VO2 Thermochromic Films on Quartz Glass Substrate Grown by RF-Plasma-Assisted Oxide Molecular Beam Epitaxy
Abstract
:1. Introduction
2. Experimental Details
2.1. Thin Films’ Preparation
2.2. Characterizations
3. Results and Discussion
3.1. Structural and Morphological Analysis
3.2. Optical and Electrical Properties
3.3. XPS Composition Analysis
4. Conclusion
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Kanu, S.S.; Binions, R. Thin films for solar control applications. Proc. R. Soc. A. 2010, 466, 19–44. [Google Scholar] [CrossRef]
- Koo, H.; Xu, L.; Ko, K.E.; Ahn, S.; Chang, S.H.; Park, C. Effect of oxide buffer layer on the thermochromic properties of VO2 thin films. J. Mater. Eng. Perform. 2013, 22, 3967–3973. [Google Scholar] [CrossRef]
- Wang, J.M.; Sun, X.W.; Jiao, Z.H. Application of nanostructures in electrochromic materials and devices: recent progress. Materials 2010, 3, 5029–5053. [Google Scholar] [CrossRef]
- Heuer, H.W.; Wehrmann, R.; Kirchmeyer, S. Electrochromic window based on conducting poly(3,4-ethylenedioxythiophene) ± poly(styrene sulfonate). Adv. Funct. Mater. 2002, 12, 89–94. [Google Scholar] [CrossRef]
- Jensen, K.I.; Schultz, J.M.; Kristiansen, F.H. Development of windows based on highly insulating aerogel glazings. J. Non-Cryst. Solids 2004, 350, 351–357. [Google Scholar] [CrossRef]
- Wu, J.; Wei, X.; Padture, N.P.; Klemens, P.G.; Gell, M.; Garcia, E.; Miranzo, P.; Osendi, M.I. Low-thermal-conductivity rare-earth zirconates for potential thermal-barrier-coating applications. J. Am. Ceram. Soc. 2002, 85, 3031–3035. [Google Scholar] [CrossRef]
- Ma, J.W.; Xu, G.; Miao, L. Vanadium dioxide thin films deposited on TiO2 buffer layer for smart thermochromic glazing of windows. Adv. Mater. Res. 2011, 374–377, 1365–1368. [Google Scholar] [CrossRef]
- Li, D.X.; Huang, W.X.; Song, L.W.; Shi, Q.W. The stability study on vanadium dioxide. Adv. Mater. Res. 2015, 1120–1121, 158–167. [Google Scholar] [CrossRef]
- Bian, J.M.; Wang, M.H.; Miao, L.H.; Li, X.X.; Luo, Y.M.; Zhang, D.; Zhang, Y.Z. Growth and characterization of VO2/p-GaN/sapphire heterostructure with phase transition properties. Appl. Surf. Sci. 2015, 357, 282–286. [Google Scholar] [CrossRef]
- Wang, M.H.; Bian, J.M.; Sun, H.J.; Liu, W.F.; Zhang, Y.Z.; Luo, Y.M. n-VO2/p-GaN based nitride–oxide heterostructure with various thickness of VO2 layer grown by MBE. Appl. Surf. Sci. 2016, 389, 199–204. [Google Scholar] [CrossRef]
- Jostmeier, T.; Zimmer, J.; Karl, H.; Krenner, H.J. Optically imprinted reconfigurable photonic elements in a VO2 nanocomposite. Appl. Phys. Lett. 2014, 105. [Google Scholar] [CrossRef]
- Babulanam, S.M.; Eriksson, T.S.; Niklasson, G.A.; Granqvist, C.G. Thermochromic VO2 films for energy-efficient windows. Solar Energy Mater. 1987, 16, 347–363. [Google Scholar] [CrossRef]
- Bian, J.M.; Wang, M.H.; Sun, H.J.; Liu, H.Z.; Li, X.X.; Luo, Y.M.; Zhang, Y.Z. Thickness modulated metal-insulator transition of VO2 film grown on sapphire substrate by MBE. J. Mater. Sci. 2016, 51, 6149–6155. [Google Scholar] [CrossRef]
- Lopez, R.; Boatner, L.A.; Haynes, T.E. Synthesis and characterization of size-controlled vanadium dioxide nanocrystals in a fused silica matrix. J. Appl. Phys. 2002, 92. [Google Scholar] [CrossRef]
- Fan, L.L.; Chen, S.; Luo, Z.L.; Liu, Q.H.; Wu, Y.F.; Song, L.; Ji, D.X.; Wang, P.; Chu, W.S.; Gao, C.; Zou, C.W.; Wu, Z.Y. Strain dynamics of ultrathin VO2 film grown on TiO2 (001) and the associated phase transition modulation. Nano. Lett. 2014, 14, 4036–4043. [Google Scholar] [CrossRef] [PubMed]
