Method of Quality Control of Nuclear Reactor Element Tightness to Improve Environmental Safety
Abstract
:1. Introduction
2. Materials and Methods
3. Experiment
3.1. Research Conducted
- Sample preparation: Several hollow metal tubes of cylindrical shape were selected and subjected to a preliminary analysis of mechanical damage. The samples were cleaned of contaminants to ensure the accuracy of the measurements.
- Data collection: The box-counting method measures the fractal dimension by analyzing the inner and outer surfaces of the fuel element cladding separately. A digital microscope (0.1 μm resolution) images the outer surface, and an endoscopic attachment images the inner surface, producing distinct datasets. These independent images ensure that defect clusters are clearly attributed to their respective surfaces, preventing confusion. This dual-surface approach improves defect detection accuracy compared to single-surface methods like eddy current testing. The imaging resolution for both the digital microscope and endoscopic attachment is 0.1 μm, enabling precise defect detection, with each 50 cm2 sample analyzed in approximately 10 min, including imaging and processing. As experiments used fuel-free cladding samples, radiation effects were not a concern.
- Image analysis: the images were processed using image analysis software that automatically determined the number of boxes of N(e) for each scale.
- Calculating the fractal dimension: the fractal dimension was calculated using the above formulation based on the obtained data on N(e).
- Statistical analysis: to ensure the reliability of the results, a statistical analysis of the obtained values of the fractal dimension was performed, including the calculation of the mean and standard deviation.
3.2. Fractal Dimension Measurement Results
3.3. Determining the Density of Clusters
- Data collection: The preliminary analysis of the FE samples was followed by measurements using imaging techniques, such as X-ray computed tomography and ultrasonic scanning. These methods allowed for the detection of cracks, pores, and other clusters on the surface.
- Image processing: the acquired images were processed using image analysis software that automatically determined the number of clusters N in area A.
- Density calculation: the cluster density was calculated using the above formula based on the data regarding the number of clusters N and the area A.
3.4. Cluster Density Measurement Results
4. Results
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Aszódi, A.; Biró, B.; Adorján, L.; Csaba Dobos, Á.; Illés, G.; Krisztián Tóth, N.; Zagyi, D.; Tas Zsiborás, Z. The Effect of the Future of Nuclear Energy on the Decarbonization Pathways and Continuous Supply of Electricity in the European Union. Nucl. Eng. Des. 2023, 415, 112688. [Google Scholar] [CrossRef]
- Chodakowska, E.; Nazarko, J. Assessing the Performance of Sustainable Development Goals of EU Countries: Hard and Soft Data Integration. Energies 2020, 13, 3439. [Google Scholar] [CrossRef]
