Solid Oxide Fuel Cell Voltage Prediction by a Data-Driven Approach
Abstract
:1. Introduction
2. Current State of the Research Field
- precision (p), as follows:
- recall (r), as follows:
- accuracy (A), as follows:
- F1-score, as follows:
- mean absolute error (MAE), as follows:
- mean absolute percentage error (MAPE), as follow:
- symmetric mean absolute percentage error (SMAPE), as follow:
- mean squared error (MSE), as follows:
- root mean square error (RMSE), as follows:
- normalized root mean square error (NRMSE), as follows:
- normalized mean error (NME), as follows:
- coefficient of determination (R2), as follows:
3. Materials and Methods
3.1. Laboratory Setup and Data Collection
3.2. Data Preprocessing
3.3. Model Selection and Hyperparameter Tuning
3.3.1. Extreme Gradient Boosting
- max_depth: 2–5;
- learning_rate: (0.01, 0.1, 0.2);
- gamma: (0, 0.1, 1.0, 10.0).
- XGB default—default model with a full set of features (25 pcs.);
- XGB + MDI—a model where the control parameter vector is obtained using standard XGBoost’s feature importance (MDI). The number of the strongest initial features varies in the range from 5 to 11;
- XGB + PI—a model where the control parameter vector is obtained using permutation feature importance (PI). The number of the strongest initial features varies in the range from 5 to 11;
- XGB + SHAP—a model where the control parameter vector is obtained using Shapley additive explanation (SHAP) feature importance. The number of the strongest initial features varies in the range from 5 to 11;
- XGB + PCA—a hybrid model with preliminary standardization and PCA data decomposition, where the number of components varies in the range from 5 to 23 with a step of 2.
3.3.2. Random Forest
3.3.3. Multilayer Perceptron
- Feature vectors size: 5–25;
- Hidden layer sizes: (5–45; 5–45);
- Activation functions for hidden layer neurons: logistic, ReLu, tanh.
- Learning rate: invscaling;
- Learning rate init: 0.055;
- Solver: Adam;
- Maximum iterations: 2000.
3.4. Hardware and Software
- Windows 10, v. 22H2, build 19045.5608;
- Python, v. 3.10.7;
- Jupyter Notebook, v. 6.4.12;
- SHAP, v. 0.47.0;
- NumPy, v. 1.25.2;
- Pandas, v. 2.2.3;
- Seaborn, v. 0.13.2;
- Graphviz, v. 0.20.1;
- Matplotlib, v. 3.6.2;
- YellowBrick, v. 1.5;
- SKLearn, v. 1.4.2;
- XGBoost, v. 2.1.2.
- CPU: Intel(R) Core(TM) i5-8300H;
- GPU: NVIDIA GeForce GTX 1050 Ti;
- RAM: DDR4, 16 GB.
4. Results and Discussion
4.1. Feature Selection
4.2. Diagnostics of Models
4.3. Results of Model Fitting
4.4. Discussion
5. Conclusions
- SOFC output voltage is the most frequently predicted continuous target feature for assessing fuel cell reliability and performance characteristics;
- Applying dimensionality reduction to sample sets using MDI, PI, and SHAP feature importance evaluation methods in this task improved model performance but significantly reduced their accuracy;
- The positive effect (simultaneous increase in both accuracy and computational performance) from PCA decomposition was obtained only for the MLP model. Therefore, PCA application is not recommended in this case;
- The default XGB model with a full feature set demonstrated the best performance (0.17276 s/it) and accuracy (R2 = 0.99698 and MSE = 0.9940);
