholar]
- Concari, L.; Barater, D.; Concari, C.; Toscani, A.; Buticchi, G.; Liserre, M. H8 architecture for reduced common-mode voltage three-phase PV converters with silicon and SiC power switches. In Proceedings of the IECON 2017-43rd Annual Conference of the IEEE Industrial Electronics Society, Beijing, China, 29 October–1 November 2017. [Google Scholar]
- Soeiro, T.B.; Park, K.-B.; Canales, F. High-voltage photovoltaic system implementing Si-SiC-based active neutral-point-clamped converter. In Proceedings of the IECON 2017-43rd Annual Conference of the IEEE Industrial Electronics Society, Beijing, China, 29 October–1 November 2017. [Google Scholar]
- Yang, B.; Ge, Q.; Zhao, L.; Zhou, Z.; Cui, D. Influence of parasitic elements of busbar on the turn-off voltage oscillation of SiC MOSFET half-bridge module. In Proceedings of the IECON 2017-43rd Annual Conference of the IEEE Industrial Electronics Society, Beijing, China, 29 October–1 November 2017. [Google Scholar]
- Pu, S.; Ugur, E.; Akin, B.; Akca, H. Investigation of EM radiation changes in SiC-based converters throughout device aging. In Proceedings of the 2017 IEEE 5th Workshop on Wide Bandgap Power Devices and Applications (WiPDA), Albuquerque, NM, USA, 30 October–1 November 2017. [Google Scholar]
- Kortazar, I.; Larrazabal, I.; Mendizabal, L. Isolated DC-DC converter based on Silicon Carbide for advanced multilevel topologies. In Proceedings of the 2017 19th European Conference on Power Electronics and Applications (EPE’17 ECCE Europe), Warsaw, Poland, 11–14 September 2017. [Google Scholar]
- Jacobs, K.; Johannesson, D.; Norrga, S.; Nee, H.-P. MMC converter cells employing ultrahigh-voltage SiC bipolar power semiconductors. In Proceedings of the 2017 19th European Conference on Power Electronics and Applications (EPE’17 ECCE Europe), Warsaw, Poland, 11–14 September 2017. [Google Scholar]
- Deshpande, A.; Luo, F.; Li, W.; He, X. Multilayer busbar design for a Si IGBT and SiC MOSFET hybrid switch-based 100 kW three-level T-type PEBB. In Proceedings of the 2017 IEEE 5th Workshop on Wide Bandgap Power Devices and Applications (WiPDA), Albuquerque, NM, USA, 30 October–1 November 2017. [Google Scholar]
- Laird, I.; Jin, B.; McNeilly, N.; Yuan, X. Performance comparison of 3-phase DC-AC converters using SiC MOSFETs or SiC BJTs. In Proceedings of the IECON 2017-43rd Annual Conference of the IEEE Industrial Electronics Society, Beijing, China, 29 October–1 November 2017. [Google Scholar]
- Luo, H.; Iannuzzo, F.; Blaabjerg, F. Separation test method for investigation of current density effects on bond wires of SiC power MOSFET modules. In Proceedings of the IECON 2017-43rd Annual Conference of the IEEE Industrial Electronics Society, Beijing, China, 29 October–1 November 2017. [Google Scholar]
- Fu, Y.; Huang, Y.; Bai, H.; Lu, X.; Zou, K.; Chen, C. A high-efficiency SiC three-phase four-wire inverter with virtual resistor control strategy running at V2H mode. In Proceedings of the 2018 IEEE 6th Workshop on Wide Bandgap Power Devices and Applications (WiPDA), Atlanta, GA, USA, 31 October–2 November 2018. [Google Scholar]