- Kupriyanov, O.; Trishch, R.; Dichev, D.; Kupriianova, K. A General Approach for Tolerance Control in Quality Assessment for Technology Quality Analysis. In Advanced Manufacturing Processes IV; Tonkonogyi, V., Ivanov, V., Trojanowska, J., Oborskyi, G., Pavlenko, I., Eds.; Lecture Notes in Mechanical Engineering; Springer International Publishing: Cham, Switzerland, 2023; pp. 330–339. ISBN 978-3-031-16650-1. [Google Scholar]
- Trishch, R.; Nechuiviter, O.; Hrinchenko, H.; Bubela, T.; Riabchykov, M.; Pandova, I. Assessment of Safety Risks Using Qualimetric Methods. MM Sci. J. 2023, 2023, 668–6674. [Google Scholar] [CrossRef]
- Trishch, R.; Cherniak, O.; Zdenek, D.; Petraskevicius, V. Assessment of the Occupational Health and Safety Management System by Qualimetric Methods. Eng. Manag. Prod. Serv. 2024, 16, 118–127. [Google Scholar] [CrossRef]
- Cherniak, O.; Trishch, R.; Ginevičius, R.; Nechuiviter, O.; Burdeina, V. Methodology for Assessing the Processes of the Occupational Safety Management System Using Functional Dependencies. In Integrated Computer Technologies in Mechanical Engineering—2023; Nechyporuk, M., Pavlikov, V., Krytskyi, D., Eds.; Lecture Notes in Networks and Systems; Springer Nature: Cham, Switzerland, 2024; Volume 996, pp. 3–13. ISBN 978-3-031-60548-2. [Google Scholar]
- Kupriyanov, O.; Trishch, R.; Dichev, D.; Bondarenko, T. Mathematic Model of the General Approach to Tolerance Control in Quality Assessment. In Advanced Manufacturing Processes III; Tonkonogyi, V., Ivanov, V., Trojanowska, J., Oborskyi, G., Pavlenko, I., Eds.; Lecture Notes in Mechanical Engineering; Springer International Publishing: Cham, Switzerland, 2022; pp. 415–423. ISBN 978-3-030-91326-7. [Google Scholar]
- Ginevicius, R.; Trishch, R.; Gaspareniene, L.; Remeikiene, R. Complex Evaluation of the Negative Variations in the Development of Lithuanian Municipalities. Transform. Bus. Econ. 2021, 20, 635–653. [Google Scholar]
- Qian, G.; Liu, J. Fault Diagnosis Based on Gated Recurrent Unit Network with Attention Mechanism and Transfer Learning under Few Samples in Nuclear Power Plants. Prog. Nucl. Energy 2023, 155, 104–502. [Google Scholar] [CrossRef]
- Fiorina, C.; Clifford, I.; Kelm, S.; Lorenzi, S. On the Development of Multi-Physics Tools for Nuclear Reactor Analysis Based on OpenFOAM®: State of the Art, Lessons Learned and Perspectives. Nucl. Eng. Des. 2022, 387, 111604. [Google Scholar] [CrossRef]
- Ding, P.; Huang, X.; Li, S.; Zhao, C.; Zhang, X. Real-Time Reliability Analysis of Micro-Milling Processes Considering the Effects of Tool Wear. Mech. Syst. Signal Process. 2023, 200, 110582. [Google Scholar] [CrossRef]
- Wang, G.; Li, Y.; Wang, Y.; Wu, Z.; Lu, M. Bidirectional Shrinkage Gated Recurrent Unit Network With Multiscale Attention Mechanism for Multisensor Fault Diagnosis. IEEE Sens. J. 2023, 23, 25518–25533. [Google Scholar] [CrossRef]
- Belles, R.J. Key Reactor System Components in Integral Pressurized Water Reactors (iPWRs). In Handbook of Small Modular Nuclear Reactors; Elsevier: Amsterdam, The Netherlands, 2021; pp. 95–115. ISBN 978-0-12-823916-2. [Google Scholar]