- The default XGBRF model with a full feature set demonstrated the lowest variance and absolute error (MAE = 0.266 and MAPE = 1.22%), as well as the best generalization capability.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
C | Content (%) |
E | Polarization curve |
F | Frequency (Hz) |
gradTcc | Maximum combustion chamber temperature gradient |
I | Current (A) |
J | Current density (A/m2) |
m | Mass (kg) |
M | Molar fraction (mol-%) |
p | Precision |
P | Pressure (MPa) |
q | Volume flow density (m3/h · cm2) |
Q | Volumetric flow rate (m3/h) |
Qm | Biomass flow rate (kg/h) |
r | Recall |
R2 | Coefficient of determination |
τ | Algorithm performance, s/it |
t | Running time (h) |
T | Temperature (°C) |
v | Velocity (m/s) |
V | Voltage (V) |
W | Power (W) |
w | Power density (W/m2) |
Z | Electrical impedance (Ohm · cm2) |
η | Efficiency |
ηCHP | Combined heat and power efficiency |
ηE | Electrical efficiency |
ηH | Heat efficiency |
λ | Stoichiometric gas ratio |
A | Accuracy |
ANFIS | Adaptive network fuzzy inference system |
ANN | Artificial neural network |
ARIMA | Autoregressive integrated moving average |
ARX | Autoregressive–exogenous |
ASL | Anode Support Layer |
AUC | Area under the ROC (receiver operating characteristic) curve |
BLSTM | Bidirectional long short-term memory method |
BP | Backpropagation |
BRR | Bayesian ridge regression |
CDR | Correct diagnosis rate |
CFL | Cathode functional layer |
CFD | Computation fluid dynamics |
CNN | Convolutional neural network |
DAG | Directed acyclic graph |
DN | Dendritic network |
DNN | Deep neural network |
DT | Decision tree |
ed | Encoder–decoder |
EL | Electrolyte layer |
ELM | Extreme learning machine |
ES-R-GM | Grey model prediction method based on residual exponential smoothing optimization |
FCM | Fuzzy C-means clustering |
FN | False negatives |
FP | False positives |
FU | Fuel utilization factor |
GA | Genetic algorithm |
GB | Gradient boosting |
GP | Gaussian Process |
gp | grid partition |
GRU | Gated recurrent unit |
Hb | Histogram-based |
HPSO | Hybrid particle swarm optimization |
KF | Kalman Filter |
KNN | K-nearest neighbors |
LASSO | Least absolute shrinkage and selection operator |
LogR | Logistic Regression |
LR | Linear Regression |
LS | Least squares |
LSTM | Long short-term memory |
MAE | Mean absolute error |
MAPE | Mean absolute percentage error |
MDI | Mean decrease in impurity |
ML | Machine Learning |
MLP | Multilayer perceptron |
MLR | Multiple linear regression |
mRMR | Minimum redundancy maximum relevance |
MSE | Mean squared error |
N-BEATS | Neural basis expansion analysis for time series |
NLARX | Nonlinear autoregressive–exogenous |
NME | Normalized mean error |
NRMSE | Normalized root mean square error |
PCA | Principal component analysis |
PI | Permutation importance |
PR | Polynomial regression |
PSO | Particle swarm optimization |
RBF | Radial basis function |
RE | Relative error |
RF | Random forest |
RH | Relative humidity |
RMSE | Root mean square error |
RNN | Recurrent neural network |
rt | Real time |
RUL | Remaining useful life |
S/B | Steam-to-biomass ratio |
SBS | Sequential backward selection |
SC | Subtractive clustering |
SFS | Sequence forward selection |
SMAPE | Symmetric mean absolute percentage error |