- Liu, Y.; Xu, M.; Peng, H. A new series hybrid DC-DC converter for wide input range with SiC. In Proceedings of the 2018 IEEE 6th Workshop on Wide Bandgap Power Devices and Applications (WiPDA), Atlanta, GA, USA, 31 October–2 November 2018. [Google Scholar]
- Liu, Y.; Xu, M.; Peng, H. A SiC-based high-efficiency and compact hybrid converter. In Proceedings of the 2018 IEEE International Power Electronics and Application Conference and Exposition (PEAC), Shenzhen, China, 4–7 November 2018. [Google Scholar]
- Krishna, V.K.M.V.; Hatua, K. An easily implementable gate charge controlled active gate driver for SiC MOSFET. In Proceedings of the IECON 2018-44th Annual Conference of the IEEE Industrial Electronics Society, Washington, DC, USA, 21–23 October 2018. [Google Scholar]
- Alharbi, S.S.; Alharbi, S.S.; Matin, M. An improved interleaved DC-DC SEPIC converter based on SiC-cascade power devices for renewable energy applications. In Proceedings of the 2018 IEEE International Conference on Electro/Information Technology (EIT), Rochester, MI, USA, 3–5 May 2018. [Google Scholar]
- Han, Y.; Lu, H.; Li, Z.; Li, Y.; Chai, J. Analysis and suppression of common-mode voltage for SiC inverters in electric vehicle applications. In Proceedings of the 2018 21st International Conference on Electrical Machines and Systems (ICEMS), Jeju, Republic of Korea, 7–10 October 2018. [Google Scholar]
- Chen, T.; Li, S.; Fahimi, B. Analysis of DC-Link Voltage Ripple in Voltage Source Inverters Without Electrolytic Capacitor. In Proceedings of the IECON 2018-44th Annual Conference of the IEEE Industrial Electronics Society, Washington, DC, USA, 21–23 October 2018. [Google Scholar]
- Nishimi, S.; Takeshita, T. Bidirectional Buck Three-Phase AC-DC Converter Using SiC MOSFETs. In Proceedings of the 2018 7th International Conference on Renewable Energy Research and Applications (ICRERA), Paris, France, 14–17 October 2018. [Google Scholar]
- Moradpour, M.; Gatto, G. Controller design of a new universal two-phase SiC-GaN-based DC-DC converter for plug-in electric vehicles. In Proceedings of the 2018 IEEE 18th International Power Electronics and Motion Control Conference (PEMC), Budapest, Hungary, 26–30 August 2018. [Google Scholar]
- Sato, Y.; Natori, K. Design consideration of flying capacitor multilevel inverters using SiC MOSFETs. In Proceedings of the 2018 International Power Electronics Conference (IPEC-Niigata 2018-ECCE Asia), Niigata, Japan, 20–24 May 2018. [Google Scholar]
- Müller, J.K.; Brinker, T.; Friebe, J.; Mertens, A. Output dv/dt filter design and characterization for a 10 kW SiC inverter. In Proceedings of the IECON 2018-44th Annual Conference of the IEEE Industrial Electronics Society, Washington, DC, USA, 21–23 October 2018. [Google Scholar]
- Huang, X.; Ji, S.; Palmer, J.; Zhang, L.; Tolbert, L.M.; Wang, F. Parasitic capacitors’ impact on switching performance in a 10 kV SiC MOSFET-based converter. In Proceedings of the 2018 IEEE 6th Workshop on Wide Bandgap Power Devices and Applications (WiPDA), Atlanta, GA, USA, 31 October–2 November 2018. [Google Scholar]
- Yang, M.-K.; Kim, Y.-J.; Choi, W.-Y. Power efficiency improvement of dual-buck inverter with SiC diodes using coupled inductors. In Proceedings of the 2018 IEEE 6th Workshop on Wide Bandgap Power Devices and Applications (WiPDA), Atlanta, GA, USA, 31 October–2 November 2018. [Google Scholar]