- Wei, S.; Zhang, T.; Ji, S.; Luo, M.; Gong, J. BuildMapper: A Fully Learnable Framework for Vectorized Building Contour Extraction. ISPRS J. Photogramm. Remote Sens. 2023, 197, 87–104. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, J.; Qian, G. Hierarchical FFT-LSTM-GCN Based Model for Nuclear Power Plant Fault Diagnosis Considering Spatio-Temporal Features Fusion. Prog. Nucl. Energy 2024, 171, 105178. [Google Scholar] [CrossRef]
- Moshkbar-Bakhshayesh, K.; Mohtashami, S. Classification of NPPs Transients Using Change of Representation Technique: A Hybrid of Unsupervised MSOM and Supervised SVM. Prog. Nucl. Energy 2019, 117, 105178. [Google Scholar] [CrossRef]
- Li, T.; Zhou, Z.; Li, S.; Sun, C.; Yan, R.; Chen, X. The Emerging Graph Neural Networks for Intelligent Fault Diagnostics and Prognostics: A Guideline and a Benchmark Study. Mech. Syst. Signal Process. 2022, 168, 108653. [Google Scholar] [CrossRef]
- Yan, S.; Shao, H.; Min, Z.; Peng, J.; Cai, B.; Liu, B. FGDAE: A New Machinery Anomaly Detection Method towards Complex Operating Conditions. Reliab. Eng. Syst. Saf. 2023, 236, 109319. [Google Scholar] [CrossRef]
- Murali Naik, J.; Felix Prabhu, F.; Suresh, R.; Gopinathan, R.; Mohamed Nasrulla, S.; Joshi, K.A.; Subbiah, R. Investigating the Performance of a NMPCM Integrated Heat Sink for Chipset Cooling. Mater. Today Proc. 2022, 66, 1255–1259. [Google Scholar] [CrossRef]
- Rovera, A.; Tancau, A.; Boetti, N.; Dalla Vedova, M.D.L.; Maggiore, P.; Janner, D. Fiber Optic Sensors for Harsh and High Radiation Environments in Aerospace Applications. Sensors 2023, 23, 2512. [Google Scholar] [CrossRef]
- Kong, Z.; Jin, X.; Xu, Z.; Zhang, B. Spatio-Temporal Fusion Attention: A Novel Approach for Remaining Useful Life Prediction Based on Graph Neural Network. IEEE Trans. Instrum. Meas. 2022, 71, 3515912. [Google Scholar] [CrossRef]
- Li, J.; Lin, M. Research on Robustness of Five Typical Data-Driven Fault Diagnosis Models for Nuclear Power Plants. Ann. Nucl. Energy 2022, 165, 108639. [Google Scholar] [CrossRef]
- Ali, A.E.A.; Afgan, I.; Laurence, D.; Revell, A. A Dual-Mesh Hybrid Reynolds-Averaged Navier-Stokes/Large Eddy Simulation Study of the Buoyant Flow between Coaxial Cylinders. Nucl. Eng. Des. 2022, 393, 111789. [Google Scholar] [CrossRef]
- Dos Santos Nicolau, A.; Schirru, R. A New Methodology for Diagnosis System with ‘Don’t Know’ Response for Nuclear Power Plant. Ann. Nucl. Energy 2017, 100, 91–97. [Google Scholar] [CrossRef]
- Nguyen, C.; Cheema, A.A. A Deep Neural Network-Based Multi-Frequency Path Loss Prediction Model from 0.8 GHz to 70 GHz. Sensors 2021, 21, 5100. [Google Scholar] [CrossRef] [PubMed]
- Zimber, N.; Vladimirov, P.; Klimenkov, M.; Jäntsch, U.; Vila, R.; Chakin, V.; Mota, F. Microstructural Evolution of Three Potential Fusion Candidate Steels under Ion-Irradiation. J. Nucl. Mater. 2020, 535, 152160. [Google Scholar] [CrossRef]
- He, C.; Ge, D.; Yang, M.; Yong, N.; Wang, J.; Yu, J. A Data-Driven Adaptive Fault Diagnosis Methodology for Nuclear Power Systems Based on NSGAII-CNN. Ann. Nucl. Energy 2021, 159, 108326. [Google Scholar] [CrossRef]
- Yamakawa, S. Application of Mobile Robots to Linear Control Theory Education. ASME Lett. Dyn. Syst. Control 2021, 1, 031002. [Google Scholar] [CrossRef]