SOFC | Solid oxide fuel cells |
SVM | Support vector machine |
TN | True negatives |
TP | True positives |
VARMA | Vector autoregressive moving average |
WS | Weighted score |
XGB | XGBoost, extreme gradient boosting |
XGBRF | XGBoost random forest, extreme gradient boosting random forest |
References
- Subramanian, Y.; Veena, R.; Muhammed Ali, S.A.; Kumar, A.; Gubediran, R.K.; Dhanasekaran, A.; Gurusamy, D.; Muniandi, K. Artificial Intelligence Technique Based Performance Estimation of Solid Oxide Fuel Cells. Mater. Today Proc. 2023, 80, 2573–2576. [Google Scholar] [CrossRef]
- Hai, T.; Alizadeh, A.A.; Ali, M.A.; Dhahad, H.A.; Goyal, V.; Mohammed Metwally, A.S.; Ullah, M. Machine learning-assisted tri-objective optimization inspired by grey wolf behavior of an enhanced SOFC-based system for power and freshwater production. Int. J. Hydrogen Energy 2023, 48, 25869–25883. [Google Scholar] [CrossRef]
- Testasecca, T.; Maniscalco, M.P.; Brunaccini, G.; Airò Farulla, G.; Ciulla, G.; Beccali, M.; Ferraro, M. Toward a Digital Twin of a Solid Oxide Fuel Cell Microcogenerator: Data-Driven Modelling. Energies 2024, 17, 4140. [Google Scholar] [CrossRef]
- Mütter, F.; Berger, C.; Königshofer, B.; Höber, M.; Hochenauer, C.; Subotić, V. Artificial intelligence for solid oxide fuel cells: Combining automated high accuracy artificial neural network model generation and genetic algorithm for time-efficient performance prediction and optimization. Energy Convers. Manag. 2023, 291, 117263. [Google Scholar] [CrossRef]
- Huo, H.; Chen, Y.; Afun, G.P.; Kuang, X.; Xu, J.; Li, X. Prediction Study of Solid Oxide Fuel Cell Performance Degradation Using Data-Driven Approaches. Energy Technol. 2025, 13, 2400990. [Google Scholar] [CrossRef]
- Rao, M.; Wang, L.; Chen, C.; Xiong, K.; Li, M.; Chen, Z.; Dong, J.; Xu, J.; Li, X. Data-Driven State Prediction and Analysis of SOFC System Based on Deep Learning Method. Energies 2022, 15, 3099. [Google Scholar] [CrossRef]
- Golbabaei, M.H.; Saeidi Varnoosfaderani, M.; Zare, A.; Salari, H.; Hemmati, F.; Abdoli, H.; Hamawandi, B. Performance Analysis of Anode-Supported Solid Oxide Fuel Cells: A Machine Learning Approach. Materials 2022, 15, 7760. [Google Scholar] [CrossRef]
- Huo, W.; Li, W.; Zhang, Z.; Sun, C.; Zhou, F.; Gong, G. Performance prediction of proton-exchange membrane fuel cell based on convolutional neural network and random forest feature selection. Energy Convers. Manag. 2021, 243, 114367. [Google Scholar] [CrossRef]
- Vairo, T.; Cademartori, D.; Clematis, D.; Carpanese, M.P.; Fabiano, B. Solid oxide fuel cells for shipping: A machine learning model for early detection of hazardous system deviations. Process Saf. Environ. Prot. 2023, 172, 184–194. [Google Scholar] [CrossRef]
- Natali, A. Development of a Simplified SOFC Model Using Machine Learning. Ph.D. Thesis, Polytechnic University of Turin, Torino, Italy, 2024. [Google Scholar]
- Su, D.; Zheng, J.; Ma, J.; Dong, Z.; Chen, Z.; Qin, Y. Application of Machine Learning in Fuel Cell Research. Energies 2023, 16, 4390. [Google Scholar] [CrossRef]
- Ding, R.; Wang, R.; Ding, Y.; Yin, W.; Liu, Y.; Li, J.; Liu, J. Designing AI-Aided Analysis and Prediction Models for Nonprecious Metal Electrocatalyst-Based Proton-Exchange Membrane Fuel Cells. Angew. Chem. Int. Ed. 2020, 59, 19175–19183. [Google Scholar] [CrossRef]