- Choudhury, A. Present Status of SiC-based Power Converters and Gate Drivers: A Review. In Proceedings of the 2018 International Power Electronics Conference, Cholula, Mexico, 24–26 October 2018. [Google Scholar]
- Nguyen, M.-K.; Zare, F.; Ghasemi, N. Switched-capacitor-based nanosecond pulse generator using SiC MOSFET. In Proceedings of the 2018 Australasian Universities Power Engineering Conference (AUPEC), Auckland, New Zealand, 27–30 November 2018. [Google Scholar]
- Ishii, Y.; Jimichi, T. Verification of SiC-based Modular Multilevel Cascade Converter (MMCC) for HVDC Transmission Systems. In Proceedings of the 2018 International Power Electronics Conference (IPEC-Niigata 2018-ECCE Asia), Niigata, Japan, 20–24 May 2018. [Google Scholar]
- Xu, Y.; Wang, Z.; Liu, P.; Chen, Y.; He, J. Zero-voltage-switching current-source rectifier based EV charging system using SiC devices. In Proceedings of the 2020 IEEE Energy Conversion Congress and Exposition (ECCE), Detroit, MI, USA, 11–15 October 2020. [Google Scholar]
- Yuan, D. Improved analysis model of SiC power MOSFET with staged critical parameters. J. Phys. Conf. Ser. 2021, 1754, 012134. [Google Scholar] [CrossRef]
- Laumen, M.; Lücke, C.; De Doncker, R.W. Ultra-fast short-circuit detection for SiC-MOSFETs using DC-link voltage monitoring. In Proceedings of the 2020 IEEE 11th International Symposium on Power Electronics for Distributed Generation Systems (PEDG), Dubrovnik, Croatia, 28 September–1 October 2020. [Google Scholar]
- Shaikh, A.M.; Kulkarni, R.D.; Sabnis, A.; Bhaskar, M.S.; Subramaniam, U. Silicon Carbide (SiC) based Constant DC Current Source for DC Current Transformer Calibration. In Proceedings of the 2020 International Conference for Emerging Technology (INCET), Belgaum, India, 5–7 June 2020. [Google Scholar]
- di Benedetto, M.; Lidozzi, A.; Solero, L.; Crescimbini, F.; Bifaretti, S. SiC-based Four-Port DAB Converter for High Power Density Fast Charging Station. In Proceedings of the 2020 International Symposium on Power Electronics, Electrical Drives, Automation and Motion (SPEEDAM), Sorrento, Italy, 24–26 June 2020. [Google Scholar]
- El Sazed, W.; Loschi, H.; Lok, C.L.; Lezynski, P.; Smolenski, R. Prospective analysis of the effect of silicon-based and silicon carbide-based converter on G3 power line communication. In Proceedings of the 2020 International Symposium on Electromagnetic Compatibility-EMC EUROPE, Rome, Italy, 23–25 September 2020. [Google Scholar]
- Kilgore, T.; Cao, Y.; Li, C. Power-Box: A Modern Power Electronics Education Toolbox Using Si and SiC Devices. In Proceedings of the 2020 IEEE Applied Power Electronics Conference and Exposition (APEC), New Orleans, LA, USA, 15–19 March 2020. [Google Scholar]
- Ni, Z.; Lyu, X.; Yadav, O.P.; Singh, B.N.; Zheng, S.; Cao, D. Overview of real-time lifetime prediction and extension for SiC power converters. IEEE Trans. Power Electron. 2019, 35, 7765–7794. [Google Scholar] [CrossRef]
- Sankaranarayanan, V.; Gao, Y.; Erickson, R.W.; Maksimovic, D. Online efficiency optimization of a closed-loop controlled SiC-based boost converter. IEEE Trans. Power Electron. 2021, 37, 4008–4021. [Google Scholar] [CrossRef]