- Pucci, L.; Raillon, R.; Taupin, L.; Baqué, F. Design of a Phased Array EMAT for Inspection Applications in Liquid Sodium. Sensors 2019, 19, 4460. [Google Scholar] [CrossRef] [PubMed]
- Chae, Y.H.; Lee, C.; Han, S.M.; Seong, P.H. Graph Neural Network Based Multiple Accident Diagnosis in Nuclear Power Plants: Data Optimization to Represent the System Configuration. Nucl. Eng. Technol. 2022, 54, 2859–2870. [Google Scholar] [CrossRef]
- Abdul Razak, R.K.; Afzal, A.; Mohammed Samee, A.D.; Ramis, M.K. Effect of Cladding on Thermal Behavior of Nuclear Fuel Element with Non-Uniform Heat Generation. Prog. Nucl. Energy 2019, 111, 1–14. [Google Scholar] [CrossRef]
- Zheng, Y. Predicting Stochastic Characteristics of Generalized Eigenvalues via a Novel Sensitivity-Based Probability Density Evolution Method. Appl. Math. Model. 2020, 88, 437–460. [Google Scholar] [CrossRef]
- Yong, S.; Linzi, Z. Robust Deep Auto-Encoding Network for Real-Time Anomaly Detection at Nuclear Power Plants. Process Saf. Environ. Prot. 2022, 163, 438–452. [Google Scholar] [CrossRef]
- Budanov, P.; Brovko, K.; Cherniuk, A.; Vasyuchenko, P.; Khomenko, V. Improving the Reliability of Information control Systems at Power Generation Facilities Based on the Fractal cluster Theory. East.-Eur. J. Enterp. Technol. 2018, 2, 4–12. [Google Scholar] [CrossRef]
- Budanov, P.; Brovko, K.; Cherniuk, A.; Pantielieieva, I.; Oliynyk, Y.; Shmatko, N.; Vasyuchenko, P. Improvement of Safety of Autonomous Electrical Installations by Implementing a Method for Calculating the Electrolytic Grounding Electrodes Parameters. East.-Eur. J. Enterp. Technol. 2018, 5, 20–28. [Google Scholar] [CrossRef]
- Dias, M.S.; De Mattos, J.R.L.; De Andrade, E.P. Very High Burnup Fuel for Angra 2 NPP within the 5 w/o Limit of the 235U-Enrichment. Nucl. Eng. Des. 2019, 346, 17–23. [Google Scholar] [CrossRef]
- Wang, B.; Chen, B.; Li, R.; Tian, R. Analysis of Fluctuation and Breakdown Characteristics of Liquid Film on Corrugated Plate Wall. Ann. Nucl. Energy 2020, 135, 106946. [Google Scholar] [CrossRef]
- Lu, D.; Wang, K.; Su, Q.; Xing, J.; Peng, F. Analysis and Experimental Investigation on the Flow Rate Controller for PWR Accumulator. Ann. Nucl. Energy 2022, 176, 109252. [Google Scholar] [CrossRef]
- Rokhforouz, M.R.; Akhlaghi Amiri, H.A. Effects of Grain Size and Shape Distribution on Pore-Scale Numerical Simulation of Two-Phase Flow in a Heterogeneous Porous Medium. Adv. Water Resour. 2019, 124, 84–95. [Google Scholar] [CrossRef]
- Gui, M.; Bi, Q.; Zhu, G.; Wang, J.; Wang, T. Experimental Investigation on Heat Transfer Performance of C-Shape Tube Immerged in a Water Pool. Nucl. Eng. Des. 2019, 346, 220–229. [Google Scholar] [CrossRef]
- Lee, M.H.; Jerng, D.W.; Bang, I.C. Experimental Validation of Simulating Natural Circulation of Liquid Metal Using Water. Nucl. Eng. Technol. 2020, 52, 1963–1973. [Google Scholar] [CrossRef]