- Kim, J.; Baek, J.; Choi, M. Machine-Learning-Driven Feature-Importance Analysis for Protonic Ceramic Fuel Cells. SSRN 2024. [Google Scholar] [CrossRef]
- Li, M.; Wu, J.; Chen, Z.; Dong, J.; Peng, Z.; Xiong, K.; Rao, M.; Chen, C.; Li, X. Data-Driven Voltage Prognostic for Solid Oxide Fuel Cell System Based on Deep Learning. Energies 2022, 15, 6294. [Google Scholar] [CrossRef]
- Chen, K.; Li, Y.; Chen, J.; Li, M.; Song, Q.; Huang, Y.; Wu, X.; Xu, Y.; Li, X. Prediction of Hydrogen Production from Solid Oxide Electrolytic Cells Based on ANN and SVM Machine Learning Methods. Atmosphere 2024, 15, 1344. [Google Scholar] [CrossRef]
- Lai, M.; Zhang, D.; Li, Y.; Wu, X.; Li, X. Application of Multiple Linear Regression and Artificial Neural Networks in Analyses and Predictions of the Thermoelectric Performance of Solid Oxide Fuel Cell Systems. Energies 2024, 17, 4084. [Google Scholar] [CrossRef]
- Wu, Y.; Wu, X.; Xu, Y.; Cheng, Y.; Li, X. A Novel Adaptive Neural Network-Based Thermoelectric Parameter Prediction Method for Enhancing Solid Oxide Fuel Cell System Efficiency. Sustainability 2023, 15, 14402. [Google Scholar] [CrossRef]
- Hou, D.; Ma, W.; Hu, L.; Huang, Y.; Yu, Y.; Wan, X.; Wu, X.; Li, X. Modeling of Nonlinear SOEC Parameter System Based on Data-Driven Method. Atmosphere 2023, 14, 1432. [Google Scholar] [CrossRef]
- Sheng, C.; Zheng, Y.; Tian, R.; Xiang, Q.; Deng, Z.; Fu, X.; Li, X. A Comparative Study of the Kalman Filter and the LSTM Network for the Remaining Useful Life Prediction of SOFC. Energies 2023, 16, 3628. [Google Scholar] [CrossRef]
- Song, S.; Xiong, X.; Wu, X.; Xue, Z. Modeling the SOFC by BP Neural Network Algorithm. Int. J. Hydrogen Energy 2021, 46, 20065–20077. [Google Scholar] [CrossRef]
- İskenderoğlu, F.C.; Baltacioğlu, M.K.; Demir, M.H.; Baldinelli, A.; Barelli, L.; Bidini, G. Comparison of support vector regression and random forest algorithms for estimating the SOFC output voltage by considering hydrogen flow rates. Int. J. Hydrog. Energy 2020, 45, 35023–35038. [Google Scholar] [CrossRef]
- Keyhanpour, M.; Ghassemi, M. Investigating the performance of tubular direct ammonia IT-SOFC with temkin-pyzhev kinetic model using machine learning and CFD. JCARME 2025, in press. Available online: https://jcarme.sru.ac.ir/article_2290.html (accessed on 8 March 2025).
- Subotić, V.; Eibl, M.; Hochenauer, C. Artificial intelligence for time-efficient prediction and optimization of solid oxide fuel cell performances. Energy Convers. Manag. 2021, 230, 113764. [Google Scholar] [CrossRef]
- Milewski, J.; Świrski, K. Modelling the SOFC behaviours by artificial neural network. Int. J. Hydrog. Energy 2009, 34, 5546–5553. [Google Scholar] [CrossRef]
- Sheng, C.; Fu, J.; Qin, H.C.; Zu, Y.M.; Liang, Y.Z.; Deng, Z.H.; Wang, Z.; Li, X. Short-term hybrid prognostics of fuel cells: A comparative and improvement study. Renew. Energy 2024, 237, 121742. [Google Scholar] [CrossRef]
- Wu, X.; Yang, Y.; Li, K.; Xu, Y.; Peng, J.; Chi, B.; Wang, Z.; Li, X. Performance prediction of gasification-integrated solid oxide fuel cell and gas turbine cogeneration system based on PSO-BP neural network. Renew. Energy 2024, 237, 121711. [Google Scholar] [CrossRef]