- Luckett, B.; He, J.B.; Zuan, X. Investigation of SiC Current Source Inverter for Medium-Voltage High-Frequency Electric Aircraft Propulsion Applications. In Proceedings of the 2020 IEEE 9th International Power Electronics and Motion Control Conference (IPEMC2020-ECCE Asia), Nanjing, China, 29 November–2 December 2020. [Google Scholar]
- Kuwana, K.; Mitani, K.; Kitagawa, W.; Takeshita, T. Investigation of improvement of modeling precision for conducted noise on isolated AC/DC converter using SiC devices. In Proceedings of the 2020 22nd European Conference on Power Electronics and Applications (EPE’20 ECCE Europe), Online, 7–11 September 2020. [Google Scholar]
- Ni, Z.; Zheng, S.; Chinthavali, M.S.; Cao, D. Investigation of dynamic temperature-sensitive electrical parameters for medium-voltage low-current silicon carbide and silicon devices. In Proceedings of the 2020 IEEE Energy Conversion Congress and Exposition (ECCE), Detroit, MI, USA, 11–15 October 2020. [Google Scholar]
- Kim, M.-K.; Yoon, S.W. Thermal impedance characterization using optical measurement assisted by multi-physics simulation for multi-chip SiC MOSFET module. Micromachines 2020, 11, 1060. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, Y.; Yuan, X.; Zhang, L.; Ye, F.; Li, Z.; Li, Y.; Xu, Y.; Wang, Z. 500 kW forced air-cooled silicon carbide (SiC) three-phase DC-AC converter with a power density of 1.246 MW/m3 and efficiency > 98.5%. IEEE Trans. Ind. Appl. 2021, 57, 5013–5027. [Google Scholar] [CrossRef]
- Bi, C.; Ou, H.; Kang, Q.; Li, R.; Cheng, L. A Novel Driver Circuit on Crosstalk Suppression in SiC MOSFETs. In Proceedings of the 2021 IEEE International Symposium on Circuits and Systems (ISCAS), Daegu, Republic of Korea, 22–28 May 2021. [Google Scholar]
- Shuang, Z.; Zhao, X.; Wei, Y.; Zhao, Y.; Mantooth, H.A. A review of switching slew rate control for silicon carbide devices using active gate drivers. IEEE J. Emerg. Sel. Top. Power Electron. 2020, 9, 4096–4114. [Google Scholar]
- Sburlan, I.C.; Vasile, I.; Tudor, E. Comparative study between semiconductor power devices based on silicon (Si), silicon carbide (SiC), and gallium nitride (GaN) used in the electrical system subassembly of an electric vehicle. In Proceedings of the 2021 International Semiconductor Conference (CAS), Online, 6–8 October 2021. [Google Scholar]
- Qin, D.; Zhang, Z.; Edrington, C.; Ozkan, G. Electrothermal management using in-situ junction temperature monitoring for enhanced reliability of SiC-based power electronics. In Proceedings of the 2021 IEEE Electric Ship Technologies Symposium (ESTS), Online, 5–8 August 2025. [Google Scholar]
- Zhang, Z.; Tu, H.; She, X.; Sadilek, T.; Ramabhadran, R.; Hu, H.; Earls, W. High-efficiency silicon carbide-based buck-boost converter in an energy storage system minimizing complexity and maximizing efficiency. IEEE Ind. Appl. Mag. 2021, 27, 51–62. [Google Scholar] [CrossRef]
- Amirpour, S.; Thiringer, T.; Hagstedt, D. Mission-profile-based lifetime study for SiC IGBT modules in a propulsion inverter. In Proceedings of the 2021 IEEE 19th International Power Electronics and Motion Control Conference (PEMC), Gliwice, Poland, 25–29 April 2021. [Google Scholar]