- Fedorovich, O.; Lutai, L.; Trishch, R.; Zabolotnyi, O.; Khomiak, E.; Nikitin, A. Models for Reducing the Duration and Cost of the Aviation Equipment Diagnostics Process Using the Decomposition of the Component Architecture of a Complex Product. In Information Technology for Education, Science, and Technics; Faure, E., Tryus, Y., Vartiainen, T., Danchenko, O., Bondarenko, M., Bazilo, C., Zaspa, G., Eds.; Lecture Notes on Data Engineering and Communications Technologies; Springer Nature: Cham, Switzerland, 2024; Volume 221, pp. 108–125. ISBN 978-3-031-71800-7. [Google Scholar]
- Khomiak, E.; Burdeina, V.; Cherniak, O.; Olesia, N.; Bubela, T. Improving the Method of Quality Control of the Fuel Element Shell in Order to Improve the Safety of a Nuclear Reactor. In Integrated Computer Technologies in Mechanical Engineering—2023; Nechyporuk, M., Pavlikov, V., Krytskyi, D., Eds.; Lecture Notes in Networks and Systems; Springer Nature: Cham, Switzerland, 2024; Volume 1008, pp. 351–360. ISBN 978-3-031-61414-9. [Google Scholar]
- Kumar, S.R.; Devakumar, J. Intelligent Techniques for Control and Fault Diagnosis in Pressurized Water Reactor: A Review. Earth Sci. Hum. Constr. 2024, 4, 25–42. [Google Scholar] [CrossRef]
- Zohuri, B. Enhancing Nuclear Reactor Safety through ICE Digital Systems and Cyber Integration. J. Mater. Sci. Manuf. Res. 2024, 5, 1–6. [Google Scholar] [CrossRef]
- Nguyen, K.H.N.; Rivas, A.; Delipei, G.K.; Hou, J. Reinforcement Learning-Based Control Sequence Optimization for Advanced Reactors. J. Nucl. Eng. 2024, 5, 209–225. [Google Scholar] [CrossRef]
- Li, X.; Gong, J. Fragility and Leakage Risk Assessment of Nuclear Containment Structure under Loss-of-Coolant Accident Conditions Considering Liner Corrosion. Appl. Sci. 2024, 14, 2407. [Google Scholar] [CrossRef]
- Braniff, A.; Tian, Y. Dynamic Risk-Based Model Predictive Quality Control with Online Model Updating. In Proceedings of the 2024 American Control Conference (ACC), Toronto, ON, Canada, 10–12 July 2024; IEEE: Toronto, ON, Canada, 2024; pp. 1707–1712. [Google Scholar]
- Wu, X.; Zheng, Z.; Deng, J.; Liu, Y.; Lu, Q.; Xiang, Q.; Chen, C.; Sun, H.; Lu, Y.; Shen, D.; et al. Coupling of the Best-Estimate System Code and Containment Analysis Code and Its Application to TMLB’ Accident. Front. Energy Res. 2024, 12, 1436245. [Google Scholar] [CrossRef]
- Capodivento, L.; Borzone, T.; Grasso, T.; Lauretti, C. A Bidirectional Human-Machine Control Interface Based on Virtual Fixtures for Safe Teleoperation of Hyper-Redundant Robots. IEEE Access 2024, 12, 133139–133152. [Google Scholar] [CrossRef]
- Shaddel Khalifelu, S.; Hamid, N.; Rahimi-Ahar, Z.; Seyedjabedar, N.; Oroujzadeh, A.; Babapoor, A.; Seyfaee, A. Application of Microencapsulated Phase Change Materials for Controlling Exothermic Reactions. Rev. Chem. Eng. 2024, 40, 951–971. [Google Scholar] [CrossRef]
- Choi, Y.-R.; Yeo, D.; Lee, J.-C.; Cho, J.-W.; Moon, S. A Novel Ultrasonic Leak Detection System in Nuclear Power Plants Using Rigid Guide Tubes with FCOG and SNR. Sensors 2024, 24, 6524. [Google Scholar] [CrossRef] [PubMed]
- Du, P.; Venkidasalapathy, J.A.; Venkateswaran, S.; Wilhite, B.; Kravaris, C. Model-Based Fault Diagnosis and Fault Tolerant Control for Safety-Critical Chemical Reactors: A Case Study of an Exothermic Continuous Stirred-Tank Reactor. Ind. Eng. Chem. Res. 2023, 62, 13554–13571. [Google Scholar] [CrossRef] [PubMed]