- Wu, X.; Mei, J.; Xu, Y.; Cheng, Y.; Peng, J.; Chi, B.; Wang, Z.; Li, X. Stack performance classification and fault diagnosis optimization of solid oxide fuel cell system based on bayesian artificial neural network and feature selection. J. Power Sources 2024, 620, 235198. [Google Scholar] [CrossRef]
- Wu, X.; Li, Y.; Cai, S.; Xu, Y.; Hu, L.; Chi, B.; Peng, J.; Li, X. Data-driven approaches for predicting performance degradation of solid oxide fuel cells system considering prolonged operation and shutdown accumulation effect. J. Power Sources 2024, 598, 234186. [Google Scholar] [CrossRef]
- Kheirandish, A.; Shafiabady, N.; Dahari, M.; Kazemi, M.S.; Isa, D. Modeling of commercial proton exchange membrane fuel cell using support vector machine. Int. J. Hydrog. Energy 2016, 41, 11351–11358. [Google Scholar] [CrossRef]
- Chen, H.; Shan, W.; Liao, H.; He, Y.; Zhang, T.; Pei, P.; Deng, C.; Chen, J. Online voltage consistency prediction of proton exchange membrane fuel cells using a machine learning method. Int. J. Hydrogen Energy 2021, 46, 34399–34412. [Google Scholar] [CrossRef]
- Raeesi, M.; Changizian, S.; Ahmadi, P.; Khoshnevisan, A. Performance analysis of a degraded PEM fuel cell stack for hydrogen passenger vehicles based on machine learning algorithms in real driving conditions. Energy Convers. Manag. 2021, 248, 114793. [Google Scholar] [CrossRef]
- Zheng, Y.; Wu, X.L.; Zhao, D.; Xu, Y.W.; Wang, B.; Zu, Y.; Li, D.; Jiang, J.; Jiang, C.; Fu, X.; et al. Data-Driven Fault Diagnosis Method for the Safe and Stable Operation of Solid Oxide Fuel Cells System. J. Power Sources 2021, 490, 229561. [Google Scholar] [CrossRef]
- Huo, W.; Li, W.; Sun, C.; Ren, Q.; Gong, G. Research on Fuel Cell Fault Diagnosis Based on Genetic Algorithm Optimization of Support Vector Machine. Energies 2022, 15, 2294. [Google Scholar] [CrossRef]
- Legala, A.; Zhao, J.; Li, X. Machine Learning Modeling for Proton Exchange Membrane Fuel Cell Performance. Energy AI 2022, 10, 100183. [Google Scholar] [CrossRef]
- Chauhan, V.; Mortazavi, M.; Benner, J.Z.; Santamaria, A.D. Two-phase flow characterization in PEM fuel cells using machine learning. Energy Rep. 2020, 6, 2713–2719. [Google Scholar] [CrossRef]
- Lin, R.-H.; Pei, Z.-X.; Ye, Z.-Z.; Guo, C.-C.; Wu, B.-D. Hydrogen fuel cell diagnostics using random forest and enhanced feature selection. Int. J. Hydrogen Energy 2020, 45, 10523–10535. [Google Scholar] [CrossRef]
- Lü, X.; Deng, R.; Chen, C.; Wu, Y.; Meng, R.; Long, L. Performance optimization of fuel cell hybrid power robot based on power demand prediction and model evaluation. Appl. Energy 2022, 316, 119087. [Google Scholar] [CrossRef]
- Han, I.S.; Chung, C.B. Performance prediction and analysis of a PEM fuel cell operating on pure oxygen using data-driven models: A comparison of artificial neural network and support vector machine. Int. J. Hydrogen Energy 2016, 41, 10202–10211. [Google Scholar] [CrossRef]
- Zhong, Z.-D.; Zhu, X.-J.; Cao, G.-Y. Modeling a PEMFC by a support vector machine. J. Power Sources 2006, 160, 293–298. [Google Scholar] [CrossRef]