- Xibo, Y.; Laird, I.; Walder, S. Opportunities, challenges, and potential solutions in the application of fast-switching SiC power devices and converters. IEEE Trans. Power Electron. 2021, 36, 3925–3945. [Google Scholar]
- Jafari, A.; Nikoo, M.S.; van Erp, R.; Matioli, E. Optimized Kilowatt-Range Boost Converter Based on Impulse Rectification with 52 kW and 98.6% Efficiency. IEEE Trans. Power Electron. 2020, 36, 7389–7394. [Google Scholar] [CrossRef]
- Tan, C.; Stecca, M.; Soeiro, T.B.; Dong, J.; Bauer, P. Performance evaluation of an electric vehicle traction drive using Si-SiC hybrid switches. In Proceedings of the 2021 IEEE 19th International Power Electronics and Motion Control Conference (PEMC), Gliwice, Poland, 25–29 April 2021. [Google Scholar]
- Grau, V.; Reisner, M.; Quabeck, S.; De Doncker, R.W. SiC Based dv/dt Generator for Insulation Testing with Fast and Adjustable Switching Transients. In Proceedings of the 2021 IEEE 8th Workshop on Wide Bandgap Power Devices and Applications (WiPDA), Virtual, 7–11 November 2021. [Google Scholar]
- Calabretta, M.; Sitta, A.; Oliveri, S.M.; Se-Quenzia, G. Silicon carbide multi-chip power module for traction inverter applications: Thermal characterization and modeling. IEEE Access 2021, 9, 76307–76314. [Google Scholar] [CrossRef]
- Wei, J.; Liu, S.; Zhao, H.; Fu, H.; Zhang, X.; Li, S.; Sun, W. Verification of single-pulse avalanche failure mechanism for double-trench SiC power MOSFETs. IEEE J. Emerg. Sel. Top. Power Electron. 2020, 9, 2190–2200. [Google Scholar] [CrossRef]
- Parvez, M.; Pereira, A.T.; Ertugrul, N.; Weste, N.H.E.; Abbott, D.; Al-Sarawi, S.F. Wide-bandgap DC-DC converter topologies for power applications. Proc. IEEE 2021, 109, 1253–1275. [Google Scholar] [CrossRef]
- Lee, I.; Saeed, M.A.; Sircar, A.; Yao, X. A wide-range input auxiliary power supply based on series-connected SiC MOSFETs with active gate driver. In Proceedings of the 2022 IEEE Energy Conversion Congress and Exposition (ECCE), Detroit, MI, USA, 9–13 October 2022. [Google Scholar]
- Hewitt, D.; Sundeep, S.; Wang, J.; Yuan, X.; Diab, M.; Griffo, A. An experimental assessment of the impact of high dv/dt SiC converters on insulation lifetime of electrical machines. In Proceedings of the 2022 IEEE Energy Conversion Congress and Exposition (ECCE), Detroit, MI, USA, 9–13 October 2022. [Google Scholar]
- Han, D.; Kim, S.; Dong, X.; Guo, Z.; Li, H.; Moon, J.; Li, Y.; Peng, F.Z. An Integrated Active Gate Driver for Half-Bridge SiC MOSFET Power Modules. In Proceedings of the 2022 IEEE Applied Power Electronics Conference and Exposition (APEC), Houston, TX, USA, 20–24 March 2022. [Google Scholar]
- Zhang, H.; Wu, Y.; Li, H.; Yin, S.; Jin, S.; Lin, S.; Jiang, T.; Cheng, Y. Design and evaluation of a 1200-V 200-A SiC three-level NPC power module. IEEE Trans. Ind. Appl. 2023, 59, 6412–6426. [Google Scholar] [CrossRef]
- Stella, F.; Vico, E.; Cittanti, D.; Liu, C.; Shen, J.; Bojoi, R. Design and Testing of an Automotive Compliant 800V 550 kVA SiC Traction Inverter with Full-Ceramic DC-Link and EMI Filter. In Proceedings of the 2022 IEEE Energy Conversion Congress and Exposition (ECCE), Detroit, MI, USA, 9–13 October 2022. [Google Scholar]