- Fan, L.L.; Chen, S.; Wu, Y.F.; Chen, F.H.; Chu, W.S.; Chen, X.; Zou, C.W. Growth and phase transition characteristics of pure M-phase VO2 epitaxial film prepared by oxide molecular beam epitaxy. Appl. Phys. Lett. 2013, 103. [Google Scholar] [CrossRef]
- Seeboth, A.; Ruhmann, R.; Mühling, O. Thermotropic and thermochromic polymer based materials for adaptive solar control. Materials 2010, 3, 5143–5168. [Google Scholar] [CrossRef]
- Haddad, E.; Kruzelecky, R.V.; Wong, B.; Jamroz, W. Large tuneability IR emittance thermal control coating for space applications. ICES 2013. [Google Scholar]
- Luo, F.Y.; Huang, W.G. Investigation on structure and properties of SiO2/VOx multilayer composite films. Electron. Compon. Mater. 2011, 30, 28–31. [Google Scholar]
- Zhou, Y.; Ramanathan, S. Heteroepitaxial VO2 thin films on GaN: Structure and metal-insulator transition characteristics. J. Appl. Phys. 2012, 112. [Google Scholar] [CrossRef]
- Quackenbush, N.F.; Paik, H.J.; Woicik, J.C.; Arena, D.A.; Schlom, D.G.; Piper, L.F.J. X-Ray spectroscopy of ultra-thin oxide/oxide heteroepitaxial films: a case study of single-nanometer VO2/TiO2. Materials 2015, 8, 5452–5466. [Google Scholar] [CrossRef]
- Guo, Y.X.; Liu, Y.F.; Zou, C.W.; Qi, Z.M.; Wang, Y.Y.; Xu, Y.Q.; Wang, X.L.; Zhang, F.; Zhou, R. Oxygen pressure induced structure, morphology and phase-transition for VO2/c-sapphire films by PLD. Appl. Phys. A. 2014, 115, 1245–1250. [Google Scholar] [CrossRef]
Samples | Tc/°C | ΔH/°C | ΔT/°C | Amplitude |
---|---|---|---|---|
S1 | 57.0 (Heating) | 11.8 | 16 (Heating) | 100 |
45.2 (Cooling) | 9 (Cooling) | |||
S2 | 56.8 (Heating) | 7.8 | 9.3 (Heating) | 300 |
49.0 (Cooling) | 10.3 (Cooling) | |||
S3 | 55.3 (Heating) | 6.3 | 3.1 (Heating) | 400 |
49.0 (Cooling) | 11.4 (Cooling) |
Parameters | Tc/°C | ΔH/°C | ΔT/°C | Amplitude |
---|---|---|---|---|
S2-2 μm | 58 (Heating) | 4 | 14 (Heating) | 2.6 |
54 (Cooling) | 13 (Cooling) | |||
S2-2.5 μm | 59 (Heating) | 11 | 11 (Heating) | 3.0 |
48 (Cooling) | 15 (Cooling) | |||
S3-2 μm | 54 (Heating) | 3 | 9 (Heating) | 3.5 |
51 (Cooling) | 13 (Cooling) | |||
S3-2.5 μm | 56 (Heating) | 7 | 14 (Heating) | 4.6 |
49 (Cooling) | 19 (Cooling) |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, D.; Sun, H.-J.; Wang, M.-H.; Miao, L.-H.; Liu, H.-Z.; Zhang, Y.-Z.; Bian, J.-M. VO2 Thermochromic Films on Quartz Glass Substrate Grown by RF-Plasma-Assisted Oxide Molecular Beam Epitaxy. Materials 2017, 10, 314. https://doi.org/10.3390/ma10030314
Zhang D, Sun H-J, Wang M-H, Miao L-H, Liu H-Z, Zhang Y-Z, Bian J-M. VO2 Thermochromic Films on Quartz Glass Substrate Grown by RF-Plasma-Assisted Oxide Molecular Beam Epitaxy. Materials. 2017; 10(3):314. https://doi.org/10.3390/ma10030314
Chicago/Turabian StyleZhang, Dong, Hong-Jun Sun, Min-Huan Wang, Li-Hua Miao, Hong-Zhu Liu, Yu-Zhi Zhang, and Ji-Ming Bian. 2017. "VO2 Thermochromic Films on Quartz Glass Substrate Grown by RF-Plasma-Assisted Oxide Molecular Beam Epitaxy" Materials 10, no. 3: 314. https://doi.org/10.3390/ma10030314
APA StyleZhang, D., Sun, H.-J., Wang, M.-H., Miao, L.-H., Liu, H.-Z., Zhang, Y.-Z., & Bian, J.-M. (2017). VO2 Thermochromic Films on Quartz Glass Substrate Grown by RF-Plasma-Assisted Oxide Molecular Beam Epitaxy. Materials, 10(3), 314. https://doi.org/10.3390/ma10030314