- Ming, W.; Sun, P.; Zhang, Z.; Qiu, W.; Du, J.; Li, X.; Zhang, Y.; Zhang, G.; Liu, K.; Wang, Y.; et al. A systematic review of machine learning methods applied to fuel cells in performance evaluation, durability prediction, and application monitoring. Int. J. Hydrogen Energy 2023, 48, 5197–5228. [Google Scholar] [CrossRef]
- Jouin, M.; Bressel, M.; Morando, S.; Gouriveau, R.; Hissel, D.; Péra, M.C.; Zerhouni, N.; Jemei, S.; Hilairet, M.; Ould Bouamama, B. Estimating the end-of-life of PEM fuel cells: Guidelines and metrics. Appl. Energy 2016, 177, 87–97. [Google Scholar] [CrossRef]
Reference | Year | Model (s) | Best Model | Data Size | Proportion Set: Train–Test–Valid | Variables | Best Error Metrics | |
---|---|---|---|---|---|---|---|---|
Input (Count) | Output | |||||||
Subramanian Y. et al. [1] | 2023 | SVM | SVM | 16 | 85:15:0 | T, V (2) | J, w | MAPE = 0.0098 |
Testasecca T. et al. [3] | 2024 | XGB, RF, LSTM, GB, MLP, PR | RF | >2500 | 90:10:0 | , ΔW (7) | ηE | MAE = 0.24 MAPE = 0.04 MSE = 0.14 RMSE = 0.38 R2 = 0.98 |
Mütter F. et al. [4] | 2023 | GA-MLP | GA-MLP | 534,976 | 4:1:0 | , T, J (8) | V | MSE = 6.384 × 10−7 ± 7.159 × 10−8 RMSE = 0.799 ± 0.268 |
Huo H. et al. [5] | 2025 | VARMA, RBF, GRU N-BEATS, LSTM | N-BEATS | 3743 | 90:10:0 | – | V | MAE = 0.0225 RMSE = 0.0237 R2 = 0.9889 |
Rao M. et al. [6] | 2022 | ARIMA, multi-step LSTM, recursive LSTM | multi-step LSTM | 10,323 | 7000:2323:1000 | , Pcathod air, Pannod in, Pannod out, Pcathod out (7) | V | RMSE = 0.3444 MAE = 0.1691 |
Golbabaei M.H. et al. [7] | 2022 | LR, SVM, GP, DT, RF, GB, KNN, MLP | MLP | 403 | 8:2:0 | ASL-, EL-, CFL-thickness, ASL porosity, T, J (6) | V | R2 = 0.998 MSE = 9.6 × 10−5 MAE = 6 × 10−3 |
Huo W. et al. [8] | 2021 | DNN, RF-CNN | RF-CNN | >10,000 | – | (26) | I-V curve | RMSE = 0.0396 MAE = 0.0355 R2 = 0.9119 |
Vairo T. et al. [9] | 2023 | GB | GB | 4392 | 80:20:0 | V, I, F, Zr, Zim (5) | 2 state | p = 0.99 r = 0.99 F-1 score = 0.99 |
Natali A. [10] | 2023 | LR, BRR, PR, DT, GB, RF, Hb-GB, MLP | Hb-GB | 10,000 | 80:20:0 | , T, J (3) | V | R2 = 0.972 RMSE = 1.6 × 10−4 |
Ding R. et al. [12] | 2020 | DT, XGB, BP-ANN | BP-ANN | >10,000 | 85:15:0 | (26) | w | R2 = 0.9621 RMSE = 58.5 |
Kim J. et al. [13] | 2024 | LR, DT, RF, MLP, SVM, XGB | MLP | 591 | 8:2:0 | (57) | w | R2 = 0.9251 |
Li M. et al. [14] | 2022 | LSTM, ed-LSTM, GRU, ed-GRU | ed-LSTM | 10,323 | 4129:5162: 1032 | , Pcathod air (4) | V | MSE = 0.014966 MAE = 0.084220 R2 = 0.964618 |
Chen K. et al. [15] | 2024 | SVM, BP | BP | 2000 | 8:2:0 | (4) | RMSE = 0.259 MAPE = 0.003334 MAE = 0.017 R2 = 0.9976 | |
Lai M. et al. [16] | 2024 | MLR, BP | BP | 662,327 | – | (12) | T, V, W | NRMSE = 0.0066 NME = 0.428 MAE = 1.367 |
Wu Y. et al. [17] | 2023 | DAG, DN, BP, SVM, RF, GA-RBF, RBF, GA-BP, LS-SVM | DAG | 1099 | 1000:99:0 | Qfuel, Qair, Qsteam, W (4) | ηH, ηE | MAE = 0.0109 RMSE2 = 0.0135 |
Hou D. et al. [18] | 2023 | ARX, NLARX | NLARX | 3600 | – | W, T, Qwater (3) | MSE = 0.05266 | |
Sheng C. et al. [19] | 2023 | KF, LSTM | LSTM | 3750 | 2500:1250:0 | J, Vrt, w, I (4) | V, RUL | RMSE = 1.4373 MAE = 0.0015 |
Song S. et al. [20] | 2021 | BP, SVM, RF | BP | 858 | 650:208:0 | (4) | V | R2 = 0.999 RMSE = 0.0032 MAE = 0.0769 |
İskenderoğlu F.C. et al. [21] | 2020 | SVM, RF | SVM | 1272 | 1122:150:0 | T, J, syngas types, etc. (10) | V | MAPE = 0.0092 |