- Du, L.; Wei, Y.; Du, X.; Stratta, A.; Saadatizadeh, Z.; Mantooth, H.A. Digital active gate driving system for paralleled SiC MOSFETs with closed-loop current balancing control. In Proceedings of the 2022 IEEE Energy Conversion Congress and Exposition (ECCE), Detroit, MI, USA, 9–13 October 2022. [Google Scholar]
- Zou, M.; Sun, P.; Wang, Y.; Zeng, Z.; Li, K.; Han, X. Re-shaped switching trajectory of SiC MOSFET via co-optimized active gate driver. In Proceedings of the 2022 IEEE Energy Conversion Congress and Exposition (ECCE), Detroit, MI, USA, 9–13 October 2022. [Google Scholar]
- Parida, N.; Cheung, C.-K.; Gao, Z. Silicon carbide-based bidirectional CLLC converter for modularized metro energy storage systems. In Proceedings of the 2022 23rd International Conference on Electronic Packaging Technology (ICEPT), Dalian, China, 10–13 August 2022. [Google Scholar]
- An, Z.; Yelaverthi, D.; Xu, C.; Song, X. Understanding PCB Design Parameters for Optimal Thermal Performance of Surface-Mount SiC MOSFETs. In Proceedings of the 2022 IEEE Energy Conversion Congress and Exposition (ECCE), Detroit, MI, USA, 9–13 October 2022. [Google Scholar]
- Angpoklakpam, C.L.; Liu, A.-C.; Chu, K.-H.; Hsu, L.-H.; Lee, W.-C.; Chen, S.-C.; Sun, C.-W.; Shih, M.-H.; Lee, K.-Y.; Kuo, H.-C. Review of Silicon Carbide Processing for Power MOSFET. Crystals 2022, 12, 245. [Google Scholar] [CrossRef]
- Liu, Y. A full SiC MOSFET DC-DC boost power module using 2 kV SiC MOSFET for 1500V string solar inverter applications. In Proceedings of the 2024 IEEE Applied Power Electronics Conference and Exposition (APEC), Long Beach, CA, USA, 25–29 February 2024. [Google Scholar]
- Zekorn, T.; Schimkat, F.; Vohl, K.; Wehr, E.; Wunderlich, R.; Heinen, S. A high-voltage single-inductor multiple-output DC-DC buck converter for the power management unit of a gate-shaping digital gate driver. In Proceedings of the 2024 IEEE International Symposium on Circuits and Systems (ISCAS), Singapore, 19–22 May 2024. [Google Scholar]
- Porpora, F.; Marciano, D.; Caruso, F.P.; Di Monaco, M.; Tomasso, G. Accurate Data-Driven Losses Modeling for SiC-Based Converters. In Proceedings of the 2024 IEEE Applied Power Electronics Conference and Exposition (APEC), Long Beach, CA, USA, 25–29 February 2024. [Google Scholar]
- Zhou, W.; Zhang, Z.; Yuan, X.; Diab, M. Design and implementation of a dv/dt filter for motor overvoltage mitigation in SiC-based adjustable speed drives. In Proceedings of the 2024 IEEE Applied Power Electronics Conference and Exposition (APEC), Long Beach, CA, USA, 25–29 February 2024. [Google Scholar]
- Li, L.; Gan, Y.; Yuan, T.; Ma, D.; Nie, Y.; Sun, P.; Wang, L.; Gao, K.; Dong, X. Design and optimization of high-performance gate driver for medium-voltage SiC power modules. In Proceedings of the 2024 IEEE Applied Power Electronics Conference and Exposition (APEC), Long Beach, CA, USA, 25–29 February 2024. [Google Scholar]
- Yu, Q.; Liu, C.; Li, R.; Guo, D.; Mao, T.; Shao, X. Hybrid Si-SiC three-phase voltage source converter based on fractional power conversion. In Proceedings of the 2024 IEEE 10th International Power Electronics and Motion Control Conference (IPEMC2024-ECCE Asia), Chengdu, China, 17–20 May 2024. [Google Scholar]