- Skalozubov, V.I.; Melnik, S.I.; Vashchenko, V.M.; Korduba, I.B.; Hrib, V.Y. The Method of Express Analysis of Nuclear and Ecological Safety during the Modernization of Nuclear Fuel. J. Geol. Geogr. Geoecol. 2023, 32, 388–395. [Google Scholar] [CrossRef]
- Skalozubov, V.; Vierinov, O.; Kanivets, A.; Kochnieva, V.; Bundiev, D.; Hayo, H. Risk-Informed Method for Qualifying Strategies for Operation Control of Metal of Safety Related Systems of Nuclear Power Plants. Proc. Odessa Polytech. Univ. 2023, 2, 43–50. [Google Scholar] [CrossRef]
- Sandhu, H.K.; Bodda, S.S.; Gupta, A. A Future with Machine Learning: Review of Condition Assessment of Structures and Mechanical Systems in Nuclear Facilities. Energies 2023, 16, 2628. [Google Scholar] [CrossRef]
- Feng, B.; Ibesich, M.; Hainz, D.; Waidhofer, D.; Veit-Öller, M.; Trunner, C.; Stummer, T.; Foster, M.; Nemetz, M.; Welch, J.M.; et al. Development of a Novel Passive Monitoring Technique to Showcase the 3D Distribution of Tritiated Water (HTO) Vapor in Indoor Air of a Nuclear Facility. Environ. Sci. Technol. 2023, 57, 20024–20033. [Google Scholar] [CrossRef]
- Skalozubov, V.; Pis’mennyi, E.; Kondratyuk, V.; Kosenko, S.; Konshin, V. Method of Qualification of Passive Safety Systems of Modular Nuclear Reactors with Circulation Circuits Flows. Enerhetyka Ekon. Tekhnolohiyi Ekolohiya 2023, 1, 82–86. [Google Scholar] [CrossRef]
- Mamontov, O.; Nevliudov, I.; Stytsenko, T.; Belikov, A.; Tokarieva, O. Increasing the Radiation Safety of Nuclear Power Plants Using the Method of Controlling the Tightness of Fuel Elements. Probl. At. Sci. Technol. 2022, 2, 68–72. [Google Scholar] [CrossRef]
- Zhu, Y.; Dong, Z.; Huang, X.; Dong, Y.; Zhang, Y.; Zhang, Z. Passivity-Based Power-Level Control of Nuclear Reactors. Energies 2022, 15, 4997. [Google Scholar] [CrossRef]
- Brynk, T.; Perosanz Lopez, F.J.; McLennan, A. Increase of Nuclear Installations Safety by Better Understanding of Materials Performance and New Testing Techniques Development (MEACTOS, INCEFA-SCALE, and FRACTESUS H2020 Projects). EPJ Nucl. Sci. Technol. 2022, 8, 42. [Google Scholar] [CrossRef]
- Charpin, L.; Niepceron, J.; Corbin, M.; Masson, B.; Mathieu, J.-P.; Haelewyn, J.; Hamon, F.; Åhs, M.; Aparicio, S.; Asali, M.; et al. Ageing and Air Leakage Assessment of a Nuclear Reactor Containment Mock-up: VERCORS 2nd Benchmark. Nucl. Eng. Des. 2021, 377, 111136. [Google Scholar] [CrossRef]
- Rossat, D.; Bouhjiti, D.E.-M.; Baroth, J.; Briffaut, M.; Dufour, F.; Monteil, A.; Masson, B.; Michel-Ponnelle, S. A Bayesian Strategy for Forecasting the Leakage Rate of Concrete Containment Buildings—Application to Nuclear Containment Buildings. Nucl. Eng. Des. 2021, 378, 111184. [Google Scholar] [CrossRef]
- Lee, Y.-H. Risk-Informed Approach for Safety Improvement of Domestic Research Reactor. Ann. Nucl. Energy 2021, 156, 108173. [Google Scholar] [CrossRef]
- Zeng, B.; Wu, M.; Su, Y.; Guo, Y.; Feng, J.; Gui, J.; Lu, J. Study on the Fracture Propagation Law of Deep Shale Reservoir under the Influence of Different Number of Fracturing Clusters. Front. Energy Res. 2024, 11, 1342254. [Google Scholar] [CrossRef]