Keyhanpour M., Ghassemi M. [22] | 2025 | DNN, RF, LASSO | RF | 601 | 601:30:0 | vfuel, vair, T, ASL and CFL porosity (5) | w, T | RMSE = 0.1213 MAE = 0.08853 R2 = 0.9999 |
Subotić V. et al. [23] | 2021 | MLP | MLP | 2271 | 80:15:5 | T, J, type fuel, etc. (9) | E, Zim, Zr | E/Zr/Zim: MSE = 2.93 × 10−5, 7.12 × 10−7/3.68 × 10−7 MAPE = 0.0034/0.00204/0.369 SMAPE = 0.0034/0.02/0.237 |
Milewski J., Świrski K. [24] | 2009 | MLP | MLP | 583 | 1:0:0 | J, T, qfuel, qoxidant (4) | V | RE = 1.0% |
Sheng C. et al. [25] | 2023 | ES (ES2/ES3)-R-GM, ANFIS-SC (gp/FCM) | ES3-R-GM + ANFIS-SC | 800 | 500:300:0 | Tfuel, Tair, Tstack, Tburn, Pgas, V, I, W, etc. (82) | V | RMSE = 0.1345 R2 = 0.9450 |
Wu X. et al. [26] | 2024 | PSO-BP | PSO-BP | 7290 | 70:30:0 | , Tstack, Tanode, Qm, S/B (7) | V, J, ηE, ηCHP | MAPE < 0.06 RMSE < 0.33 R2 > 0.98 |
Wu X. et al. [27] | 2024 | ReliefF-mRMR | ReliefF-mRMR | 2206 | 70:30:0 | (3) | 3 state | CDR1 = 0.98 CDR2 = 0.978 CDR3 = 0.981 |
Wu X. et al. [28] | 2024 | MLR, RBF, BP, LSTM, PSO-BP, GA-BP | GA-BP | 9104 | 6300:2804:0 | t, Tafterburn, Tstack, I, W (5) | V | MAE = 0.182 MSE = 0.081 R2 = 0.949 RMSE = 0.285 |
Kheirandish A. et al. [29] | 2016 | SVM, MLP | SVM | 9725 | – | J, V, W, ηE (4) | V–I, P–I, ηE–P curve | P–I: MSE = 0.0009 R2 = 0.9952 |
Chen H., el al. [30] | 2021 | LS-MLR, KNN, SVM, AdaBoost, RF, Bagging DT, GB | GB | 500 | 80:20:0 | λ, T, RH, Panode, J (5) | V | R2 = 0.89609 |
Raeesi M. et al. [31] | 2021 | RNN, DNN, LSTM, BLSTM | DNN | 6000 | 5250:750 | – | V | MSE = 0.14 R2 = 0.9982 |
Zheng Y. et al. [32] | 2021 | PCA-MLP, RF, PCA-SVM | SVM | 71,064 | 70:30:0 | Qair,re-burner, Qair,bypass, Qwater, Qfuel,react, Tair,exch, Tafter-burner, Treformer, I, V (9) | 3 state | AUC = 0.997 A = 0.9304 F1-score = 0.929 |
Huo W. et al. [33] | 2022 | ELM, SVM, GA-SVM | GA-SVM | 400 | 350:50:0 | (12) | 9 state | A = 0.98 |
Legala A. et al. [34] | 2022 | SVM, BP-ANN | BP-ANN | 1100 | 70:30:0 | I, T, Pcathod, PO2, PH2, Membrane Hydration (6) | V | MAE = 0.011 R2 = 0.995 RMSE = 0.015 |
Chauhan V. et al. [35] | 2020 | LogR, SVM, MLP | MLP | 4734 | 3750:984:0 | Extracted channel photo | 3 state | A = 0.95 |
Lin R.H. et al. [36] | 2020 | DT, RF, KNN, SVM, AdaBoost, ANN | RF-PCA | 206,360 | 75:25:0 | (8) | 3 state | AUC = 0.99975 F1-score = 0.9989 |
Lü X. et al. [37] | 2022 | RF-HPSO | RF-HPSO | 200,000 | 70:30:0 | (4) | W | MSE = 47.6444 |
Han I.S. et al. [38] | 2016 | SVM, ANN | ANN | 1468 | 923:454:0 | PH2, PO2, T, RHc, I (5) | V | R2 = 0.9994 RMSE = 2.4 MAPE = 0.0022 |
Zhong Z.-D. et al. [39] | 2006 | SVM | SVM | – | – | T, J, V, etc | I-V curve | MSE = 0.0002 R2 = 0.997% |
Feature | Interpretation | Feature | Interpretation |
---|---|---|---|
T3 | Burner temperature, °C | T27 | Temperature at the right point of the reformer, °C |
T5 | Temperature at the inlet of the reformer, °C | T30 | Cooling water temperature, °C |
T7 | SOFC exhaust gases temperature, °C | T31 | Water tank temperature, °C |
T9 | Heat exchanger temperature, °C | pump_spd | Peristaltic pump rotation speed, rps |
T12 | Water temperature for steam reforming, °C | impl_spd1 | Cooling fan speed, rps |
T16 | Temperature at the SOFC left front point, °C | impl_spd2 | Main fan speed, rps |