- Liu, G.; Yan, Z.; Nielsen, M.R.; Kjærsgaard, B.F.; Rannestad, B.; Zhao, H.; Munk-Nielsen, S.; Bech, M.M. Investigations on common-mode capacitive couplings in current sensors for medium voltage converter enabled by 10kV SiC MOSFETs. In Proceedings of the 2024 IEEE 10th International Power Electronics and Motion Control Conference (IPEMC2024-ECCE Asia), Chengdu, China, 17–20 May 2024. [Google Scholar]
- Yan, Z.; Liu, G.; Luan, S.; Nielsen, M.R.; Jørgensen, J.K.; Kjærsgaard, B.F.; Qi, N.; Rannestad, B.; Zhao, H.; Munk-Nielsen, S. Light-load performance comparison of medium-voltage isolated DC-DC converters enabled by 10 kV SiC MOSFETs. In Proceedings of the 2024 IEEE 10th International Power Electronics and Motion Control Conference (IPEMC2024-ECCE Asia), Chengdu, China, 17–20 May 2024. [Google Scholar]
- Liu, L.; Wang, J.; Li, J.; Ren, N.; Guo, Q.; Seng, K. Monolithic integration of SiC lateral MOSFET with lateral Schottky diode for power converters. In Proceedings of the 2024 36th International Symposium on Power Semiconductor Devices and ICs (ISPSD), Bremen, Germany, 2–6 June 2024. [Google Scholar]
- He, L.; Guo, D. A Clamped and Harmonic Injected Class-EConverter with ZVS and Reduced Voltage Stress over WideRange of Distance in WPT System. IEEE Trans. Power Electron. 2021, 36, 6339–6350. [Google Scholar] [CrossRef]
- Cheng, Z.; He, L. Hybrid Control Strategy with Neural Network-Assisted Synchronous Rectification for Efficient Wide-gain CLLCConverters. IEEE Trans. Power Electron. 2025, 40, 389–405. [Google Scholar] [CrossRef]
- He, L.; Huang, X.; Cheng, B. Robust Class E2 Wireless PowerTransfer System Based on Parity-Time Symmetry. IEEE Trans. Power Electron. 2023, 38, 4279–4288. [Google Scholar] [CrossRef]
- Liu, H.; He, L.; Cheng, B. Powerless Fractional-Order TuningWireless Power Transfer System with Zero Phase Angle Input. IEEE Trans. Circuits Syst. I Regul. Pap. 2025, 72, 433–442. [Google Scholar] [CrossRef]
- Liu, H.; He, L.; Cheng, B. A Powerless Fractional-Order WPT System with Extended ZeroVoltage Switching Region. IEEE Trans. Ind. Electron. 2024, 72, 3525–3533. [Google Scholar] [CrossRef]
- Wang, G.; Lyu, J.; Lin, C.; Wang, H.; Yang, Y. Stability analysis of grid-connected wind power systems based on SiC devices. In Proceedings of the 2024 IEEE 10th International Power Electronics and Motion Control Conference (IPEMC2024-ECCE Asia), Chengdu, China, 17–20 May 2024. [Google Scholar]
Parameter | SiC MOSFETs | SiC IGBTs |
---|---|---|
Switching Speed | Higher (few ns) | Moderate (tens of ns) |
Conduction Losses | Higher at high currents | Lower at high currents |
Voltage Range | Up to 3.3 kV | 3.3 kV–15 kV |
Efficiency at High-Power | Moderate | High |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rasul, A.; Teixeira, R.; Baptista, J. Silicon Carbide Converter Design: A Review. Energies 2025, 18, 2140. https://doi.org/10.3390/en18082140
Rasul A, Teixeira R, Baptista J. Silicon Carbide Converter Design: A Review. Energies. 2025; 18(8):2140. https://doi.org/10.3390/en18082140
Chicago/Turabian StyleRasul, Asif, Rita Teixeira, and José Baptista. 2025. "Silicon Carbide Converter Design: A Review" Energies 18, no. 8: 2140. https://doi.org/10.3390/en18082140
APA StyleRasul, A., Teixeira, R., & Baptista, J. (2025). Silicon Carbide Converter Design: A Review. Energies, 18(8), 2140. https://doi.org/10.3390/en18082140