- Mohammed, J.R.; Al-Khafaf, D.A. Optimizing Performance of Antenna Arrays with Clustered Fractal Shapes for Multiband Applications. J. Telecommun. Inf. Technol. 2024, 1, 91–96. [Google Scholar] [CrossRef]
- Denisov, D.V. Functional Definity of 40-Year Processes Forming 72-Year Cycle of Historical Development: Fractal-Cluster Approach. Izv. Samara Russ. Acad. Sci. Sci. Cent. Soc. Humanit. Medicobiol. Sci. 2024, 26, 71–78. [Google Scholar] [CrossRef]
- Liang, X.; Hou, P.; Liu, G.; Xue, Y.; Liu, J.; Gao, F.; Zhang, Z. A Clustered Fractal Discrete Fracture Network Model For Fractured Coal. Fractals 2024, 32, 2450035. [Google Scholar] [CrossRef]
- Wang, Q.; Ma, W.; Cui, K.; Zeng, Q.; Xi, L. Complex Networks Generated By A Self-Similar Planar Fractal. Fractals 2024, 32, 2450064. [Google Scholar] [CrossRef]
- Guo, F.; Qi, L.; Fan, Y. Attack Vulnerability Of Fractal Scale-Free Network. Fractals 2024, 32, 2450069. [Google Scholar] [CrossRef]
- Panda, S.K.; Vijayakumar, V.; Agarwal, R.P. Complex-Valued Suprametric Spaces, Related Fixed Point Results, and Their Applications to Barnsley Fern Fractal Generation and Mixed Volterra–Fredholm Integral Equations. Fractal Fract. 2024, 8, 410. [Google Scholar] [CrossRef]
- Khomiak, E.; Trishch, R.; Zabolotnyi, O.; Cherniak, O.; Lutai, L.; Katrich, O. Automated Mode of Improvement of the Quality Control System for Nuclear Reactor Fuel Element Shell Tightness. In Information Technology for Education, Science, and Technics; Faure, E., Tryus, Y., Vartiainen, T., Danchenko, O., Bondarenko, M., Bazilo, C., Zaspa, G., Eds.; Lecture Notes on Data Engineering and Communications Technologies; Springer Nature: Cham, Switzerland, 2024; Volume 221, pp. 79–91. ISBN 978-3-031-71800-7. [Google Scholar]
Surface | Fractal Dimensionality D |
---|---|
Internal | 2.5 |
External | 2.1 |
Surface | Number of Clusters N | Area A (cm2) | Clusters Density ρ (Clusters/cm2) |
---|---|---|---|
Internal | 150 | 50 | 30 |
External | 80 | 50 | 1.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khomiak, E.; Trishch, R.; Nazarko, J.; Novotný, M.; Petraškevičius, V. Method of Quality Control of Nuclear Reactor Element Tightness to Improve Environmental Safety. Energies 2025, 18, 2172. https://doi.org/10.3390/en18092172
Khomiak E, Trishch R, Nazarko J, Novotný M, Petraškevičius V. Method of Quality Control of Nuclear Reactor Element Tightness to Improve Environmental Safety. Energies. 2025; 18(9):2172. https://doi.org/10.3390/en18092172
Chicago/Turabian StyleKhomiak, Eduard, Roman Trishch, Joanicjusz Nazarko, Miloslav Novotný, and Vladislavas Petraškevičius. 2025. "Method of Quality Control of Nuclear Reactor Element Tightness to Improve Environmental Safety" Energies 18, no. 9: 2172. https://doi.org/10.3390/en18092172
APA StyleKhomiak, E., Trishch, R., Nazarko, J., Novotný, M., & Petraškevičius, V. (2025). Method of Quality Control of Nuclear Reactor Element Tightness to Improve Environmental Safety. Energies, 18(9), 2172. https://doi.org/10.3390/en18092172