T17 | Temperature at the SOFC right rear point, °C | Q_CH4 | CH4 flow rate, m3/h |
T19 | Air temperature at the SOFC inlet, °C | Q_CH4_N2 | CH4/N2 flow rate, m3/h |
T20 | Hydrogen temperature at the SOFC inlet, °C | P_NG | Differential natural gas pressure, bar |
T21 | Air temperature at the SOFC outlet, °C | O2 | Oxygen concentration at the burner inlet, % |
T22 | Hydrogen temperature at the SOFC outlet, °C | W | The stack’s power, Wt |
T23 | Temperature at the rear point of the reformer, °C | I | The stack’s current, A |
T25 | Temperature at the left point of the reformer, °C | V | The stack’s voltage, V |
Model | Score | Number of Features/Components | Hyperparameters | ||
---|---|---|---|---|---|
Gamma | Learning Rate | Max Depth | |||
XGB default | MSE | 25 | 0 | 0.2 | 5 |
XGB + MDI | MAPE | 10 | 0 | 0.2 | 5 |
MSE | 11 | 0.1 | 0.2 | 5 | |
XGB + PI | MAPE | 11 | 0.1 | 0.2 | 5 |
MSE | 10 | 0 | 0.2 | 5 | |
XGB + SHAP | MAPE, MSE | 11 | 0.1 | 0.2 | 5 |
XGB + PCI | MAPE | 19 | 0.1 | 0.2 | 5 |
MSE | 17 | 0.1 | 0.2 | 5 |
Model | Score | Number of Features/Components | Hyperparameters |
---|---|---|---|
Max Depth | |||
XGBRF default | MSE | 25 | 15 |
XGBRF + PCA | MAPE | 13 | 15 |
MSE | 17 | 15 |
Model | Score | Number of Features/Components | Hyperparameters | |
---|---|---|---|---|
Hidden Layer Size | Activation | |||
MLP default | MAPE | 25 | (40, 40) | logistic |
MLP + PCA | MAPE, MSE | 23 | (15, 15) | logistic |
Model (Components) | R2 | MSE | MAE | MAPE | τ, s/it |
---|---|---|---|---|---|
Extreme gradient boosting | |||||
XGB + default (25) | 0.99698 | 0.9940 | 0.309 | 2.63% | 0.172760 |
XGB + PCA (19) | 0.99524 | 1.5670 | 0.392 | 3.52% | 0.142445 |
XGB + SHAP (11) | 0.99660 | 1.1180 | 0.383 | 3.40% | 0.095001 |
XGB + PI (11) | 0.99658 | 1.1234 | 0.384 | 3.40% | 0.093776 |
XGB + MDI (10) | 0.99525 | 1.5604 | 0.427 | 3.52% | 0.091928 |
Random forest | |||||
XGBRF default (25) | 0.99680 | 1.0546 | 0.266 | 1.12% | 3.215760 |
XGBRF + PCA (13) | 0.99518 | 1.5818 | 0.336 | 1.55% | 2.389213 |
Multilayer perceptron | |||||
MLP default (25) | 0.99468 | 1.7546 | 0.554 | 5.89% | 2.444528 |
MLP + PCA (23) | 0.99527 | 1.5553 | 0.490 | 4.82% | 2.148090 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Beloev, H.I.; Saitov, S.R.; Filimonova, A.A.; Chichirova, N.D.; Mayorov, E.S.; Babikov, O.E.; Iliev, I.K. Solid Oxide Fuel Cell Voltage Prediction by a Data-Driven Approach. Energies 2025, 18, 2174. https://doi.org/10.3390/en18092174
Beloev HI, Saitov SR, Filimonova AA, Chichirova ND, Mayorov ES, Babikov OE, Iliev IK. Solid Oxide Fuel Cell Voltage Prediction by a Data-Driven Approach. Energies. 2025; 18(9):2174. https://doi.org/10.3390/en18092174
Chicago/Turabian StyleBeloev, Hristo Ivanov, Stanislav Radikovich Saitov, Antonina Andreevna Filimonova, Natalia Dmitrievna Chichirova, Egor Sergeevich Mayorov, Oleg Evgenievich Babikov, and Iliya Krastev Iliev. 2025. "Solid Oxide Fuel Cell Voltage Prediction by a Data-Driven Approach" Energies 18, no. 9: 2174. https://doi.org/10.3390/en18092174
APA StyleBeloev, H. I., Saitov, S. R., Filimonova, A. A., Chichirova, N. D., Mayorov, E. S., Babikov, O. E., & Iliev, I. K. (2025). Solid Oxide Fuel Cell Voltage Prediction by a Data-Driven Approach. Energies, 18(9), 2174. https://doi.org/10.3390/en18092174